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SUPPORTING OBJECT-ORIENTED PROCESSING BY REDUNDANT STORAGE STRUCTURES

Andrea Sikeler

University Kaiserslautern, Department of Computer Science,
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The development of a new generation of database management systems (DBMS) capable of s
ing advanced applications has emerged as an important direction in DBMS research. Adequat
eling and efficient processing of complex objects have proven to be one of the most important
in this context. Thus, object-oriented data models allowing for the manipulation of complex ob
are proposed as an appropriate interface of such a DBMS. However, this is not sufficient. The D
itself has to support complex object processing by a variety of storage structures, use of tuning
anisms, and performance enhancements transparent at the data model interface. This paper
some considerations as to the support of complex object processing by redundant storage stru
The underlying concept is to utilize storage redundancy for retrieval and to conceal storage r
dancy in case of manipulation.

1. INTRODUCTION

For some time, database system research has been concentrating on the development of a new generat
tabase management systems (DBMS) capable of supporting so-called non-standard application areas (e
CAM). These advanced applications differ from conventional business applications in a number of critic
pects including data modeling and processing as well as storage structures and access methods. As
quence, some important design guidelines have to be considered:

• The key idea is the DBMS kernel architecture [1, 2]. The overall non-standard DBMS (NDBS) consists of a neutral DBMS
kernel incorporating all application-independent data management functions and of different application layers providing
application-specific support (Fig. 1).

• The data model supported by the DBMS kernel has to be object-oriented in that it allows for the retrieval and manipulation
of complex objects [3]. These complex objects have to be constructed dynamically from basic objects and relationships
among these. All kinds of relationship types (1:1, 1:n, n:m) should be represented in a direct way allowing for symmetric
traversal and use of complex objects.

• The DBMS kernel as the implementation of the data model should support object processing by a variety of storage struc-
tures, use of tuning mechanisms, and performance enhancements transparent at the data model interface. Therefore, a
clean breakup of the DBMS kernel into different layers with appropriate tasks is mandatory.

This paper is concerned with the last aspect. It presents, in the framework of the PRIMA (prototype imple
tation of the molecule-atom data model) project [4] some of our considerations concerning the support o
plex object processing in an efficient way by maintaining redundant storage structures.

2. THE PRIMA ARCHITECTURE

The DBMS kernel PRIMA makes available at its interface the molecule-atom data model (MAD model) a
query language MQL (MAD query language). In the MAD model the objects corresponding to the above
tioned complex objects are calledmolecules. Each molecule consists of more primitive molecules or atoms a
belongs to a certain molecule type defined in terms of its component types and the relationships amon
types. Eachatom is composed of an arbitrary number of attributes and belongs to a corresponding atom
The attributes’ data types can be chosen from a richer selection than in conventional data models. With
to molecule management the most important of these types are the IDENTIFIER type and the REFER
type. TheIDENTIFIER typeserves as a surrogate which allows for the identification of each atom. Based on
IDENTIFIER type it is easy to define theREFERENCE typeas a set of typed references to other atoms. Howev
each reference requires a corresponding “back-reference” in order to support symmetric processing.
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In order to map this MAD model to external storage devices PRIMA is divided into three layers representing different levels
of abstraction (Fig. 1):

• The data system dynamically builds the objects, i.e. molecules, available at the data model interface. For this purpose, the
molecule-set-oriented MQL statements are transformed into lower layer programs containing series of access system calls.

• The access system provides a one-atom-at-a-time interface similar to that of the Research Storage System (RSS) of SYS-
TEM R [5].

• The storage system implements a set of “infinite” linear address spaces by managing the database buffer and organizing
the external storage devices, thus being responsible for the data exchange between main storage and disk storage (i.e. it
represents a lower level of abstraction than RSS [5]). For this purpose, the database is divided into various segments con-
sisting of a set of logically ordered pages. All pages of a segment are of equal size (1/2, 1, 2, 4, or 8 kbytes) which is kept
fixed during the lifetime of a segment. The five page sizes, however, are not sufficient when considering the mapping pro-
cess performed by the access system. Therefore, page sequences are introduced as predefined page sets supported by
physical clustering. A page sequence is a set of logically consecutive pages of a segment which contain one single object
spanning these pages [6]. Additionally, the storage system provides means to handle not only such predefined page sets
but also arbitrary page sets.

