
in: Proc. 2nd Int. Conf. on Information and Knowledge Management (CIKM’93), Washington D.C., 1993, pp.324-334.
Enhancing Knowledge Processing in Client/Server Environments

J. Thomas, B. Mitschang, N. Mattos‡, S. Deßloch
Department of Computer Science, University of Kaiserslautern

P.O.Box 3049, 6750 Kaiserslautern, Germany
e-mail: {thomas | mitsch | dessloch}@informatik.uni-kl.de
n
ed

t
a
en
a
n
r
r

d
rk
h
g

i
n
s
us
n

a
n
y,
e
ci
t

ta
nd
i
t
n
e
u
a

an
e

t o

p
tro

lity
r
ore
g
uni-
lient
less
t,
s.
e in
ved
e
nd

nse-
ge
e

r, a
,

ng
ust
to
ed

eed
he
ng
the

s of
es
te
-
. It
lly
n

ed
e
.g.,
ls
d

ver
ests
ts
ver
t,
ct
hese
d

Abstract
A great variety of techniques has been developed to optimize a
enhance query processing for relational, client/server, distribut
parallel, and heterogeneous database systems (DBS). Based on
work and experience, we investigate how far those techniques
applicable to query processing in Knowledge Base Managem
Systems (KBMS). Our reference system is the KRISYS KBMS th
consists of a knowledge-processing system at the client (clie
based processing) and a data-processing system at the se
(database backend). We describe a unifying framework for que
processing incorporating both processing systems (as realize
KRISYS). This allows to distribute and balance the amount of wo
done in the client and in the server. Based on an evaluation of t
framework, several approaches to further enhance knowled
processing are reported.

1. Introduction

During the last several years,Knowledge Base Management
Systems (KBMS) have emerged as an important research area
the field of databases. They do not only support a reliable a
efficient management of large amounts of knowledge, but al
offer modeling constructs to build such knowledge bases. Th
KBMS naturally integrate aspects of knowledge representation a
database technology.
KBMS are intended to support non-standard applications such
e.g., intelligent CAD [MDL91]. These applications generally ru
on powerful clients equipped with sufficient processing capabilit
main memory, and private disk space, which are typically dedicat
to single users or knowledge engineers and may provide spe
functions (e.g., suitable graphic interfaces) for them. The clien
access a central server component, whose task is to main
centralized information (i.e., the knowledge base, for short KB) a
to control its shared use. Therefore, and also from a hardware po
of view, KBMS architectures fit into a client/server environmen
with decentralized and autonomous processing sites. Amo
others, failure isolation, extensibility, and scalability of the entir
system can be considered as key advantages of such architect
Client and server must be linked via an appropriate interface th
minimizes communication traffic and KB accesses. Such
interface must take into account the functionality provided at th
server site and at the client site in order to determine the amoun
processing to be performed by either component. This gives rise
the question of where to place the 'borderline' between the com
nents when considering the required processing capabilities. In

‡) IBM Database Technology Institute, Santa Teresa Laboratory,
555 Bailey Ave., San Jose, CA, 95150 USA,
e-mail: mattos@stlvm14.vnet.ibm.com
1

as
w
ur

ion
uery
d
,
hat
re
t

t
t-
ver
y
in

at
e

n
d
o
,
d

s,

d
al
s
in

nt

g

res.
t

f
to
o-
-

ducing more semantics in the server by enhancing its functiona
allows shifting a lot of processing from the client to the serve
(because the operations performed by the server become m
powerful), however hinders the exploitation of available computin
resources and processor 'power' in the client, increases comm
cation overhead, and causes some kind of dependency of the c
on the server. Less semantics on the server side means
functionality, tending to leave more processing at the clien
thereby not fully exploiting the server’s processing capabilitie
Hence, it is necessary to balance the amount of processing don
the client and in the server. In general, such a balance is achie
by placing most of the semantics provided by the KBMS on th
client side (close to the user/application, where it is needed) a
most of the data management tasks on the central server. Co
quently, in the client, a knowledge model and a query langua
comprising operations for defining and manipulating knowledg
constitute the interface to users and applications. In the serve
DBS manages the KB. Hence, from a software point of view
KBMSs clearly separate between what we callknowledge
processing in the client, anddata processing in the server pre-
processing portions of the KB to be loaded into the client.

In this architectural scenario, whenever queries are bei
processed, a precise coordination between client and server m
take place to achieve the desired performance. In contrast
conventional query processing, where all accesses are perform
under the absolute control of one query-processing system, we n
here coordination of two autonomous systems taking part in t
overall evaluation of queries. Further, both query-processi
systems (i.e., the knowledge-processing system at the client and
data-processing system at the server) are faced with problem
efficiency and, for this reason, must apply optimization techniqu
to improve their performance. Hence, it is worthwhile to investiga
the similarities as well as the dissimilarities of the two query
processing approaches in order to achieve a fruitful coordination
is also important to analyze whether the well-founded (especia
relational) technology for query optimization and query evaluatio
is applicable in this new architectural scenario.

At a general level this “divided” processing approach, as adopt
by the KRISYS KBMS, is very similar to those used in current pur
Object-Oriented Data Base Systems (OODBS), such as, e
ObjectStore [OHMS92]. However, a more detailed view revea
important differences: In many OODBSs much of the query an
DBS processing is done on the client side, whereas the ser
mostly stores and retrieves pages of data in response to requ
from the clients. In contrast to this, KRISYS asks for arbitrary se
of objects to be loaded into the client issuing queries to the ser
DBS. However, when comparing the work to be done in the clien
similarities show up. Both, KBMS and OODBS manage an obje
cache and process queries over the cache contents. Due to t
similarities, we are quite optimistic that the concepts an
approaches discussed in this paper will be useful for OODBS
well. In addition to that, we assume that our work someho
inversely affects the areas from where we have taken o
motivation, the processing concepts, as well as the optimizat
issues. Those areas are located in the realm of database q
processing and were already mentioned above.

fer-

lar
the
ur
are

he
er-

nce

y).
as

ct
chy

she

le

t
d
nt,
for
ts,
tral
ive
er,
s

Summing up, the observations lead to a set of requirements that
must be met in order to guarantee effective and efficient overall
query processing in KBMS. The evaluation of these requirements
as well as the investigation of several solutions and their implemen-
tation in the KRISYS KBMS determine the goal and purpose of this
paper. More specifically, Sect. 2 gives a concise overview of
knowledge processing in the client/server environment set by the
KRISYS KBMS. Sect. 3 outlines measures to considerably
enhance knowledge processing, mostly applying well-known
techniques for query processing in DBS. General as well as specific
enhancements to knowledge processing are investigated as well as
qualitatively evaluated. Moreover, we discuss how these enhance-
ments can be realized in the framework of KRISYS. The final
section summarizes the results, reports on the current state of
system implementation, and concludes with an outlook to future
work.

2. Knowledge Processing in the KRISYS KBMS

2.1 Knowledge Model and Query Language

The knowledge model of KRISYS is comparable to object-oriented
data models [CACM91] [Ki91]. An object is uniquely identified by
a name (i.e., object-identifier), and contains a set of attributes to
describe its characteristics. Attributes can be of two kinds:slots are
used for representing properties of an object and relationships to
other objects;methods are used for expressing object behavior.
Moreover, attributes can be further described by aspects, defining,
e.g., the cardinality of a slot. For object structuring, our knowledge
model supports the abstraction concepts of classification, generali-
zation, association, and aggregation [Ma88] [MM89]. The special
semantics of these relationships is guaranteed by the system (e.g.,
inheritance along the classification and generalization relation-
ships). In contrast to DBS, KRISYS does not distinguish between
schema-information and instance-information - both are repre-
sented using the concept of objects (a similar approach is taken in
[KL89]). Objects can therefore represent instances, classes, sets,
elements, aggregates, etc. In addition to the above described
concepts, the knowledge model of KRISYS provides various other
features, such as, e.g., integrity constraints and rules, not usually
found in object-oriented models. In the scope of this paper, an in-
depth discussion of these concepts is not necessary (see [Ma91] for
details on rules and [De91] for details on integrity constraints).

