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Abstract processing. In this approach, a query is firstly mapped into an

In knowledge processing frameworks for advanced DBMS
(such as OODBMS or KBMS) suitable for client-server archi-
tectures, the efficient realization of client-based, main-
memory query processing represents a promising and
important step towards an effective support of application
processing. In this paper we present a plan-operator concept
developed along these lines as part of an algebraic query-
processing framework for the KBMS KRISYS [24]. We
motivate the main goals (support of extensibility, client-based
query processing, and dynamic query optimization) as well as
the resulting design objectives followed and give a detailed
description of the specification and implementation of the
resulting plan-operator concept. It can be characterized as
highly modular and orthogonal w.r.t. the overall functionality
and allows a flexible and extensive utilization of precompiled
code fragments. Additionally, we sketch the advantages of
the concept w.r.t. our design objectives and point out that the
presented ideas are not limited to KRISYS but also apply in a
more general setting.

1. Introduction
Effective support of non-standard applications such as
engineering and design, multi-media, or office automation not
only requires efficiently managing large amounts of data, but
also calls for a representational framework with sufficient
expressive power to adequately model these applications. To
this end, Object-Oriented Database Systems (OODBMS) [2]
[20] [25] [28] as well as Knowledge Base Management
Systems (KBMS) [3] [24] [30] feature an object-oriented
knowledge model and an associated query language.

In analogy to conventional database systems (DBMS), both
types of systems can employ an algebraic approach for query
processing [5] [31] [33], furthermore called knowledge

algebraic representation, which is then successively rewritten
and transformed into an execution plan consisting of plan
operators, before it is actually performed.

An adequate concept for query processing, and for plan
execution in particular, is subject to a number of requirements
originating from both the properties inherent in the underlying
data model or query language and the processing character-
istics of the (potential) applications.

(1) Extensibility:

To satisfy specific needs of advanced applications, extensi-
bility must be supported at different levels [11] [12] [13]: To
cope with later extensions either of the query language (e.g.,
due to new requirements arising from advanced applications)
or of evaluation methods (such as improved join algorithms),
a plan-operator concept must exhibit flexibility and follow a
modular design that clearly separates the overall plan-
execution functionality into orthogonal parts. This
requirement is also emphasized by the general goal of a
simple, streamlined design of the execution framework.

(2) Client-Based Knowledge Processing:

Non-standard applications are often long-running activities
which exhibit a sufficiently high degree of locality of
reference. Measurements [23] strongly advocate for the
maintenance of a main-memory application buffer that
supports locality of processing, the accumulation of updates/
changes, and an enhanced representation of objects for
efficient application processing (e.g., through the material-
ization of object references). Such an approach is especially
required in the scope of client/server-environments (also
called workstation/server environments) to minimize commu-
nication traffic between different system components located
on separate machines [7] [14] [18]. Since the expressive
power of the query language should be available not only for
loading/unloading the buffer (i.e., check-out/check-in opera-
tions), but also for knowledge processing tasks within the
application (in the scope of the buffer), main-memory based
query processing has to be supported in an efficient manner
[8]. Besides the need to cope with the enhanced object repre-
sentation in the buffer, the execution of plan operators in this
scope must avoid the introduction of redundancies within the
buffer, both for efficiency and for consistency reasons.
Additionally, the use of main-memory indices should be
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supported as a means to cope with application buffers of
increased size.

(3) Dynamic Query Optimization

Query optimization in conventional DBS can usually be done
at compile time. This is in some cases not guaranteed in the
scope of object-oriented query languages [27]. For example,
if the names of classes or collections (i.e., sets of objects
independent from the extensions of classes) are allowed as
parameters of methods (and queries contained), optimization
must be carried out at run-time. Additionally, run-time
dispatch of methods must be performed, if overriding of
methods occurs. Also, if we rely on the main-memory based
query-processing approach described above, it is often more
efficient to defer some of the optimization tasks. For example,
if the knowledge about main-memory indices would have to
be compiled into the code of methods that contain embedded
queries, a flexible and dynamic creation of such indices could
not be supported, since they could not be exploited by
methods or would require extensive recompilations. For the
same reason, a main-memory index that needs to be built up
and maintained only for a specific application to support its
individual processing characteristics could either not be
exploited in the processing of methods shared with other
applications, or such methods would have to be individually
recompiled for specific applications. For these reasons, an
adequate plan-operator concept has to support an efficient
execution of plan operators also in case the execution plan is
completely known only at run-time. Hence, there is a need
for dynamic query optimization. This means that either an
efficient interpretation or a fast compilation of execution plans
needs to be provided, which should to a large extent rely on
(pieces of) precompiled code that can later on be combined
in an effective and efficient manner.

The goal of this paper is to present the specification and
implementation of a plan-operator concept that meets these
requirements. It has been realized in the framework of
KRISYS [24], a Knowledge Base Management System
(KBMS) developed at the University of Kaiserslautern. Sect.
2 gives an overview of KRISYS, i.e., of its knowledge model,
its query language and its processing model. In Sect. 3, we
will outline the conceptual and operational requirements for
the plan operators, and subsequently, in Sect. 4, we will
discuss their implementation. In Sect. 5, we will validate the
realization w.r.t. the initial requirements, and we will show that
it is feasible not only for the implementational environment of
KRISYS, but also for a more general setting. Besides a
resume of the main ideas of the paper, Sect. 6 also gives an
overview over current and future development activities.