Throughout the rest of the paper we concentrate on the design of the access system.

3. THE BASIC VERSION OF THE ACCESS SYSTEM

Most of the storage structures supported by the access system are intended to increase performance ra
functionalism. Therefore, a basic version of the access system (BAS), comprising means to support data
tion, manipulation, and “simple” retrieval, is sufficient in order to guarantee the functional behaviour of M
However, before we go into particulars concerning these operations, we first describe the mapping of atom
the different “containers” offered by the storage system.

3.1 THE MAPPING OF ATOM TYPES AND ATOMS

In the BAS, each atom type is assigned to a single segment which includes all atoms of the correspondin
This decision essentially simplifies some of the operations, particularly the deletion of all atoms of an atom
although the addressing concept described in section 5.1 would also permit to store atoms of different t
the same segment.

Atoms are mapped onto so-called physical records. A physical record is a byte string of variable length,
represents, in case of the BAS, exactly one atom. Physical records are, in turn, mapped onto pages and
quences according to their current length. If a record goes beyond the page size of the segment assign
corresponding atom type, it is mapped onto a page sequence. Otherwise, it is mapped onto a page. A p
contain multiple records without intermediate space. Thus, modifying a record may cause movement o
records within the page. However, only the record to be modified may move to another page to a page se
Since page sequences have also to be searched sequentially for a physical record, only one physical
stored in a page sequence in order to minimize search overhead.

In order to locate a physical record, a physical address indicating the appropriate segment and page or page sequence is
assigned to each physical record. However, this physical address cannot be used as logical address, since with respect to
the additional storage structures multiple physical records may be assigned to a single atom. Therefore, we use a special
address structure maintaining all physical addresses assigned to a logical address (section 5.1). A logical address always
corresponds to the IDENTIFIER attribute of an atom. The appropriate value is assigned by the access system when the atom
is inserted and it is released when the atom is deleted. Modification of a logical address is not allowed.
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Figure 1: Architecture of PRIMA

application objects
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3.2 THE OPERATIONS

Thecreation of a new atom typerequires little effort within the access system. A new segment as well as a
responding address structure are initialized. User-defined keys, which are an additional feature of the MAD
el, however, raise some problems. The overhead to check for duplicates may become enormous withou
priate access path structures, such as B-trees, allowing for fast value-dependent access. Therefore, an ac
structure should be initialized for each user-defined key. This, however, is only possible when the curren
figuration of the access system includes appropriate components implementing the desired structures (s
ter 4). In order todelete an atom type, the appropriate segment and address structure as well as all depe
storage structures are deleted.

Manipulation operationswork on single atoms identified by their logical address. Wheninsertingan atom values
may be assigned to all or only selected attributes. The access system has to check whether or not value
signed to all attributes belonging to a user-defined key and whether or not these values are unique. Henc
the above mentioned access path structures are utilized or all atoms of the atom type are searched seq
Additionally, for each REFERENCE attribute it has to be checked whether or not the referenced atoms ex
this purpose, the address structure of the referenced atom types is used. Afterwards, the logical address
mined and the corresponding physical record is constructed and stored either in a page or a page seque
cordingly, it is allowed tomodifysingle attribute values within an atom, either as a whole or selected parts
pending on the corresponding attribute type. Again the access system has to check for user defined k
REFERENCE attributes before the corresponding physical record is modified. If the size of a physical r
changes due to the modification, other records within the same page have to be rearranged. Moreover, th
itself has to be stored in another page or even in another page sequence if it does not longer fit in its origina
Deletingan atom is quite simple. The corresponding physical record is erased and the other records wit
same page are rearranged. Performing any manipulation operation, the access system is responsible fo
tomatic maintenance of thereferential integritydefined by the REFERENCE attributes (system-enforced inte
rity). Therefore, each manipulation operation on a REFERENCE attribute includes implicit manipulation
ations on other atoms to adjust the appropriate back REFERENCE attributes.