An abstract view of our sample KB is given in Fig. 2.1. There, we
assume a KB containing generalization hierarchies for persons and
vehicles. Classes are drawn as rectangles, subclass/superclass
relationships are the edges between superclass and subclass, and
the shaded areas visualize the remaining parts of the hierarchies
including all instances.

Retrieval and modification of a KB is supported by KOALA
[DLM90] [Ma91], a descriptive, set-oriented language constituting
the user and application interface of KRISYS. KOALA features
two powerful operations, ASK to query the KB, and TELL to
change the state of the KB. For example, the ASK statement given
in Fig. 2.2 and applied to the KB shown in Fig. 2.1 retrieves the

names of all persons being either pedestrians, drivers of a car (re
enced via slot ‘driver’), or pilots of a plane.

Symbols with a leading question mark are query variables, simi
to tuple variables in SQL. These variables may also appear in
projection clause (the first clause in the ASK statement). In o
example, the projection clause states that just the object names
to be included in the result of the query. The query refers to t
abstraction concepts of classification and instantiation and to ref
ences between thevehicles hierarchy and thepersons hierarchy,
which are due to the fact that a car has a driver (being an insta
within the persons hierarchy) and a plane is flown by a pilot
(being an instance of the pilot subclass in the persons hierarch
With a (relational) evaluation concept in mind, the query reads
follows: Firstly, theinstances of persons are retrieved and bound
to the query variable ?y (operation 1), i.e., not only the dire
instances but also those belonging to the whole class hierar
beneathpersons. Some of these instances may also beinstances
of pedestrians (operation 2). If this condition does not hold, the
person may be among the drivers of aninstance of cars (operation
sequence 3) indicated by variable ?x, or a person qualifies, if he/
is a pilot and flies aninstance of planes (operation sequence 4)
referred to by query variable ?z. We will use this query examp
throughout the paper.

2.2 Knowledge Processing in KRISYS - the Main Ideas
KRISYS is a prototypical implementation of a KBMS developed a
the University of Kaiserslautern [Ma91]. KRISYS was conceive
to support knowledge processing in a client/server environme
which can be seen as the dominating hardware environment
complex, non-standard DB applications. In such environmen
applications run on dedicated clients having access to a cen
server component responsible for an integrated and effect
management of shared information. For the purpose of this pap
it is sufficient to take a general view of the KRISYS architecture a
shown in Fig. 2.3. (see [DHLM92] for more details).

pedestrians

vehicles

cars planes

persons

subclass-of

pilots

subclass-of

Fig. 2.1: The example KB showing class hierarchies and

subclass-of subclass-of

(ask ((?y))
 (and (is-instance ?y persons)

(or (is-instance ?y pedestrians)
(exist ?x (is-instance ?x cars)

(is-in ?y (slotvalues driver ?x)))
(exist ?z (is-instance ?z planes)

(is-instance ?y pilots)
(is-in ?z (slotvalues flies ?y)))))

Fig. 2.2: Sample ASK statement

➀
➁

➂

➃

 management

working-memory

server DBMS

mapping component

working-memory

KOALA PROCESSING SYSTEM

knowledge
processing

data processing

Knowledge-based
Application

End User

Knowledge Engineer
or

Fig. 2.3: Overall architecture of KRISYS
2

re
es
e,

ery
the
he

e

re
e
of
n-

to
on-
are
ntly
ips

to
ry)

ry

re
ing
be

nal
s,

lar
al
le
ntly
ly,
ted

es
the
d
e

he
the

in
The overall architecture is motivated by two primary goals
necessary to achieve efficient knowledge processing in client/
server environments. Firstly,application-oriented processing
at the client site must be supported to exploit the processing
capabilities of the client components and to keep the server
component from being overloaded. The server component may
concentrate on the effective and efficient management of data
[HR83]. Secondly, for efficiency and reliability, aloose coupling
of client and server components that reduces communication
efforts and dependencies between both sides must be achieved
[HHMM88].
The first measure taken to fulfill these requirements was the intro-
duction of a system-controlled application buffer (calledworking-
memory, WM) at the client site, handling the applications’ locality
of reference. The WM is used by the KOALA Processing System
(KPS) as resource to obtain its input data and as storage medium to
which to write its query results; in other words, as a medium to
maintain intermediate results. Hence, currently needed parts of the
KB have to be transported into the WM only once, thereby
minimizing the communication between client and server. Thus, if
the application only refers to information already residing in WM,
no calls to the DBS have to be issued at all.
The second measure taken is motivated by the expressiveness of the
modeling concepts provided by KRISYS. As already mentioned,
the knowledge model offers various concepts suitable for modeling
application-specific processing tasks using e.g., methods or rules.
Since these kinds of operations work on the knowledge model, it is
clearly advantageous to perform them at the client site. Otherwise,
the client would be idle, whilst the server might be overloaded. This
holds also for the processing of KOALA (ASK or TELL) state-
ments and for significant parts of the knowledge model (the
semantics of the abstraction concepts, such as, e.g., inheritance) as
well. Thus, only a portion of the processing related to the evaluation
of a query, is performed by the server DBS1, whilst the remaining,
more complex tasks are carried out on the client side.
Knowledge processing in KRISYS, thus, involves both the server
DBS and the system components of the client. If information refer-
enced by a query must be fetched from the server, themapping
component (MC) is invoked. Its main purpose is to conceal details
of how knowledge is actually mapped to the primitives of the
underlying DBS2, thus making the upper system components
independent from the actual mapping. Queries posed to the MC are
expressed in a functional subset of the KOALA language. This
subset corresponds to the kind of simple queries that can be
evaluated by the server component. Since the knowledge model of
KRISYS cannot be mapped directly to the data model of the server
component, the MC usually generates (a set of) queries formulated
in the query language of the server DBS. Results coming in from
the server consequently have to be transformed into a main-
memory representation of the knowledge model. Hence,
knowledge processing in the client can be realized based on this
data structure. Thus, only the MC refers directly to the actual repre-
sentation in the DBS.

2.3 Working-Memory Management and Representation
The above described architectural decisions indicate that the
processing of associative queries (inherent in KOALA) indis-
pensably requires the exploitation of the buffer contents. For this
reason, KRISYS must be able to relate the knowledge requested by
a given KOALA query to the objects already stored in WM. This is
achieved by defining the WM contents descriptively, similar to the

way KOALA allows the specification of collections of objects
(e.g., the WM contains ‘all planes’). Thus, subsumption tests a
performed by comparing the predicates of the query with the on
describing the buffer. These tests must be performed at run-tim
and their results are then used for deciding which parts of a qu
are carried out in WM and which ones have to be delegated to
server. The component of KRISYS responsible for maintaining t
buffer description and performing the tests is calledworking-
memory manager. A discussion of this component is beyond th
scope of this paper; we leave this issue to a further publication.
The representational framework of the WM (i.e., how objects a
actually stored) directly reflects the characteristics of th
knowledge model of KRISYS. This model defines three types
relationships for objects (cf. Fig. 2.4). Firstly, there are the relatio

ships within an object, consisting of links from the object name
its attributes and their descriptions. Secondly, there are the relati
ships among objects. The most important of these relationships
the abstraction concepts, forming abstraction hierarchies freque
traversed during knowledge processing. Both types of relationsh
are materialized in WM using main-memory pointers3, providing
fast access to the required information. Moreover, we need
support efficient access to and set-oriented processing of (arbitra
collections of objects, e.g., (intermediate) results in que
processing. This is provided by so-calledaccess structures (AS),
taking the role of main-memory indices. In their basic form, AS a
organized as lists of objects and comprise operations for travers
an AS based on a cursor concept. However, AS may also
organized as trees or hash tables if advantageous.