2. An Overview of KRISYS

2.1 Knowledge Model and Query Language

The knowledge model of KRISYS is comparable to object-
oriented data models [4] [19]. An object is uniquely identified
by a name (i.e., object-identifier), and contains a set of
attributes to describe its characteristics. Attributes can be of
two kinds: slots are used for representing properties of an
object and relationships to other objects; methods are used
for expressing object behavior. Moreover, attributes can be
further described by aspects, defining, e.g., the cardinality of
a slot. For object structuring, our knowledge model supports
the abstraction concepts of classification, generalization,
association, and aggregation [22] [26]. The special semantics
of these relationships is guaranteed by the system (e.g.,
inheritance along the classification and generalization
relationships). Fig. 2.1 shows an example hierarchy and the
overall structure of one of the objects contained.

In contrast to DBMS, KRISYS does not distinguish between
schema-information and instance-information - both is repre-
sented using the concept of objects (a similar approach is
taken in [20]). Objects can therefore represent instances,
classes, sets, elements, aggregates, etc.

In addition to the above described concepts, the knowledge
model of KRISYS provides various other features not usually
found in object-oriented models, as, e.g., integrity constraints
and rules. For the scope of this paper, an in-depth discussion
of these concepts is not necessary (see [24] for details on
rules and [6] for details on integrity constraints).

Retrieval and modification of knowledge base (KB) contents
is supported by KOALA [9] [24], a descriptive, set-oriented
language constituting the user and application interface of
KRISYS. KOALA features two powerful operations, ASK to
query the KB, and TELL to change the state of the KB. The
following ASK statement retrieves instances of red sportscars
and the persons being the drivers of the cars (i.e., referenced
via slot ‘driver’).

(car2
instance-of (sedans)
color (red)
price (50,000)

{unit (US$)}
driver (paul)

.......)

object level
attribute level

aspect level

Fig. 2.1: Example hierarchies and an object structure
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(ASK ((?driver SLOTS age) (?car SLOTS price))
(AND(IS-INSTANCE ?driver persons)

(IS-INSTANCE ?car sportscars)
(EQUAL (SLOTVALUE color ?car) red)
(EQUAL ?driver (SLOTVALUE driver ?car)))))

Symbols with a leading question mark are query variables,
similar to table variables in SQL, to denote the information to
be retrieved. These variables may also appear in the
projection clause (the first clause in the ASK statement). In
our example, the projection clause states that (in addition to
the object names) slot age for persons and slot price for cars
is to be included in the result of the query. We will come back
to this example query in subsequent parts of this paper.

2.2 Knowledge Processing in KRISYS - the Main Ideas
KRISYS was conceived to support knowledge processing in
a client/server environment, which can be seen as the
dominating hardware environment for complex, non-standard
DB applications. In such environments, applications run on
dedicated clients having access to a central server
component responsible for an integrated and effective
management of information. For the purpose of this paper, it
is sufficient to take a more general view on the KRISYS archi-
tecture, shown in Fig. 2.2. (see [8] for more details).

The overall architecture is motivated by the following primary
goals, necessary to achieve efficient knowledge processing
in client/server environments.

• Application-oriented processing at the client side:

To exploit the processing capabilities of the client compo-
nents and keep the server component from being overloaded,
application-oriented processing must be performed at the
client side. The server component may concentrate on the
effective and efficient management of data [16].

• Loose coupling:

For efficiency and reliability, a loose coupling of client and
server components that reduces communication efforts and
dependencies between both sides must be achieved [14].

The first measure taken in order to fulfil these requirements
was the introduction of a system-controlled application buffer
(called working-memory, WM) at the client side. It allows to
exploit the applications’ locality of reference. By storing
currently referenced knowledge, the WM serves to minimize
the number of calls to the server DBMS. Thus, if the appli-
cation only refers to information already residing in WM, no
calls to the DBMS have to be issued at all.

The second measure taken is motivated by the expres-
siveness of the modeling concepts provided by KRISYS. As
already mentioned, the knowledge model offers various
concepts suitable for modeling application-oriented
processing tasks. Consequently, the system components
involved in the execution of these constructs must be located
at the client side - otherwise the server would be overloaded

with application-oriented processing tasks. This holds also for
the processing of KOALA statements, the fundamental
operational basis of the above mentioned concepts, and for
significant parts of the knowledge model (the semantics of the
abstraction concepts) which are directly required for this task.
Thus, only a part of the processing related to the evaluation
of a query, we denote it data processing, is performed by the
server DBMS (the DBMS kernel PRIMA [15] is employed for
this task). The remaining, more complex tasks are carried out
by the knowledge-processing component itself on the client
side. (A detailed discussion can be found in [6] [8] [24].)

Knowledge processing in KRISYS thus involves both the
server DBMS and the system components of the client. If
information referenced by a query must be fetched from the
server, the mapping component is invoked. Its main purpose
is to conceal details of how knowledge is actually mapped to
the primitives of the underlying DBMS1 to make the upper
system components independent of it. Queries can be posed
to the mapping component in a meta language supporting a
subset of the functionality of the knowledge model. The
mapping component then translates such queries into a (set
of) queries formulated in the query language of the server
DBMS, since the knowledge model of KRISYS cannot be
mapped directly to the data model of the server component.
Results coming in from the server DBMS consequently have
to be transformed into the representation of the knowledge
model. Thus, except for the mapping component itself, all
processing in the client refers directly to the knowledge
model, and not to the actual representation in the DBMS.