Retrieval operationsof the BAS include direct access to a single atom identified by its logical address as w
sequential access (scan) to all atoms of a certain type, either in system-defined order (atom-type scan) o
following a certain sort criterion (sort scan). In accordance to the manipulation operations, it is possible t
an atom as a whole or to project single attribute values (again as a whole or selected parts). For this pu
so-called projection list has to be specified which determines the (parts of the) attributes to be retrieved
as the ordering of the attributes within the result atom. In case of the scan operations additional charact
may be specified in order to further describe the result set subsequently delivered by the scan. Both the
type scan and the sort scan allow for the definition of a simple search argument (SSA) which restricts the
set to atoms satisfying the specified condition. However, specifying a sort criterion and an additional sta
condition is restricted to a sort scan, i.e. the sort criterion defines the sequence in which the atoms of th
set are delivered and the start/stop condition limits the result set to a certain range within the sort seque
fined by the sort criterion. Whendirectly accessingan atom, the address structure of the appropriate atom t
is utilized to determine the physical address assigned to the corresponding logical address. This physical
is passed to the storage system which delivers a page or a page sequence containing the appropriate
record. This physical record has to be interpreted according to the specified projection list. Anatom-type scanis
performed by scanning the address structure of the corresponding atom type in order to obtain all logical a
es. For each logical address the appropriate physical record is determined and it is checked whether it s
the specified SSA. Is so, the result atom is built up according to the projection list. Asort scan, however, requires
much more effort within the access system. All atoms of the appropriate atom type have to be sorted acc
to the specified sort criterion. Simultaneously, the SSA as well as the start/stop condition have to be eva
In order to successively deliver the result set it has to be stored in a temporary segment. More information
sorting is given in the following chapter.

4. EXTENSIONS TO THE ACCESS SYSTEM

Although the BAS is sufficient in order to guarantee the functionalism of MQL, it is not sufficient with respect to performance
aspects. Therefore, we are introducing additional storage structures. The underlying concept is to make storage redundancy
available outside the access system by offering appropriate retrieval operations, whereas in case of manipulation operations
storage redundancy is concealed by the access system.
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4.1 ACCESS PATH STRUCTURES

Access path structuresprovide appropriate means for fast value-dependent access to the atoms of a single
However, depending on different characteristics of the access pattern one access path structure may be
ficient than another. Therefore, multiple access path structures should be supported by the access sys
regard to single attribute and multiple attribute retrieval as well as spatial and temporal access. In PRIM
decided to utilize

• B-tree [7] for single attribute access,
• grid file [8] for multiple attribute access,
• R-tree [9] for spatial access and
• no special structure for temporal access.

In both tree structures references to the appropriate atoms are maintained. These references correspo
logical addresses of the atoms. As a consequence, an additional access to the address structure is require
to obtain the corresponding physical addresses. However, the access path structures are isolated from th
dancy introduced by the different extensions of the access system. Moreover, moving a physical record d
affect any access path structure. On the other hand, the two-disk-access principle is an important chara
of the grid file structure. Therefore, a grid file directly maintains physical records, although maintenance o
ical addresses should be possible. As a result, redundancy is introduced, since multiple grid files may be
for a single atom type.

We have decided to provide a uniform access path scan operation for all access path structures supporte
access system. Thus, any access path structure may be added or removed without affecting the data sy
cept the optimizer). As a consequence, the access path scan itself becomes more complex. In case of
attribute retrieval, for example, start/stop conditions and directions (ascending, descending) may be spec
dividually for every attribute, thus extending the scan operation.