2.4 Steps in Knowledge Processing
KPS realizes an algebraic processing model allowing conventio
algebraic optimizations to be used to a large extent [JK84]. Thu
the overall steps of knowledge processing proceed in a simi
fashion as the well-known steps of data processing in relation
DBSs [HFLP89]: first, an algebra graph that represents a flexib
internal representation of a query is generated and subseque
optimized; then, a plan operator graph is constructed; final
executable code is generated, and the query is actually evalua
(Fig. 2.5). However, when analyzed in detail, several differenc
arise. They are due to the specific hardware environment and
different semantic levels of the knowledge model in the client an
the data model at the server. In the following, we will discuss th
steps of knowledge processing in detail. The starting point is t
comprehensive sample query given in Fig. 2.2 and applied to
KB shown in Fig. 2.1 (cf. Sect. 2.1).

1. We exploit a relational or extended relational model at the server DBS
[Mi88].

2. E.g., which relations are actually employed to represent an object class,
which indices are defined over those relations, etc.

3. This is comparable to the ‘pointer-swizzling’ concepts applied
OODBS [Mo92].

object and its
internal levels

collection
of objects (AS)

relations defined by abstraction concepts

Fig. 2.4: The organization of knowledge in WM
3

ill
e
,

ing

to
re

not
nt
rs
ol.
ent

a-
in

.7,
be
but
in

his
‘?’

ect
en
ph
lan

ed

tly
e

2.4.1 Compile-Time Activities

Generation of Algebra Graph and Algebraic Optimization
(Step 1)

In the first step of knowledge processing, an initial algebra graph is
constructed from the incoming query. This algebra graph is subse-
quently rewritten by means of graph transformations performing
algebraic optimization measures. As the result of the first step, an
optimized algebra graph is generated as shown in Fig. 2.6 referring
to our sample query mentioned before. When looking at this graph,
we can easily recognize well-known algebra operators like, e.g.,
selection, projection, join, or union. Further, the set of legal algebra
operators comprises those known from relational algebra (e.g.,
push-down of selections and projections, combination of sequences
of unary operations, treatment of common subexpressions, etc.). In
addition, there are some specific operators related to the special
semantics and characteristics of the knowledge model [Ro92], e.g.,
an operator to follow object references and materialize the corre-
sponding objects.

Assignment of Algebra Operators to the Client Component
(Step 2)

Due to the client/server environment in which knowledge
processing is performed, a crucial issue is to determine the evalu-
ation site of each algebra operator. The more operations of an
algebra graph that can be performed in the server component, the
more reduced is the amount of data to be transferred into WM. This
reduction of data volume also results in less objects to be installed
in WM allowing a better exploitation of its storage capacity.
Deciding on the evaluation site of each operator is based upon two
criteria, namely,

• the complexity of the operations4 compared to the query capa-
bilities provided by the server DBS, and

• the current contents of the WM.
The first criterion can be evaluated at compile time, and we w
discuss the underlying considerations in the following. Th
contents of the WM, however, is known only at run time and
consequently, must be dealt with in a later step of our process
framework (step 4).
With respect to the first criterion, those algebra operations have
be assigned to the client (and are indicated by a ‘C’ symbol) that a
either too complex to be evaluated by the server DBS or that can
be transformed into queries to the server due to insufficie
expressive power of the DBS’s query facilities. All other operato
are preliminarily assigned to the server and marked by a ‘?’ symb
Let us assume that this procedure results in an operator assignm
as shown in Fig. 2.7, left side (for reasons of simplicity, the oper
tions are numbered, but directly correspond to their counterparts
Fig. 2.6).
Now, a borderline between client and server can be drawn (Fig. 2
right side). Those operations whose evaluation site could not yet
decided (because they are potentially evaluable at the server),
which are preceded and followed by operations to be performed
the client, are reasonably re-assigned to this component. T
applies, e.g., for operation 6. The operations still marked by a
can be assigned to client or server only at run time.
Plan Generation and Optimization (Step 3)
All the operations of the operator graph above the borderline exp
their input to be in WM. Therefore, plan operators can be chos
for those operations, and the resulting (partial) plan operator gra
can be optimized. Here again, the approaches to conventional p
optimization [Lo88] are applicable. However, the cost models us

Plan generation and optimization for the
definitively assigned parts of the algebra graph

Plan generation and plan optimization for the
remaining parts of the algebra graph

Algebraic Manipulations

Generation/optimization of the algebra graph

Assignment of algebra operations to the client

Plan Level Manipulations

Code Generation and Execution

compile

run

time

Assignment of remaining algebra operations
to client or server component

Fig. 2.5: Steps in knowledge processing

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

KOALA Query

time

4. Note, this complexity is also based upon the way the KB is curren
mapped (by the MC) to the DBS in the server. For simplicity reasons, w
shall not consider this as a separate aspect.

SELECT
(is-instance ?y

persons)

SELECT
(is-instance ?x

cars)

SELECT
(is-instance ?z

planes)

SELECT
(is-instance ?y
pedestrians)

JOIN
(is-in ?z

(slotvalues
flies ?y))

UNION

JOIN
(is-in ?y

(slotvalues driver
?x))

Fig. 2.6: Optimized algebra graph

COL-PROJECT COL-PROJECT

Knowledge
Base

SELECT
(is-instance ?y

pilots)
4

n
be

ope
he
ve
o
ell.

its
site
tly

se
se
in
ni-
er
e
e

pi-
fore
ery

t by
the
or
ta
nta-
ere

nd
he

ical

ing
-

en
he
se-
ing
to

ge
ery

ral
is
er
est

es,
l.

the
rver
the
in plan optimization have to be adjusted to the main-memory
query-processing environment5. The optimization measures remain
valid at run time despite the borderline possibly being moved
“downward”; i.e., more operations being performed in the client.
This observation will be justified subsequently. However, we can
already note that the borderline will never be moved “upwards”,
because the assignments of operations to the client site is static.

2.4.2 Run-Time Activities

Assignment of Remaining Algebra Operators (Step 4)
At run time, the remaining algebra operators must be assigned to an
evaluation site. Due to their reduced complexity, they may be
performed in the client or in the server. The decision is solely based
upon the current contents of the WM; i.e., the contents’ descriptions
maintained by the working-memory manager. When trying to
decide on the evaluation site of a certain operator, one has to take
into account the whole subgraph of the algebra graph rooted at that
operator. Three situations may occur depending on the amount of
requested knowledge already residing in WM.
If the WM does not contain any of the required input for a subgraph,
the whole subgraph has to be delegated to the server DBS. Conse-
quently, the border between client and server remains where it has
been put at compile time. The plan operators above the borderline,
which receive their input from such subgraphs, are not affected,
because the results of the delegated operations are to be made
available for further processing in WM by the MC. Additionally,
the corresponding optimization measures already done at compile
time are valid further on.
If the complete input for a subgraph already resides in WM due to
previous queries evaluated in the client, the borderline is moved
downwards because now this subgraph can be evaluated in the
client. However, the optimization decisions for all direct
successors, already set at compile time, are still valid, since they
assumed their input to be in WM, and this will not change by
moving down the client/server borderline. The only reason why the
resulting graph may not look optimal is because it may contain
sequences of plan operators that could be combined into a single
operator to prevent intermediate results (e.g., sequences of selects).
This can actually be handled subsequently or an appropriate
execution control is employed at run time that avoids intermediate
results for those operator sequences (cf. Sect. 3).
The third possibility arises if only part of the required input is
residing in WM, and the rest is still residing in the server. In this
case, basically two processing strategies are possible. One alter-
native is to completely delegate the query to the server, requiring to
previously write back to the database the potentially updated