2.3 Working-Memory Management and Representation

The above described architectural decisions clearly indicate,
that a purely enumerative description of the buffer contents
(based on object-identifiers) as well as server requests based

1. E.g., the relation(s) actually employed for representing an object
class, indices defined over those relations, etc.
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Fig. 2.2: Overall architecture of KRISYS
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on object names are not sufficient for our tasks. While a
navigational style of processing (i.e., following object refer-
ences via object names) would be directly supported by such
an ‘object-faulting’ approach, the processing of associative
queries apparent in methods or inherent in the processing of
rules and integrity constraints could not exploit the buffer
contents in a satisfactory way. Consider our example query
presented above, where red sportscars are involved. Even if
a previous query had already caused the installation of all red
sportscars in WM, this fact could not be exploited because it
is not known to the system. To evaluate the query predicate
‘color = red’, all sportscars (or at least those not already
present in WM) would be unnecessarily transferred to WM.

For this reason, KRISYS must be able to relate the
knowledge required by a given KOALA query to the objects
already stored in WM. This is achieved by defining the WM
contents descriptively, similar to the way KOALA allows to
specify collections of objects (e.g., the WM contains ‘all red
sportscars’). Thus, the problem described above can be dealt
with by performing subsumption tests, comparing the predi-
cates of the query with the ones describing the buffer. The
results of these tests, which must be performed at run-time,
are then used for deciding which parts of a query are directly
performed in WM, and which ones have to be delegated for
execution to the server DBMS. The component of KRISYS
which is responsible for maintaining the buffer description
and performing the tests is called working-memory manager
[29]. Discussing the mechanisms incorporated in this
component is beyond the scope of this paper. We leave this
issue to a further publication.

The representational framework of the WM (i.e., how objects
are actually stored) directly reflects the characteristics of the
knowledge model of KRISYS. This model defines three types
of relationships for objects. Firstly, there are the relationships
within an object, consisting of links from the object name to its
attributes and their descriptions (cf. Fig. 2.1). Secondly, there
are the relationships among objects. The most important of
these relationships are the abstraction concepts, forming
abstraction hierarchies which are frequently traversed during
knowledge processing. Both types of relationships are
materialized in WM using main-memory pointers, thereby
providing fast access to the required information. Moreover,
we need to support efficient access to and set-oriented
processing of arbitrary collections of objects, e.g., interme-
diate results in query processing. This is provided by the
concept of so-called access structures (AS). In their basic
form, AS are organized as lists of objects and comprise
operations for traversing an AS based on a cursor concept.
However, AS may also be organized as trees or hash tables,
thereby taking the role of main-memory indices. (Of course,
additional functionality for associative access is provided in
this case.) Main-memory indices (or AS in general) may be
introduced dynamically and temporarily (e.g., in the scope of

a single query) in order to speed up query processing. Thus,
knowledge residing in WM is organized as shown in Fig. 2.32.

The central idea of the data structures chosen for the repre-
sentation of these three types of relationships is to avoid
redundancy whenever possible. Consequently, no copies of
objects are created during query processing as intermediate
or final results. Instead, pointer structures are maintained to
provide the access, thereby drastically reducing space
overhead for temporary processing results and providing a
consistent basis for update operations, which do not have to
worry about the possible existence of replicated objects3.

2.4 KOALA Processing System

Knowledge processing is performed by the KOALA
Processing System (KPS). KPS realizes an algebraic
processing model that allows conventional algebraic optimi-
zations to be used to a large extent [27]. Thus, the overall
steps of knowledge processing proceed in a similar fashion
as the well-known steps of data processing in relational
DBMS [13]: first, an algebra graph representing the query is
generated and subsequently optimized, i.e., rewritten; then, a
plan-operator graph is constructed; finally, executable code is
generated, and the query is actually evaluated. Queries are
transformed into an algebra graph that supports the opera-
tions inherent to the knowledge model. On one hand, it
consists of algebra operators showing a functionality that can
also be found in conventional relational algebras (e.g.,
SELECT or JOIN). On the other hand there are operators
specific for knowledge processing in KRISYS (e.g., for
unnesting/nesting of object structures). Without discussing
the KOALA algebra in detail, we want to give an impression
of how a query is translated into an algebra representation in

2. In addition to the depicted organizational structures, a global
hash-table allows the localization of objects via object names.

3. Redundant information occurs for example in generalization hier-
archies, where subclasses may share attributes with their super-
classes. Representing such attributes only once for all classes
involved is an important goal of the data structures for the WM.

object and its
internal levels

collection
of objects (AS)

relations defined by abstraction concepts
Fig. 2.3: The organization of knowledge in WM
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(ASK ((?driver SLOTS age) (?car SLOTS price))
(AND (IS-INSTANCE ?driver persons)

(IS-INSTANCE ?car sportscars)
(EQUAL (SLOTVALUE color ?car) red)
(EQUAL ?driver (SLOTVALUE driver ?car))))

SELECT

“red

JOIN
“by object reference

of slot driver”

corresponding

Fig. 2.4: An example query and the corresponding algebra representation

KOALA query:

SELECT

“instances

PROJECT
“age of persons,

algebra
graph:

sportscars”of persons”

B. INDEX

B. INDEX

B. SEQ

BUFFERprice of sportscars”
plan
operator
graph:

“instances
of persons”

“red
sportscars”

PROJECT

JOIN

SELECT SELECT
Fig. 2.4 using the sample query already introduced asking for
“all persons driving a red sportscar” (as for example Paul).