4.2 SORT ORDERS

A sort scan is expected to be a rather frequent operation, since sorting may considerably speed up inter
cessing in the data system (e.g. merging-scan join). However, sorting an entire atom type, repeatedly f
sort scan, is expensive and time consuming. Therefore, a sort scan may be supported by a so-called s
consisting of a sorted list of physical records, one for each atom of the corresponding atom type. Initially,
physical records are stored in subsequent pages according to the sort criterion. Manipulation operations,
er, would require a reorganization of the whole structure. Therefore, the corresponding pages are chaine
consequence, physical records may be added or removed at arbitrary points as pages are split or merged
itself is performed in a straightforward manner. Starting with an empty sort order an atom-type scan is initi
and each atom delivered by the scan is successively inserted into the sort order at the appropriate point. H
since this procedure is rather inefficient, different sort techniques (e.g. [10]) have to be investigated with r
to their applicability in the access system. Moreover, the extent in which existing access path structures
orders may be utilized has to be considered.

4.3 ATOM-CLUSTER TYPES AND ATOM CLUSTERS

The concept ofatom clusters[11] has been introduced in order to accelerate construction of frequently used
ecules, by allocating all atoms of a corresponding molecule in physical contiguity. Atom clusters, which a
stricted to molecules of a non-recursive, hierarchical structure, correspond to a possibly heterogeneous a
described by a so-called characteristic atom. This characteristic atom simply contains references to all ato
longing to the atom cluster (Fig. 2a). Each atom cluster is mapped onto one physical record containing th
acteristic atom as well as all referenced atoms (Fig. 2b). The physical record is, in turn, mapped onto a p
a page sequence depending on its current length (Fig. 2c). For this purpose, the physical record is divid
multiple subrecords, each containing all atoms of a single atom type. All subrecords are subsequently m
onto pages. If a subrecord exceeds the free space available within a page, a new page is allocated. If a s
requires multiple pages, these pages are exclusively used by this subrecord. However, in order to locate
within an atom cluster, i.e. within a page sequence, an additional address structure (section 5.1) is requ

Performing a manipulation operation on an atom, the access system is responsible for maintaining the appropriate atom clus-
ters, i.e. the access system has to automatically include atoms into an atom cluster, move them from one cluster into another,
and delete them from a cluster depending on the corresponding manipulation operation [11].
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Whereas the scans, described up until now, only support access to a homogeneous atom set belongin
atom type, the two scans defined for atom-cluster types allow for fast access to a heterogeneous atom se
several atom types. The atom-cluster type scan delivers all characteristic atoms of an atom-cluster type i
tem-defined order. Similar to all other scans, the result set of the atom-cluster type scan may be restrict
complex search argument (CSA), which must be decidable in one pass through a single atom cluster (sin
property [6]). Subsequently, direct access to all atoms belonging to an atom cluster is possible since eac
acteristic atom contains the corresponding logical addresses. The atom cluster scan, however, offers ano
sibility for accessing the atoms of an atom cluster. It reads all atoms of a certain atom type within one singl
cluster in a system-defined order, again with the possible restriction by a simple search argument.

4.4 PARTITIONS

A further extension to the access system are partitions. A partition allows for a vertical partitioning of an atom type. Thus,
frequently used attributes of an atom type may be clustered and stored independently from other attributes clustered in a
similar way. As a consequence, multiple physical records, one for each attribute cluster, are assigned to a single atom. Each
of these physical records consists of the appropriate attribute values as well as the IDENTIFIER attribute in order to locate
the physical record within a page. A partition is automatically utilized by the access system. Therefore, no explicit retrieval
operation referring to a partition is required.

5. MAINTAINING REDUNDANCY

In order to conceal the storage redundancy originating from the above extensions we have introduced the
of a logical record (i.e. atom) provided at the access system interface and physical records stored in the “c
ers” offered by the storage system, i.e. each physical record represents an atom in either storage structu
consequence, an arbitrary number of physical records may be associated with each atom. The relation
an atom and all its associated physical records is maintained by a sophisticated address structure describ
following section. However, that is not sufficient. Especially in case of manipulation operations, new con
have to be investigated in order to speed up a single manipulation operation.

5.1 THE ADDRESSING CONCEPT

Each atom is uniquely identified by its logical address which is assigned when the atom is inserted. A logical address consists
of an atom-type identifier (unique within the schema) and of an atom identifier (unique within an atom type). Thus, a logical
address is unique system-wide and independent of every storage structure. The concept of logical addresses is also suffi-
cient for the addressing of atom clusters, since each atom cluster is described by a characteristic atom and the logical ad-
dress of this characteristic atom may be utilized in order to access the atom cluster.