portion of knowledge installed in WM. The second viable solutio
is to only complement the WM contents such that the query can
performed in WM. Using a cost model will help in deciding
between the two alternatives. This discussion is beyond the sc
of our paper. However, it is important to note that in either case, t
implications for the already optimized plan operator graph abo
the borderline are a combination of those from the previous tw
cases. Thus, the optimality of this graph is guaranteed here as w
Plan Generation and Optimization (Step 5)
Choosing an optimal plan for an algebra operator depends on
execution site. The plan operators to be evaluated at the server
are mapped to server queries (or query) by the MC and succinc
optimized by the DBS query optimization as normal databa
queries. (This aspect will be brought up later in Sect. 3.5). In ca
the information to be processed is already completely installed
WM, choosing a good plan operator mainly depends on the orga
zation and size of the AS in which the knowledge is stored: wheth
the information is available in some sort order that might b
exploited, or whether it might be worthwhile reorganizing th
knowledge first, before actually processing it.
Code Generation and Execution (Step 6)
This step is in analogy to conventional data processing. If a com
lation approach is taken, executable code has to be generated be
the query can actually be evaluated, whereas otherwise, the qu
is executed by interpreting the plan operator graph.
During execution, the tasks of each plan operator are carried ou
either sending queries to the server DBS or by accessing
knowledge residing in WM. To this end, each plan operat
exploits the WM data structures for efficient access to its input da
and organizes its computed results in terms of the same represe
tional framework. Again, the concepts and techniques applied h
can also be found in similar forms in OODBMS [CACM91]
[OHMS92], as well as in main-memory DBMS [De84].

2.5 Summary
In this section we have presented the architecture of KRISYS a
an overview of the knowledge-processing techniques applied. T
basic concepts of this approach are supported in the prototyp
implementation of the KPS in the KRISYS KBMS. In that system
prototype we have concentrated on main-memory query process
in WM pre-loaded with a portion of the KB. Queries are trans
formed into an optimized algebraic representation, which is th
used to construct a straight-forward plan operator graph with all t
plan operators now being evaluated on the client side. Con
quently, the next implementation step shall take server process
into account, as well. Conceptual and implementational issues
reach that goal are discussed in the next section.

3. Enhancements to Knowledge Processing
From the previous section we can conclude that knowled
processing in KRISYS proceeds along the same steps as qu
processing in conventional DBS. Due to the given architectu
environment, a central issue for efficient knowledge processing
to decide on the execution site of each operator. In addition, oth
measures for improving performance can be taken. They are b
classified into one of the following areas:
• approaches to enhance client/server communication,
• approaches to enhance client processing, and
• approaches to enhance server processing.
To discuss the optimization potential offered by these approach
we apply a simple, yet sufficiently expressive, analytical mode
We assume that all operations in the client component require
same amount of processing time, and that selections on the se
take three times longer than operations to be performed in

5. This means that the concepts known from main-memory DBS are becom-
ing applicable [De84]. These concepts are also being applied for query
processing in OODBS [OHMS92].

sel2sel1

4

1 3 5

6

7

sel3

C

C C C

??

?

?

C

C: the operation must be performed in the client component
?: the evaluation site may be either client or server

client

server

4

1 3 5

6

7 C

C C C

?

C

C2

Fig. 2.7: Assignment to client or server

2 ?

sel2sel1 sel3 ???
5

no

we
een
s
the
BS

ig.
lu-

this

2.
he
ay
r
one

r
ter,

is

ing

in
ted
ver
ro-
er
client. In reality, this ratio is even higher, because we compare
main-memory operations to database operations that might run into
disk I/O, and because the communication overhead between client
and server is also not taken into account. Moreover, we consider
CPU costs as the only cost parameter for client processing, since it
is carried out in WM only. This assumption even holds in the case
of a shared-memory multi-processor client, in which knowledge
processing is distributed among the processors and all client
processing takes place in the WM residing in shared-memory.

Before actually looking at the optimization potential offered by
these approaches and their reflection in KRISYS, we will introduce
the plan operator concept underlying the processing of KOALA
queries. This detailed view to query processing is necessary in
order to understand the subsequent discussions.

3.1 Generic Plan Operator Concept and Flexible Processing
Model

Due to the client/server environment of KRISYS, its plan operators
must take into account client processing, server processing, as well
as interactions between these two processing systems. To accom-
plish that, the plan operators provide for a high level abstraction
that allows the unification of several processing issues applicable in
that heterogeneous processing environment.

At a logical abstraction level the plan operators are seen as
producers and/or consumers oftuple streams6 that define a high
level connection of producers and consumers abstracting from both
the structure of the tuples and from the way how the tuples get from
the producer to their consumers. (Later in the discussion we shall
elaborate on the abstraction and flexibility achieved by this). Each
plan operator has at least one input stream and exactly one output
stream that might be fed into several subsequent operators. All plan
operators are realized as iterators; i.e., they are controlled by an
open-next-close interface. Theopen function initializes a plan
operator’s processing, thenext function asks for the next result
tuple to be produced by the plan operator, and theclose function
terminates plan-operator processing. This open-next-close protocol
is applicable to all plan operators meaning that an operator has
firstly to open its directly subordinate operators before being able
to ask them for the production of input tuples (next calls) that are
needed for the operator’s own processing and for the production of
its output tuples. When processing of an operator is finished, its
subordinate operators will be terminated (close call), too. Hence,
the generic processing model for an entire plan operator graph
consists of three phases. During initialization, anopen call is sent
to the root plan operator initiating it and causingopen calls to all
its input streams down the plan operator hierarchy. In the second
phase, anext call is repeatedly issued to the topmost plan operator,
which passes on thenext call to its subordinate operators until the
end of input is reached. As soon as this situation occurs, the root
plan operator closes its input streams propagating theclose signal
to its predecessors and then terminates itself. Thus, all iterators in a
plan operator graph are recursively shut down.

This generic interface defines an evaluation model that is purely
demand-driven and that allows for different realizations, thus
adapting evaluation to the current environment, i.e., to client or
server processing. Further, it separates evaluation control from the
specific tasks of a plan operator (e.g., selection, projection, join,
union, etc.). This offers easy extensibility to new plan operators
because a new plan operator only has to obey the open-next-close
protocol to be utilizable in that framework [TD93]. This simple but
flexible plan operator concept has also been adopted by other

query-processing systems, e.g., Starburst [HFLP89] and Volca
[Gr90b], and has proven its applicability.

3.2 Enhancing the Communication between Client and
Server Processing Systems

For the discussion of these and the following enhancements
assume that an optimized plan operator graph has already b
constructed from the algebra graph given in Fig. 2.6. All it
operators have been assigned to either client or server, and
selections are the only operations to be delegated to the server D
(cf. Fig. 3.1).

3.2.1 Asynchronous Interface to the Server DBS

The simplest strategy for processing the plan operator graph of F
3.1 is to execute all operators in a sequential order, e.g., by eva
ating selection sel2 first, then performing selection sel3, and finally
carrying out selection sel1. Thereafter, operations 1 to 7 can be
executed. Other sequential strategies are only permutations of
operator sequence and thus can be treated analogously.

A schedule for this sequential evaluation is outlined in Fig. 3.
This diagram does not allow any quantitative judgments on t
duration of the evaluation process, yet qualitative conclusions m
be drawn. Although being logically correct, this evaluation orde
sequentializes even those operations that are independent from
another, e.g., selection sel1 is independent from any schedule fo
the operator sequence (4,5,6). In this case we can’t do bet
because it is assumed that the interface to the server DBS
synchronous, i.e., blocking. Sending a query to the serverblocks
the callee until thecomplete result is available. However, if the
interface to the server DBS is asynchronous, a better process
scheme may be achieved.