The algebra (and plan-operator) graph of Fig. 2.4 also
contains predicates to further “guide” the application of the
algebra operators. These predicates, which we call base
predicates, define the actual semantics of KOALA, i.e., the
predicates to evaluate while executing the algebra opera-
tions. The base predicates must be mapped to the represen-
tational framework of the underlying knowledge model. For
example, to fulfill the predicate “instances of persons”, an
object must be either a direct instance of persons or a direct
instance of a subclass of persons (e.g., adults). These
relationships can be verified by the (chain of) references
defined by the slots instance-of and subclass-of of the object.

At compile time, the algebra graph is optimized according to
algebraic and non-algebraic criteria. When transforming an
algebra graph into a plan-operator graph, the KPS must
exploit the architectural characteristics of KRISYS. (For this
reason, most of the transformations can be done only at run
time.) It first has to communicate with the working-memory
manager to identify the information that is already installed in
WM. The remaining knowledge must be fetched from the
server, to which end specific plan operators (called DBS-
operators) are used to interact with the mapping component
and install the results of the delegated subquery in WM. All
subsequent tasks of query evaluation are then performed in
WM. Since the scope of this paper is determined by client-
based query processing (i.e., execution of plan-operators on
the buffer), we have not introduced DBS-based plan-
operators in our sample query. In the following, we assume
that (supersets) of the information required for the selections
in our query are already contained in WM.

Summing up, the optimization efforts must take into account
client processing as well as server processing. If all objects
referenced by a query are already installed in WM, it is clearly
more efficient to evaluate the query in the client. In this case,

KPS exploits existing main-memory indices and chooses
appropriate plan-operators (in our example, we have
assumed the existence of an index on the ‘color’-attribute for
sportscars). If, however, a subset of the required objects must
be fetched from the server, the costs for performing the query
in either client or server component become relevant. The
costs related to the client are dominated by the efforts
necessary to fetch the missing objects and to propagate the
changes back to the server DBMS; those related to the server
component are heavily influenced by the existence of
database indices. Such information is maintained by the
mapping component and supplied to the KPS.

Changes of objects are accumulated in WM and propagated
to the server DBMS as well as to all contexts affected by the
changes at appropriate points of time [29]. This problem is
even more complex if multiple clients operate simultaneously
on a KB. Since this is a problem sphere apart from the one
under discussion, we do not consider concurrency in this
paper.

In the next section, we will take a closer look at the conceptual
and implementational requirements of plan operators for
knowledge processing in KRISYS.

3. Requirements for the Plan-Operator Level

Since the realization of knowledge processing in KRISYS is a
prototypical one, we aim at a maximum degree of freedom,
concerning both later extensions of the conceptual design
and the actual use of the concepts. This division into
conceptual and operational issues is also reflected in the
requirements for the plan-operator level of KRISYS which we
will present subsequently. For the considerations following,
we will concentrate only on the operators to be performed on
the contents of the WM. Those plan operators hosting tasks
to be delegated to the server DBMS basically consist of calls
5



to the mapping component and are therefore much less
complex than those for the WM.

3.1 Conceptual Requirements
A Simple Processing Paradigm for Plan Operators
A simple yet highly flexible processing of plan operators is the
basis for effective knowledge processing. This can be
achieved by an easy realization of the flow of both data and
control through the plan operators. To this end, we see plan
operators as functional units accepting one or more input
streams and producing exactly one result stream. The input
is read and processed until it is exhausted. Thus, the plan
operators follow an open-next-close paradigm to be found in
many query-processing systems, e.g., [12].

Extensibility at the Plan-Operator Level
As already pointed out in the introduction, extensibility must
be supported at different levels to meet the specific require-
ments of advanced applications. Extensibility, in the context
of plan operators, means providing new evaluation strategies
for algebra operators by specifying new plan operators, as,
e.g., new join algorithms. On one hand, this requires a well-
defined structure (“template”) for the plan operators which
can be used for embedding the desired new functionality. On
the other hand, new plan operators must also be integrated
into non-algebraic optimization. This can be achieved by
providing heuristics describing the applicability of the new
operators. As optimization is a problem apart from the one
under consideration, we will not discuss it in this paper.

Extensibility of the Query Language
Extensibility of the query language is important to ensure a
maximum and optimally adjusted support of the applications
by KRISYS and its query-processing facilities. If the applica-
tions can tailor the interface to their special needs, the
amount of processing to be done by the applications
themselves (expressed in a programming language with an
interface to KRISYS) is minimized. This means that - based
on the representational framework of the knowledge model
and the semantics of ASK and TELL - it should be possible to
replace or augment the predicates and functions applicable,
yet affecting the realizations of the algebra level, the plan
level or the code generation as little as possible. Thus, exten-
sibility may for example comprise enhancing the semantics of
inheritance or including new, system-defined relationships
and their semantics into the user interface of KRISYS. Unlike
EXODUS or Volcano [11] [12], we do not want to generate a
new optimizer for each dialect that comes into existence by
extending KOALA, nor do we aim at extensibility of the data-
management facilities, as done in Starburst [13].