While processing a subtree (whose input is already residing
WM), the evaluation of another subtree can already be reques
from the server. It does not suffice just to send a query to the ser
DBS, it must also be guaranteed that all results, arriving asynch
nously in the client, are stored in WM for later processing. Und

6. Here we use ‘tuple’ as a generic term. It refers, in general, to a processing
element, which in our case can be a complete (knowledge) object or even
specific parts thereof.

client operators

server operators

6

7

Fig. 3.1: The example plan operator graph.
sel3sel1 sel2

4

1 3 5

2

Fig. 3.2: Schedule for the sequential processing of the query

sel2 sel1
1 4 5 6 2 3 7

sel3 DP
KP

t

16

KP = knowledge processing, DP = data processing
6

at
ery,
on
s of
l
S
e
dy
h.
id-
he

om

ant
rver
pts,

ed
s, an
ing

will

d
lan
ted

],
in

li-
s is

em,
For
y
ral-
th
tor
ral-
of
om
d in
(4,
n
in

m
lan
these circumstances and referring to the processing sequence
mentioned above, the schedule given in Fig. 3.3 becomes possible.

Although diagrams 3.2 and 3.3 do not allow any quantitative
conclusions, it becomes clear that by using an asynchronous
interface for the server DBS considerable improvements show up,
since now client knowledge-processing and server query-
processing do work concurrently.

3.2.2 Multi-Query Interface to the Server DBS

From the client’s point of view it does not matter whether the
queries are sent to the server one after the other or whether they are
initiated together. This may, however, be decisive for query
processing in the server DBS if it is able to optimize suchmulti-
queries. In this case, the evaluation of the single queries can be
combined resulting in a reduction of execution overhead. If, e.g.,
the server DBS is supplied with several read-only queries, they
need not be executed each within a separate transaction. It is suffi-
cient to carry them out as independent queries within a single trans-
action, thus saving processing overhead, e.g., for locking. A further
major gain of performance may be achieved by avoiding redundant
accesses and operations on the same data by identifying common
subexpressions referenced by several (sub)queries [Se88].
If the server DBS cannot process the set of queries or parts thereof
in parallel, it has to evaluate them sequentially, thus also defining
the order in which the answers to the queries are given back to the
client. A particular order set by the server DBS might influence
knowledge processing in the client such that an optimal order
cannot be achieved any more. If, e.g., in our sample scenario the
portions delegated to the server are answered and returned in the
order sel3, sel1, sel2, total execution takes longer, i.e., more time is
needed for processing the entire query. Execution time even corre-
sponds to sequential processing (cf. Fig. 3.4). Although we assume
an asynchronous interface between client and server, client
processing is blocked until (sub)query sel2 has been processed
completely. This blocking period is drawn as a black bar in Fig. 3.4.
For the client it is therefore desirable that its optimal execution
order is respected by DBS processing. To avoid that the optimi-
zation efforts in client and server contradict each other concerning
execution sequences, the DBS should be able to adapt its optimal
evaluation to the needs of the client. To do that, it not only needs a
set of queries subject to multi-query optimization, but also the
optimal evaluation sequence is required. However, these consider-
ations may not be valid any longer if the server DBS is a parallel
database system (cf. Sect. 3.5).

3.2.3 Supply of Partial Results of a Query by the Server
DBS

In the evaluation scenario given by Fig. 3.3, the client has to wait
two points (shaded areas) for the results of a database qu
although the interface to the server is non-blocking. After operati
4 has been completed, the client cannot continue until the result
sel2 are completely available. The same applies for selection se1,
the missing input for operator 2. This effect is due to the server DB
returning only complete answers to the client. However, if th
server DBS is able to provide partial results, the client can alrea
start to process them without having to wait for the server to finis
Thus, the duration of overall processing can be reduced cons
erably as depicted in Fig. 3.5. Note, operation 5 can start with t
first results from sel3 right after operation 4 is completed. Analo-
gously, operation 2 can start when the first results generated fr
sel1 show up supposing that sel2 is already done.

3.2.4 Combining the Concepts

In the previous sections we identified and evaluated three import
measures enhancing the communication between client and se
processing systems. We introduced them as separate conce
being independent from each other. However, their combin
usage is advisable to achieve best processing performance. Thu
asynchronous interface between client and server process
systems that supports multi-queries and supplies partial results
yield the best results.
For query processing in KRISYS we employ exactly this combine
approach (cf. Sect. 3.5). Its realization is based on a new p
operator (to be described in detail in Sect. 3.4) and thus integra
into the overall processing concept of theopen-next-close
protocol described in Sect. 3.1.

3.3 Enhancing Client Processing
With the appearance of multi-processor clients [Co89] [Se90
query processing is entering a new dimension. Parallelism
connection with asynchronicity is becoming effective. The app
cation of these techniques to client query processing system
discussed in this section.
Since up to now the client is seen as a single-processor syst
query processing in the client has to be performed sequentially.
effectively exploiting parallelism in the client, a shared-memor
multiprocessor architecture must be available. The degree of pa
lelism may vary and, with this, also the respective benefits, bo
being determined by the dependencies given in a plan opera
graph. Thus, the central issue is to detect reasonable ‘units of pa
lelism’ within such a graph. Referring to the plan operator graph
Fig. 3.1, there are subgraphs that are logically independent fr
one another (due to their disjointness) and thus can be processe
parallel, such as, e.g., those defined by the operators (2, 3) and
5, 6). Consequently, the first criterion applied for the constructio
of units of parallelism is the logical independence of subgraphs
the plan operator graph.
The second important criterion for deciding on units of parallelis
takes into account the processing characteristics of the p

Fig. 3.3: Processing schedule assuming an asynchronous
DBS interface

sel2 sel3
1 4

sel1
t

2 3 7
DP
KP5 6

12

KP = knowledge processing, DP = data processing

Fig. 3.4: A different execution order showing a
blocking period (drawn as black bar)

sel3 sel1

16

sel2
t

1 2 3 4 5 6 7
DP

KP

KP = knowledge processing, DP = data processing

Fig. 3.5: Processing schedule assuming an asynchronous
DBS interface supplying partial results

sel2 sel3 sel1

1 4 5 6 2 3 7

t
DP

KP

< 12

KP = knowledge processing, DP = data processing
7

lts
ut/
ll as

a

se
ted
ple
me
tor
llel,
of
ut
rts
e

tion

lly
e

ell
.1),
and

her
rs.
g a
of

a]).

ext-
an

the

sor
ut

ing
for

eir
operators. There are two types of operators to distinguish. The first
class is calledtuple-oriented, since the operator processes (the
input tuples) and decides (about an output tuple) on a per tuple
bases. Obviously, the selection and projection operators fall into
that category. Contrary to that are the so-calledset-oriented
operators. They process (the input tuples) and decide (about an
output tuple) on a set-of-tuple basis. Sometimes the whole input has
to be seen, before an output tuple can be generated, as is the case,
for example, with the sort or duplicate-removal operators. This is,
in general, true for all so-called non-monotonic operators. A similar
situation holds for the join operation. Depending on the join
strategy to be applied and on the type of join (e.g. 1:1, 1:n, or n:m),
it can be decided based on the tuple or set-orientedness of the
operator at hand. For example, a 1:1 join employing a sort-merge
strategy can be processed in a tuple-oriented manner, whereas a
nested-loop join always votes for a set-oriented processing (w.r.t.
the inner loop7). Sequences of tuple-oriented operators which are in
a producer-consumer relationship, therefore being dependent on
each other (e.g., operators 2 and 3), can process the tuples without
the need to store or materialize intermediate results. However, this
pipelining mode is hindered by set-oriented operators (as may be
the case, e.g., for operator 5) that have to wait for tuples to be
available at their input streams before being able to start or continue
processing. Therefore, it is necessary to buffer the tuples of the
producer(s) to make both consumers and producers independent
from one another’s processing speed, in a way that the producers
can keep on generating results even if their successors cannot
immediately consume them. We call this intermediate ‘storage’
input/output queue. This is our second criterion for finding
groups of operators. Operators within such a group do not need
input/output queues and, for that reason, apply the pipelining
processing mode. Consequently, operators with input/output
queues in between are assigned to different operator groups that can
be processed independently, thus being subject to parallel
execution at the group level.

Applying both criteria introduced to the plan operator graph of Fig.
3.1 results in the following operator groups (units of parallelism)
and their associated input/output queues all shown in Fig. 3.6.

Operation 4, e.g., has become a unit of parallelism because its
successor - operation 5 - has to wait for yet another input stream.

Due to the asynchronicity between client and server, the resu
arriving from the server always have to be made available via inp
output queues. On the other side, plan operators 5 and 6 as we
the operators 2 and 3 form operator groups that can apply
pipelining mode internally.
In the query-processing model for a multi-processor client, the
groups are assigned to different processes that can be distribu
among the available processors. Thus, processing of our exam
graph results in the schedule depicted in Fig. 3.7. There, we assu
that data from the server is already available in the client. Opera
groups (1), (2,3), and (4) can be started and processed in para
whereas operator group (5,6) starts later with the first result
operator group (4) being available at its input stream (i.e., in inp
queue q4). The same happens to operator group (7), which sta
with the first results of groups (5,6), (1), and (2,3) available at th
respective input queues. As one can clearly see, total execu
time for client processing is reduced considerably.

3.4 The Plan Operator Transmit

From the previous observations we know that there are basica
two different ‘coupling modi’ between the plan operators that hav
to be supported:
• The pipelining mode comes along without storing the inter-

mediate results from producer operators.
• In the complementary‘buffering’ mode, there is a need for

storing (intermediate) results in queues.
To support the abstraction of a tuple stream being the input as w
as output medium for the plan operators (as introduced in Sect. 3
a general concept is needed that on one hand links producers
consumers supporting the two coupling modi, and that on the ot
hand is compatible with the iterator paradigm of the plan operato
These requirements can be met most elegantly by introducin
new plan operator that is responsible for the proper connection
plan operators (a similar operator has been proposed in [Gr90
This plan operator, we call ittransmit, firstly conceals the actual
coupling modus and secondly adheres to the generic open-n
close protocol. With this, the existence of queues in the pl
operator graph can be made transparent. To that end, thetransmit
operator simply manages the queue itself, by realizing thenext
functions issued by its consumer operator as a read operation to
internal queue and by having the queue filled by issuingnext
operations to its producer operator.
Transmit is also capable of masking process and even proces
boundaries. Therefore, we can simply replace all input/outp
queues of an operator graph by instantiations of thetransmit
operator. Moreover,transmit provides control structures for the
operators of operator groups that are to be executed in pipelin
mode. This implementational aspect, although being important
performance, is beyond the scope of this paper8. The operator graph

7. The inner tuple stream must be completely available to process a tuple of
the outer input stream.

sel3sel1 sel2

client operators

server operators

41

3

5

6

7

2

Fig. 3.6: Input/output queues and operator groups

q1 q2 q3

q4

q5 q6 q7

input/output queue

operator group

8. For a detailed discussion of the realization of plan operators and th
communication, see [TD93].

t
Fig. 3.7: Schedule for parallel processing in the client

and pipelining within operator groups

1

4
(5,6)

(2,3)

7

knowledge processing
data processing

operator group< 4
8

nd
ed
e

d
ry
le
is
of

by
by

ave
ace
city,
-
rver
to

the
ch
d
lso

ed
ng

to
ed

cf.

of
t.

as

ing
ble
t
ve

2)
he

g

n
by
for
lly

hm
be
m.
ood

o
the
at
g
rio,
se

ion:

d

that results from introducingtransmit in the graph of Fig. 3.6 is
shown in Fig. 3.8. It now reflects the abstraction level we wanted to
achieve: the whole operator graph consists only of operators
obeying the open-next-close protocol, thereby abstracting from the
actual processing environment like shared or ‘distributed’ memory,
data-driven or control-driven evaluation, etc.

Fig. 3.8 also zooms into atransmit operator that decouples two
operator groups (operator group (5,6) and (7)) assigned to separate
processes.Transmit offers synchronous read and write operations
at the consumer and producer side, respectively, and does inter-
process communication as well as the efficient management of the
queue holding the tuples to be passed on. As a result, both
producers and consumers are freed from those issues and employ
the same simple interface (open-next-close protocol) at their input
and output tuple streams.

If producer and consumer have access to shared memory, then
transmit employs efficient communication primitives (e.g.
semaphores) available for this environment. For example, this
might be the case for thetransmit between operator groups (5, 6)
and (7) in Fig. 3.7. However, if consumer and producer work on
separate machines (as, e.g., the threetransmit operators at the
client/server boundary in Fig. 3.7),transmit has to implement the
input/output queue differently (e.g., via TCP/IP datagram services).
In any case,transmit will choose the best realization strategy
depending on its execution environment.

Thetransmit operator directly following sel2 accepts information
arriving asynchronously from the server DBS and has to pass it on
to the operations 1, 2, and 4. For this purpose it does not replicate
the information but keeps a single data structure with multiple
pointers, one for each consumer. It is important to mention that in
the case of sel2, as well as in the case of sel1 and sel3, the input for
transmit - although originating in the database - comes in a form
corresponding to the knowledge model of KRISYS, since the
functionality of the MC is exerted by the plan operators that issue
the queries to the server DBS.

In that general model, thetransmit operator is free to ‘drive’ its
input operators, thus being able to move smoothly from strict
demand-driven control to pure data-driven control. For example, in
the scenario from before, it can guarantee that its internal queue is
always filled to a certain limit by simply callingnext repeatedly on
the input operator. Or, if thetransmit operator perpetually calls
next on the input operator, then it pursues a data-driven approach.
In a data-driven scenario each single operator or operator group is
activated according to the availability of input data in its input

streams. Thus, execution control is determined by data flow, a
there is no need any more for explicit and maybe centraliz
execution control. This, of course, considerably simplifies th
overall processing and execution model.
Summing up,transmit encapsulates parallelism, process an
processor boundaries, thus defining the basis for flexible que
processing. Data parallelism, i.e., splitting of queues and multip
instantiation of the operator (to work on the split data parts)
possible but not yet considered. Currently, a first version
transmit is being implemented in the KRISYS KBMS.

3.5 Enhancing DBS Server Processing
The effectiveness of server processing is determined on one side
its interface to the client processing system and on the other side
server internal measures to query processing. In Sect. 3.2 we h
already discussed the salient characteristics of an effective interf
between client and server processing system, e.g., asynchroni
supply of partial results or the ability to do multi-query optimi
zation. In this section we concentrate on enhancements to the se
processing system. Since this is a DBS, all known measures
enhance DB query processing apply here as well. Therefore,
measures for parallelism combined with a dataflow approa
[PMCLS90] [Gr90b] [DG90] that have been successfully applie
to client processing (as documented in the previous section) do a
work in the context of server processing and will not be repeat
here. Instead, we will show in this section how server processi
complements the concepts given at its client interface.
From the server processing system’s point of view it is important
observe the following characteristics and requirements determin
by the client/server interface mentioned in Sect. 3.2:

(1) The interface should be non-blocking, i.e., asynchronous (
Sect. 3.2.1 and Sect. 3.4).

(2) A single request to the server DBS might consist of a set
queries together with some priority information (cf. Sec
3.2.2).

(3) Partial results of a query should be delivered to the client
they are derived (cf. Sect. 3.2.3).