3.2 Operational Requirements
Efficiency of Dynamic Query Optimization
Knowledge processing in KRISYS requires dynamic query
optimization, since many related decisions can only be taken

at run time. A maximum freedom of choice can be achieved
by an interpretative approach to query evaluation. However,
generating executable code should require as little compi-
lation effort as possible, calling for a compilative solution
where any modification of a plan-operator graph inevitably
means recompilation. Although both requirements seem to
contradict each other, they are equally important for a good
system performance, since they facilitate plan construction
and code generation, thus reducing the time required for
both.

Flexible Units of Execution

Each plan operator can be seen as a separate unit of
execution. This is, however, not very efficient, since some
kind of execution control is required for each plan operator.
Plan operators may be combined in a single unit of execution
according to their processing characteristics. We distinguish
tuple-oriented plan operators and set-oriented ones4. A
sequence of tuple-oriented plan operators can be seen as a
pipeline that is activated for each input tuple. Thus, a uniform
execution control can be defined for this operator sequence.
Additional criteria may be applied to construct units of
execution, e.g. to prepare different forms of parallelism [32].

Efficient Data Flow between Plan Operators

The WM is the operational platform on which knowledge
processing is performed. Using up as little space as possible
for this task is a prerequisite for an effective use of the WM.
This can only be achieved if intermediate results that must be
materialized during the evaluation of a query can be kept
small. In certain scenarios, however, a materialization of
intermediate results is desirable. This is the case each time
several plan operators have the same predecessor. As this
plan operator (like any other plan operator) produces a single
output stream, the subsequent consumers can only share it,
if it is physically existing in WM and distinct access paths
(e.g., cursors) can be maintained, one for each reader.
Another example where intermediate results must be materi-
alized might be the input to the join operator. If the join is
realized via a nested loop, it must access the inner input
several times. Hence it is advantageous to have the tuples
physically represented in WM.

On the other hand, for a sequence of tuple-oriented plan
operators, it is desirable not to materialize any intermediate
results but just the inputs to the first plan operator and the
output of the last plan operator of the subgraph.

4. If a plan operator can work on each input tuple separately, we call
it tuple-oriented. A plan operator works set-oriented, if it can exert
its functionality in a reasonable fashion only if the complete set of
input tuples is available (as for example a sort operator).
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4. Implementational Issues

4.1 Basic Structure of Plan Operators

Subsequent plan operators in a plan-operator graph are in a
producer/consumer relationship. To get new input, a plan
operator issues calls to its predecessors. Those, in turn, reply
by producing a new output tuple. The consumer should not
have to care about how its next input is generated, nor should
the producers have to worry about how their output will be
consumed. An important objective for our implementation
thus is that plan operators must work independently of their
position. The location of a plan operator within a plan operator
graph must not matter, nor may the preceding/succeeding
plan operators have an impact on its processing behaviour.
Moreover, to minimize the number of control calls between
plan operators, plan operators ask for new input until the next
valid output (w.r.t. some qualification condtion) can be
generated, or the end of the input is reached.

The resulting generic processing scheme for obtaining a new
output of a plan operator (e.g., a selection) is shown in Fig.
4.1. It comprises the communication with the preceding/
succeeding plan operators (“get”, “write”) and the actual
functionality of the plan operator itself (“process” and qualifi-
cation conditions). Both tasks are embedded into a control
structure guiding their application (while-loop). As soon as a
plan operator needs input from its predecessors, it calls them
to produce their next output tuples, and execution control is
passed on to the corresponding plan operators. Together with
their answers, they return execution control back to the
calling plan operator. There, the input is processed, and a
(possibly existing) qualification condition is applied to the
result. The process outlined above is repeated until the next
valid output tuple has been produced or the input is
exhausted.

The qualification condition is stated in terms of base predi-
cates with which the plan operator is supplied upon
activation. Moreover, the interface includes the sources from
where to get the input and the destination where to write the
output to. For both purposes we can employ the concept of
AS introduced in Sect. 2. Reconsidering the plan-operator
graph of Fig. 2.4, we can imagine each arc between two plan
operators to be replaced by an AS. The AS serves as output
destination for the preceding plan operator and as input

resource for the succeeding one. Yet, this approach has a
disadvantage that advocates for its refinement. As pointed
out in Sect. 3, we distinguish tuple-oriented and set-oriented
plan operators. Sequences of tuple-oriented operators can be
regarded as pipelines that are activated separately for each
input tuple. From a logical point of view, there is no need to
materialize any intermediate results inside the pipelines.
Exactly this, however, is done by employing AS as communi-
cation channels between the operators of the pipeline. Each
intermediate result would have to be installed in an AS of the
WM. To avoid this, we introduce the concept of blocks.

4.2 Blocks

Blocks are units of execution comprising a number of plan
operators with the same processing characteristics. Just like
plan operators, blocks accept one or more input streams and
produce exactly one output stream. Seen from outside,
blocks work in a set-oriented way, yet internally they may
operate tuple-wise, depending on the plan operator(s)
contained. Blocks communicate among each other via WM,
employing access structures for input and output. By defining
the appropriate number of cursors over the same AS, several
blocks can use an AS as common input source. The state of
a block is defined by the states of the AS at its beginning and
at its end (i.e., the position of their cursors). Inside blocks,
intermediate results are kept temporarily. To this end, we
need an internal data structure for blocks and a mechanism
to generate it from or to transform it into an AS. In addition,
the control flow between plan operators of a block must be
realized. Both topics are addressed in the following.