Requirements (1) and (3) guarantee that any (partial) results be
derived by the server processing system can be made availa
instantaneously for further processing in the client withou
blocking both client and server processing. In Sect. 3.4 we ha
shown that there are conceivable realizations of thetransmit
operator that provide this kind of interface. Requirement (
basically asks for multi-query processing in the server DBS. In t
following, we will elaborate on that in more detail.
In [Se88] two types of algorithms are considered for realizin
multi-query optimization (MQO). The algorithms of the first type
consider exactly one (locally optimal) access plan per query. A
algorithm of the second type builds a global access plan
choosing among local (not necessarily optimal) access plans
each query. Since merging locally optimal plans does not genera
result in an optimal global access plan, the second type of algorit
is more desirable. The related optimization problem can
modeled by an A* algorithm, i.e., as a search space proble
Finding an optimal global access plan therefore depends on a g
search function, i.e., a fast convergence of the algorithm.
Our multi-query processing framework looks a little bit different t
the conventional one sketched in [Se88]. For example, assume
scenario given on the right side of Fig. 2.5 with all the operators th
are under the client/server borderline (marked by ‘?’) bein
delegated to the server DBS in one single request. In that scena
the following knowledge queries have to be mapped to databa
queries and issued to the server processing system for evaluat

Query Q1: to retrieve the knowledge objects specifie
through sel1,

sel3sel1 sel2

client operators

server operators

41

3

5

6

7

2

Fig. 3.8:The use oftransmit in a plan operator graph

transmit

write

read

transmit

transmit transmit

transmit transmittransmit

process
boundaries

process of
operator 7

process of
transmit
operator

process of
operator 6
9

-
S.
t
, to
an
ion

ion
r
the
ted

le.
d
at
ly

ing
her
ant
e.,
e
3].
tic
al
e

or
nd

s,
,

ce

s,

r

,

-
d

J.
-

he
IG-
-

.
2,

-
s

-
s

a-
-

Query Q2: to retrieve the knowledge objects specified
through sel2,

Query Q3: to retrieve the knowledge objects specified
through sel3,

Query Q4: to further restrict the result of query Q2 joined
with query Q3 to get the result for operator 2.

In addition to this set of separate queries a priority list is specified
telling that sel1 and sel2 be best evaluated before operation 2 is done
and sel3 is independent from all others.
There are two things worthwhile mentioning that are in contrast to
conventional MQO. Firstly, the queries in a set need not be
independent from each other, i.e., one query might be defined on
the result of another query in the same set as we can see from the
example list given above: query Q4 is defined based on query Q2
and Q3. Secondly, precedence information is associated with the
query set.
Conventional MQO does not support dependent queries. One
possible solution is to duplicate the dependent parts of the query
and to replicate their results at the client interface. This means for
our example from above that query Q2 (i.e., operation sel2) has to
be duplicated twice, once for operation 1, a second time for
operation 4, and finally as a part of query Q4 (i.e., operation 2). This
is obviously not the best solution since it provokes redundant query
processing as well as increased communication between server and
client. An approach to evaluate (and optimize) a set of dependent
queries and to return this multi-query in addition to eventually
needed intermediate results has recently been proposed in the
framework of a composite object extension to the Starburst exten-
sible database system [MP91] [MPPLS93]. The application of
these concepts to the query-processing framework adopted by
KRISYS are currently under investigation. To the best of their
knowledge, the authors are not aware of any other approach that is
suitable for the KRISYS query-processing framework. Due to
space restrictions, a more detailed description and discussion has to
be postponed to another publication.
Further, if the client supplies an execution order together with the
set of queries, this information can be used by the A* algorithm to
reduce the search space and thus to speed up optimization.
However, strictly respecting the execution order optimal for the
client may prevent finding an optimal global access plan. The
priority that is given to the control information supplied by the
client therefore remains to be investigated. If parallel query evalu-
ation is present, then the importance of this control information is
less since the multiple requests might be dealt with concurrently.

4. Summary, Related Work, and Outlook
The scope of this paper is query processing for KBMS. Such
systems are designed for client/server environments and involve a
DBS on a central server and system components responsible for
providing a knowledge model and its operations on a client. This
architectural scenario causes the overall query processing to be split
into data processing in the server and knowledge processing in the
client. Therefore, an important step in knowledge processing for
KBMS is to draw the borderline between the operations to be
performed in the client and those to be delegated to the server.
Starting from this decision, we showed how knowledge processing,
data processing as well as their interaction can be enhanced by
using techniques known from the field of DBS, as, e.g., operator
parallelism, asynchronicity at the client/server interface or multi-
query optimization in the server. Most of the techniques could be
directly applied to query processing for KBMS, and the issues
related to parallelism and processing in a heterogeneous hardware
environment could be managed by a single plan operator
(transmit). This newly defined operator adheres to the open-next-

close protocol and, thus, perfectly fits into the knowledge
processing framework set by the existing operators of the KP
Transmit defines an evaluation model that allows for differen
realizations, adapting evaluation to the current environment, i.e.
client or server processing. Further, it decouples all other pl
operators from the (hardware) characteristics of the execut
environment at hand.
The current state of implementation allows a sequential evaluat
of KOALA queries in the client on a pre-loaded KB portion. Ou
experiences so far are restricted to the descriptive portion of
knowledge model/language. Since, in our case, rules are formula
via KOALA, we perceive the same concepts to be applicab
However, handling methods the right way is different. Still, metho
optimization is one of the hard problems (also in OODBSs). To th
end, we developed a method description that declarative
comments the behavior of the method w.r.t. querying/process
issues. Based on that information, we want to investigate whet
the given concepts apply, or have to be adapted. It is also import
to get the full spectrum of knowledge processing tasks at work (i.
the six steps given in Fig. 2.5). We primarily concentrate on th
concepts that enhance client processing, as detailed in [TD9
Especially, we have developed algorithms that perform automa
grouping of plan operators and algorithms that provide for optim
scheduling in a multi-processor client. At the moment we hav
done only preliminary work in the area of transaction support f
our processing environment, which is distributed among client a
server.
References
CACM91 Cattell, R. (ed.): Next Generation Database System

in: Special issue of Communications of the ACM
Vol. 34, No.10, 1991.

Co89 Concurrent Computer Corporation, Quick Referen
Guide, 4/89.

Da90 Date, C.J.: An Introduction To Database System
Vol. I, Addison-Wesley, 1990.

De84 DeWitt, D., et al.: Implementation Techniques fo
Main Memory Database Systems, in: Proc. ACM
SIGMOD Int. Conf. on Management of Data, Boston
June 1984, 1 - 8.

De91 Deßloch, S.: Handling Integrity in a KBMS Architec-
ture for Workstation/Server Environments, Proc. GI
Fachtagung "Datenbanksysteme in Büro, Technik un
Wissenschaft", Kaiserslautern, March 1991, ed. H.-
Appelrath, Informatik-Fachberichte 270, Springer
Verlag, 89-108.

DG90 DeWitt, D.J., Gray, J.: Parallel Database Systems: T
Future of Database Processing or a Passing Fad?, S
MOD RECORD, Vol.19, No. 4, December 1990, 104
112.

DKS92 Du, W., Krishamurthy, A., Shan, M.-C.: Query Opti-
mization in Heterogeneous DBMS, Proc. 18th Int
Conf. on Very Large Databases, Vancouver, 199
277-291.

DHLM92 Deßloch, S., Leick, F.J., Mattos, N.M.: A State-orient
ed Approach to the Specification of Rules and Querie
in KBMS, ZRI-Report 4/90, University of Kaiserslau-
tern, 1990.

DLM90 Deßloch, S., Leick, F.J., Mattos, N.M.: A State-orient
ed Approach to the Specification of Rules and Querie
in KBMS, ZRI-Report 4/90, University of Kaiserslau-
tern, 1990.

Gr90a Graefe, G.: Encapsulation of Parallelism in the Volc
no Query Processing System, in: Proc. ACM SIG
MOD Int. Conf. on Management of Data, Atlantic
City, May 1990, 102-111.
10

r

c-
ns

-

:

-

te
/

n,
b-

.,
-

of

ra,
s-

er,
r-
-

e-
n
do
Gr90b Graefe, G.: Volcano, an Extensible and Parallel Query
Evaluation System, University of Colorado at Boul-
der, Technical Report No. 481, 1990.