4.2.1 Communication within Blocks

One important aspect to the communication within a block
concerns the data structures by which knowledge is
exchanged among the plan operators contained. A data
structure suitable for the representational framework of
KRISYS must support the relevant functionalities of the
knowledge model, i.e., all the operations defined on a single
object, as for example the insertion/deletion of an attribute.
Plan operators do not need operations over collections of
objects, since they map such functionalities to sequences of
operations on single objects. Moreover, the data structure
should be easy to generate from the representational
framework of the WM, the AS. For these reasons, we decided
to use as internal data format a representation similar to the
one of AS. To distinguish both representations but to indicate
their similarity, we named the internal data format logical
access-structures (LAS), opposed to the “physical” AS of the
WM. Structurally, LAS correspond to their “physical” counter-
parts, yet, only very few plan operators require the full
functionality available on the “physical” AS. Most plan
operators process their input sequentially and thus must be
able to access the next tuple, the actual tuple and possibly

plan-operator(input_sources, output, base_predicates)
while {not end of input_sources} do

input ← get({new_input});
result ← process(input);
if {qualification conditions apply to result}

output(result, output_destination); stop
end

Fig. 4.1: Processing scheme for a plan operator
7



the first of the input (e.g., in the inner loop of a join).
Moreover, for plan operators that are intended to exploit a
sorted input, it is desirable being able to directly access the
next tuple having either the same value as the one last
considered or having a different value. Therefore, the access
modes next-with-same-value and next-with-new-value are
necessary as well. This protocol must also apply to those plan
operators that access an AS (remember the implementational
objective that plan operators be independent from their actual
position within a graph). Therefore we introduced two
“pseudo” plan-operators read and write, realizing exactly this
interface either for the AS to be read or for the one to be
written and thus mask the existence of physical AS below or
above them. Hence, a block consists of read operators
supplying its input, the plan-operator subgraph to be
executed in the scope of the block and exactly one write
operator for the output of the block. All “real” plan operators
within a block access their relevant information via the open-
next-close interface of the LAS (cf. Fig. 4.2 (a)).

Plan operators that work in a set-oriented fashion (e.g., sort),
might also be content with this simple open-next-close
protocol, which, however, may restrict the flexibility of their
implementation. Moreover, since certain operations on entire
AS (i.e., sets of tuples) are already available as part of the
functionality of AS (e.g., duplicate elimination), we decided to
have the set-oriented operators work directly on AS and the
corresponding interface. For this reason, the read and write
functions are only sketched in Fig. 4.2 (b), showing the basic
structure of a set-oriented plan operator.

Employing the concepts described so far, the plan-operator
graph shown in Fig. 2.4 is transformed into a plan-level repre-
sentation as depicted in Fig. 4.3. We assume the plan to be
partitioned into two blocks. Both blocks communicate via the
(physical) access sequence AS3.

Besides for the transmission of data, we employ LAS also for
actually organizing the control flow among the plan operators
of a block. In addition to the name of the underlying plan
operator and its parameters, a LAS thus also possesses the
entries actual-value and buffer. The former is used to store
the value last computed by the underlying subgraph. It is
necessary to avoid repeated activations of this subgraph. The

latter entry (buffer) is indispensable, since several output
tuples may result from a single invocation of a subgraph (e.g.,
a single invocation of an index select may return a set of
tuples matching the selection), yet only one result tuple can
be processed at a time. As long as the buffer is not yet empty,
the entry actual_value is refilled with tuples of the buffer,
before issuing a new call to the plan operator below. By doing
so, the LAS also tells the underlying plan operator which tuple
it currently needs, e.g., the actual, the next or the first. The
plan operator in turn has to provide its input, before being able
to start working. For this purpose, it addresses the corre-
sponding LAS with their respective access modes via the
function get-entry-from, that realizes the open-next-close
interface described above. In the next section we will
consider the processing of blocks in more detail.

4.2.2 Processing of Blocks

In the following, we will discuss the way in which a block is
actually processed. For this purpose, we take a more detailed
look at the left block of Fig. 4.3. It is depicted in Fig. 4.4 which
also shows the basic structure of LAS and of plan operators.
We abbreviated the names of the plan operators by POi.

Since a block is supposed to work in a set-oriented way when
seen from outside, a block control is needed that repeatedly
activates the subgraph contained in the block, until its input
AS have been processed entirely. In Fig. 4.4, this block
control is represented as a simple loop, yet other, more
complex evaluation strategies may be desirable5. Before a
block can actually start executing, some initialization
measures must be taken. They relate, e.g., to the way in
which the input AS are used by the read operators of the
block. If an input AS is referenced exclusively by one block,
the manipulations to be performed might be carried out “in
place”, i.e., directly modifying the input AS. If this access

(a) (b)

AS

READ

WRITE

AS

AS

READ

WRITE

AS

plan operator

Fig. 4.2: Basic structures of blocks

plan operator

5. This issue is currently being investigated; we will discuss it briefly
in the outlook.

AS4

WRITE

B. PROJECT

LAS7

READ

LAS6

B. INDEX JOIN

AS3

AS2

READ

WRITE

B. SORT-SELECT

LAS2

LAS5

LAS4LAS3

Fig. 4.3: Modified plan-operator graph of Fig. 2.4

AS1

READ

B. SEQ-SELECT

LAS1

AS3
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log-access-structure: LAS1
function: PO1
parameter: (.. LAS3 .. LAS4 ..)
actual-value ..
buffer (..)

log-access--structure:LAS3
function: PO2
parameter: (.. LAS1 ..)
actual-value ..
buffer (..)

Output:

(defun PO1 (..<as-1><mode-1>..
..<as-2><mode-2>..)

...
(get-entry-from <as-1><mode-1>)
(get-entry-from <as-2><mode-2>)

(defun PO2 (..<as><mode>..)
...

(get-entry-from <as><mode>)
...)

(defun PO3 (..<as><mode>..)
...

(get-entry-from <as><mode>)
...)

AS3

function call referencing a LAS

log-access--structure: LAS2
function: read-entry
parameter: (..AS2 ..)
actual-value ..
buffer (..)

WRITE

LAS5

READ

AS2

Fig. 4.4: The communication protocol within a block

(defun “block_control”
...

(loop
...
(get-entry-from LAS1 ‘next)
...
write(output,.....)

until end-of-access-structure)

Input:

READ

AS1

LAS3

LAS1 LAS2

(1)

(2)

(4) (5)

LAS4

(3)
method either is not suitable or impossible due to several
blocks reading this AS, the read functions have to copy each
input tuple before passing it on to their succeeding plan
operators. Hence, initializing the read functions of a block is
a prerequisite for correct processing. Moreover, the cursors
defined over the input AS are set to the beginning of these
AS. A third initialization measure pertains to the LAS within a
block and invalidates the entries actual_value and buffer for
all LAS. Now the block can start processing.

By activating LAS5, the block control issues calls to the plan-
operator graph inside. LAS5, in turn, looks up the name and
the parameters of the plan operator it must invoke to answer
the request coming from above. It has to call PO1 ((1)) which
has as input LAS3 and LAS4. With this information, PO1 can
call its left and right input LAS ((2), (3)) referring again to the
only interface function get-entry-from. Thus, the activation is
propagated down the plan-operator graph, until the read
operators are reached ((4), (5)). They access their underlying

physical AS according to the decisions taken in the initiali-
zation phase. If the read has received its input, control starts
flowing back up to the root of the plan-operator graph. As
soon as the next valid result has been produced, it is inserted
into the output AS by calling the write operator.

5. Validating the Implementation
The overall plan-operator approach involves the concepts
shown in Fig. 5.1: the plan-operator templates, the (physical)
AS, the base predicates and the LAS. In the following, we will
validate the goals put up in Sect. 3 by pointing out those
(combinations of) concepts that guarantee their fulfilment.

5.1 Validation of Goals

To meet the first objective (“A Simple Processing Paradigm
for Plan Operators”), we chose an open-next-close protocol
that is reflected not only in the processing strategy of the plan-
operator templates but that is also an important part of the
9



functionality of the LAS. By introducing the LAS, we were able
to completely isolate the plan-operator templates from the
communication paths to be installed at run time. This infor-
mation is supplied via parameters, just like the base predi-
cates. In addition, the simple realization of the plan operators
is guaranteed by resorting to the functionality of AS.

By fulfilling goal 1, defining new plan operators basically
involves creating a template with the appropriate interface
and specifying the desired functionality which to a large
extent can be built from already existing functions and predi-
cates. Hence, also the second conceptual goal, the extensi-
bility at the plan-operator level, could be met. As already
pointed out, this does not pertain to information on the
relevant characteristics of the new plan operator for optimi-
zation, i.e., its applicability, benefits, and disadvantages.

As outlined in Sect. 2, the actual features of KOALA are
independent from the basic operations of the knowledge
model of KRISYS, which are represented by the plan
operators. By introducing the base predicates as a concept
orthogonal to all other concepts of our plan-operator
approach, extending the query language only affects the
base predicates themselves, facilitating this task as far as
possible.

Our implementation also meets the requirements of the fourth
goal that calls for efficiency of dynamic query optimization.
On one hand, a plan operator consists of functionalities
independent of the query actually at hand, that therefore
remain invariant (plan-operator templates and the required
functionality of AS). On the other hand, there are those
constituents that either depend on the context of a query (the
base predicates) or that can only be known at run time (the
LAS). By supplying the variable parts via parameters, the
invariant parts can be precompiled without taking the risk of a
later recompilation. Moreover, the base predicates can be
supplied in a compiled form since they are assumed to remain
unchanged in the course of a query evaluation. The only
constituents that have to be generated dynamically at run
time are the LAS. Since they are generally not very complex,
it may be less costly not to compile them but rather to interpret
them when executing the query. This optimization decision is,
however, left completely optional by our approach. Substi-

tuting a plan operator for a new one only involves changing
the respective piece of code and modifying the LAS calling
this plan operator. Thus, replacing the BUFFER-INDEX-JOIN
in the left block of Fig. 4.3 for a nested-loop realization just
requires to insert the appropriate function name for the
symbolic name PO1 (cf. Fig. 4.4).

In Sect. 4.2.1 we introduced blocks as the units of execution
communicating among each other via AS. Internal
processing, however, is kept independent from this represen-
tational framework with the help of transformation functions
(read, write) and is based upon separate data structures, the
LAS. In addition, a facility is needed to control the execution
of a block. Establishing a block therefore comprises
positioning the read/write operators, generating LAS for the
plan-operator graph contained and constructing the block
control. Thus, the blocks of Fig. 4.3 can be integrated by

- discarding AS3, the corresponding read and write, and
LAS5,

- changing the parameter entry for B.SEQ-SELECT in
LAS7 to the new input LAS6, and

- creating a single block control (e.g., by choosing the one
of the former block1).