HFLP89 Haas, L., Freytag, J.C., Lohman, G., Pirahesh. H.: Ex-
tensible Query Processing in Starburst, in: Proc. of the
ACM SIGMOD Conf., Portland, 1989, 377 - 388.

HHMM88 Härder, T., Hübel, C., Meyer-Wegener, K.,
Mitschang, B.: Processing and Transaction Concepts
for Cooperation of Engineering Workstations and a
Database Server, Data and Knowledge Engineering,
Vol. 3, 1988, 87-107.

HR83 Härder, T., Reuter, A.: Database Systems for Non-
Standard Applications, Proc. Int. Computing Sympo-
sium on Application Systems Development (ed. H.J.
Schneider), Nuremberg, Germany, March 1983, Re-
port 13 of the German Chapter of the ACM, Teubner
Verlag, Stuttgart, 452-466.

JK84 Jarke, M., Koch, J.: Query Optimization in Database
Systems, Computing Surveys, Vol. 16, No. 1, June
1984, 111-152.

Ki91 Kim, W.: Introduction to Object-Oriented Databases,
Computer System Series, MIT Press, 1991.

KL89 Kim, W., Lochovsky, F.H. (eds.): Object-Oriented
Concepts, Databases, and Applications, ACM Press,
New York, 1989.

Kr89 The KBMS Prototype KRISYS - User Manual, Ver-
sion 2.3, University of Kaiserslautern, 1989.

Lo88 Lohman, G. Grammar-like Functional Rules for Rep-
resenting Query Optimization Alternatives, in: Proc.
ACM SIGMOD Int. Conf. on Management of Data,
Chicago, June 1988, 18 - 27.

Ma88 Mattos, N.M.: Abstraction Concepts: the Basis for
Data and Knowledge Modeling, 7th Int. Conf. on En-
tity-Relationship Approach, Rome, Italy, Nov. 1988,
331-350.

Ma91 Mattos, N.: KRISYS - a KBMS Supporting Develop-
ment and Processing of Knowledge-Based Applica-
tions in Workstation/Server-Environments, Internal
Report, Dept. of Computer Science, University of
Kaiserslautern, 1991.

MDL91 Mattos, N.M., Deßloch, S., Leick, F.-J.: A Knowl-
edge-Based Approach to Intelligent CAD for Archi-
tectural Design, ZRI Report 4/91, Dept. of Compute
Science, Univ. of Kaiserslautern, 1991.

Mi88 Mitschang, B.: Towards a Unified View of Design
Data and Knowledge Representation, in: Proc. of Se
ond Int. Conf. on Expert Database Systems, Tyso
Corner, Virginia, pp. 33-49, April 25-27, 1988. Fur-
ther publication by the Benjamin/Cummings Publish
ing Co.

MM89 Mattos, N.M., Michels, M.: Modeling with KRISYS:
the Design Process of DB Applications Reviewed, in
Proc. the 8th Int. Conf. on Entity-Relationship Ap-
proach, Toronto - Canada, Oct. 1989, 159-173.

Mo92 Moss, E.: Working with Persistent Objects: To Swiz
zle or Not to Swizzle, in: IEEE, TOSE, Vol.18, No.8,
August 1992, pp. 657-673.

MP91 Mitschang, B., Pirahesh, H.: Integration of Composi
Objects Into Relational Query Processing: the SQL
XNF Approach, in: Proc. of Int. Workshop on Query
Processing in Databases with Object-Orientatio
Complex Objects, and Nested Relations (to be pu
lished by Morgan Kaufman), FRG, 1991.

MPPLS93 Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B
Südkamp, N.: SQL/XNF - Processing Composite Ob
jects as Abstractions over Relational Data, in: Proc.
Ninth Int. Conf. on Data Engineering, April 1993,
Wien, pp. 272-282.

OHMS92 Orenstein, J., Haradhvala, S., Margulies, B., Sakaha
D.: Query Processing in the Objectstore Database Sy
tem, in: Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, San Diego, June 1992, 403 - 412.

PMCLS90 Pirahesh, H., Mohan, C., Cheng, J., Liu, T.S., Seling
P.: Parallelism In Relational Database Systems: A
chitectural Issues And Design Approaches, IBM Re
search Report RJ 7724, September 1990.

Ro92 da Rocha, R.: Transformation and Rewrite in the Qu
ry-Processing System of KRISYS, Master Thesis (i
portuguese), Universidade Federal do Rio Grande
Sul, Porto Alegre, May 1992.
11

2.

n Very
Se88 Sellis, T.K.: Multiple Query Processing. ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988, 23-5
Se90 Sequent Computer Systems: System Summary, 1990.
TD93 Thomas, J., Deßloch, S.: A Plan-Operator Concept for Client-Based Knowledge Processing, Proc. 19th Int. Conf o

Large Databases, August 1993, Dublin, Ireland.
12

	Enhancing Knowledge Processing in Client/Server Environments
	1. Introduction
	2. Knowledge Processing in the KRISYS KBMS
	2.1 Knowledge Model and Query Language
	Fig. 2.1: The example KB showing class hierarchies and instances
	Fig. 2.2: Sample ASK statement

	2.2 Knowledge Processing in KRISYS - the Main Ideas
	Fig. 2.3: Overall architecture of KRISYS

	2.3 Working-Memory Management and Representation
	Fig. 2.4: The organization of knowledge in WM
	Fig. 2.5: Steps in knowledge processing

	2.4 Steps in Knowledge Processing
	2.4.1 Compile-Time Activities
	Generation of Algebra Graph and Algebraic Optimization (Step 1)
	Fig. 2.6: Optimized algebra graph

	Assignment of Algebra Operators to the Client Component (Step 2)
	Fig. 2.7: Assignment to client or server

	Plan Generation and Optimization (Step 3)

	2.4.2 Run-Time Activities
	Assignment of Remaining Algebra Operators (Step 4)
	Plan Generation and Optimization (Step 5)
	Code Generation and Execution (Step 6)

	2.5 Summary

	3. Enhancements to Knowledge Processing
	3.1 Generic Plan Operator Concept and Flexible Processing Model
	3.2 Enhancing the Communication between Client and Server Processing Systems
	Fig. 3.1: The example plan operator graph.
	3.2.1 Asynchronous Interface to the Server DBS
	Fig. 3.2: Schedule for the sequential processing of the query
	Fig. 3.3: Processing schedule assuming an asynchronous DBS interface

	3.2.2 Multi-Query Interface to the Server DBS
	Fig. 3.4: A different execution order showing a blocking period (drawn as black bar)

	3.2.3 Supply of Partial Results of a Query by the Server DBS
	Fig. 3.5: Processing schedule assuming an asynchronous DBS interface supplying partial results

	3.2.4 Combining the Concepts

	3.3 Enhancing Client Processing
	Fig. 3.6: Input/output queues and operator groups
	Fig. 3.7: Schedule for parallel processing in the client and pipelining within operator groups

	3.4 The Plan Operator Transmit
	Fig. 3.8: The use of transmit in a plan operator graph

	3.5 Enhancing DBS Server Processing
	(1) The interface should be non-blocking, i.e., asynchronous (cf. Sect. 3.2.1 and Sect. 3.4).
	(2) A single request to the server DBS might consist of a set of queries together with some prior...
	(3) Partial results of a query should be delivered to the client as they are derived (cf. Sect. 3...
	Query Q1: to retrieve the knowledge objects specified through sel1,
	Query Q2: to retrieve the knowledge objects specified through sel2,
	Query Q3: to retrieve the knowledge objects specified through sel3,
	Query Q4: to further restrict the result of query Q2 joined with query Q3 to get the result for o...

	4. Summary, Related Work, and Outlook
	References