The outcome of this process is shown in Fig. 5.2. Building a
block is a comparatively easy task. This holds for the
necessary overall modifications of the plan-operator graph,
but also when considering the amount of code that might
have to be (re)compiled due to the changes. Usually, only the
LAS must be generated and may be subject to (run time)
compilation. Hence the concept of blocks allows flexible units
of execution within a plan-operator graph (cf. objective 5).
Moreover, since no intermediate results of blocks must be
permanently installed in WM, also the sixth goal (efficient
realization of data flow between plan operators) is met.

5.2 A Technical Perspective
In this section, we will judge the implementation of our plan-
operator concept from a technical point of view, i.e.,
concerning its efficiency and feasibility, both with respect to
our programming environment [1] and in comparison to other
programming platforms as for example C-like languages.

Although LISP is a language that can be interpreted, it is
desirable to use precompiled code whenever possible. There
are four “packages” of functions necessary to realize plan-
operator graphs: functions realizing the plan operators
themselves, base predicates, LAS, and the block control. The
base predicates can be precompiled, as they do not have to
be modified at run time. It must, however, be possible to
supply the plan operators with variable base predicates at run
time. Yet, due to our implementation, this does not imply that
the plan operators cannot be precompiled. Since the base
predicates are part of the parameters of a plan operator, they
can be “inserted” into their program code in this way. Here,
we exploited a characteristic feature of LISP. The LAS consist

Fig. 5.1: The constituents of our plan-operator concept

(physical) AS

plan-operator

plan-operator

base

concept

predicates

template LAS
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of the mere data structures and of functions defined on this
representation. While the latter remain constant and hence
can be precompiled, the data structures can only be estab-
lished at run time, which basically means to define the correct
number of structures (in other programming languages they
are called records) with different names. At last, the block
control must be built. It contains all the constructs mentioned
before and for this reason also cannot be precompiled.

In summary, most of the code making up a block need not be
modified any more at run time, only the data structures and
the block control must be built. These parts, however, make
up only a fraction of the overall code of a block, hence the run-
time effort spent is in fact very small. If the block control is as
simple as in Fig. 4.4, it might not even be worthwhile
compiling the LISP code for the block, yet, if the control facil-
ities become more complex, a compilation may be desirable.
This freedom of decision is another big advantage of LISP.

The design and realization of our plan-operator concept are
not restricted to the environment in which KRISYS has been
developed. Except for the possibility to interpret the variable
parts of a block at run time, the same implementational
mechanisms can be exploited using other programming
platforms, as for example C.

6. Summary and Outlook
In this paper we presented a plan-operator approach for
client-based knowledge processing which we discussed in
the framework of the KBMS KRISYS. The design of this
approach is motivated by a number of conceptual and opera-
tional requirements stemming from the processing character-
istics of KRISYS. The fundamental objective is to employ a
simple processing paradigm for plan operators to guarantee
their easy realization and use. Based on this, we also aimed
at extensibility both of the query language and at the plan-

operator level, concerning internal evaluation strategies.
Since knowledge processing in KRISYS is largely based
upon decisions to be taken only at run time, a minimization
of run-time effort (e.g., code generation and compilation) is
indispensable. Moreover, only an optimal exploitation of the
buffer contents ensures effective knowledge processing.

We partitioned these objectives into four orthogonal imple-
mentational concepts which we realized in a modular fashion.
Firstly, the general execution logic of plan operators is
supplied by templates that can be filled with the specific
functionality of the operators. We implemented the communi-
cation between plan operators by logical access-structures.
They support both the flow of control and data and render
plan operators independent of their position in a plan-
operator graph. The basic functionality of the plan operators
is covered by the access structures making up the third imple-
mentational concept. Finally, the specific semantics of the
query language is captured by a set of base predicates.

The objectives of our approach, although presented in the
framework of the KBMS KRISYS, also apply to other systems
intended for non-standard applications. The locality of
reference typical for those applications requires facilities for
client-based knowledge processing, most important of which
an application buffer with a suitable representational
framework. To exploit this locality of reference and due to
concepts such as methods whose extension can often be
known only at run time, KBMS as well as OODBMS need
dynamic query optimization. Moreover, to meet specific
needs of advanced applications, extensibility has to be
supported at different levels. Given the architecture of
KRISYS and the different representational frameworks in
client and server, our approach to knowledge processing can
be placed somewhere in between OODBMS pursuing mere
server processing, leaving the maintenance of the client
buffer to the application programs [10], and OODBMS
performing main-memory query processing, having,
however, the same data model in client and server [21]

Finally, it is important to point out that our approach not only
fits the special characteristics of KRISYS and of the imple-
mentational environment (LISP), but that it is feasible in other
query-processing scenarios  as well.

The current state of the implementation is such that the trans-
formation of a query into an algebraic representation and the
subsequent rewrite are already realized. Moreover, most of
the plan-operator level has been implemented, including the
LAS. Although we can already provide a simple block control,
we are currently working on a more flexible design for this
concept. One of the primary goals in this development
process is to make blocks powerful enough to cope with
different processing environments ranging from single-
processor workstations over multiprocessor architectures to
distributed settings. This involves the development of a

AS4

WRITE

B. PROJECT

LAS7

LAS6

B. INDEX-JOIN

AS2

READ

B. INDEX-SELECT

LAS2

LAS4LAS3

Fig. 5.2: A plan-operator graph in a single block

AS1
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B. SEQ-SELECT

LAS1
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processing scheme for entire plan-operator graphs,
especially for inter-block communication.
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