In order to locate aphysical recordwithin the “containers” offered by the storage system, the physical addr
assigned to each physical record consists, as already mentioned, of a segment number and of a page n

characteristic atom atom type A

atom type B

atom type C

references

page header

page-sequence
header

a) logical view

b) mapping onto a physical record

c) mapping onto a set of pages

Figure 2: Atom cluster

addressing structure
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page-sequence number indicating the page or page sequence in which the record is stored. However,
mation part is required in order to distinguish between a page number and a page-sequence number. Addi
a physical address contains an identification of the storage structure the physical record belongs to.

Mapping a logical address onto the appropriate physical addresses requires a flexible address structure
variable number of physical records may exist for each atom. Therefore, a so-called address list is assi
each atom, consisting of the corresponding logical address, of a length field indicating the number of ph
addresses assigned to the logical address, and of the physical addresses themselves. The access to such
list is performed by means of an appropriate address translation method based on linear virtual hashing

The mapping of a physical address onto the appropriate logical addresses is implicitly contained in each p
record. If a physical record corresponds to either an attribute cluster or a complete atom, the IDENTIFIE
tribute, i.e. the logical address, resides at the beginning of the physical record. Otherwise, if a physical
corresponds to an atom cluster, the appropriate characteristic atom includes all logical addresses of th
belonging to the atom cluster (Fig. 2).

Moreover, each physical record assigned to an atom cluster requires an additional address structure whic
for the fast location of a single atom within the corresponding physical record. This address structure st
depends on the current size of the physical record. If the record fits into a single page, no additional addres
ture is necessary, since within a page a sequential search is performed. If the record is spread over a
quence, the address structure initially consists of a simple table indicating for each atom type the (first) p
which the appropriate subrecord is mapped (Fig. 2). In addition, each subrecord which requires multiple
contains a further table indicating for each atom the page in which it is stored.

5.2 UPDATING STORAGE REDUNDANCY

Introducing storage redundancy serves to speed up retrieval. On the other hand, however, it slows down
ulation, since during a single manipulation operation on an atom multiple physical records and access pat
have to be altered in order to achieve consistent storage structures. Sequential manipulation of all p
records and access path structures results in a lack of efficiency which is not acceptable. Therefore, new c
such as deferred update and concurrent update have to be investigated in more detail with respect to the
cability in PRIMA [13].

Deferred updatemeans that during an manipulation operation on an atom initially only one of the approp
physical records is altered. All other physical records as well as the corresponding access paths are ma
invalid. Finally, a “process” is initialized which alters the invalid structures in a deferred manner, wherea
manipulation operation itself is finished. Consequently, when performing a retrieval operation on such an i
structure, each physical record has to be checked as to whether or not it is valid. This, however, require
extra overhead, especially in case of access paths and sort orders, which slows down the retrieval oper

The problem of maintaining invalid storage structures, however, is avoided byconcurrent update. Concurrent
update means that each manipulation operation on an atom invokes a number of processes which alter th
priate physical records and access paths in parallel. The manipulation operation is finished when all pro
are finished.

Nevertheless, additional investigations, in particular concerning the underlying hardware architecture [1
still necessary in order to determine the best way to utilize this kind of parallelism (e.g. with respect to ex
bility or performance).

6. SUMMARY

Advanced applications require a new generation of DBMS which has to support the adequate modeling
ficient processing of complex objects dynamically constructed from other simple or complex objects. On
to handle these complex objects in an appropriate way is a clean breakup of the DBMS into different laye
appropriate tasks. In PRIMA, for example, three layers are distinguishable:

• The data system transforms complex objects into simple objects and vice versa.
• The access system maps logical records, i.e. simple objects, onto physical records, and vice versa, thus concealing the

physical representation of simple objects from the data system.
• The storage system manages the database buffer and organizes the external storage devices providing different kinds of

“containers” for storing physical records.
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We have discussed new concepts and implementations for storage structure support on complex objects
to speed up various types of retrieval operations. The design of such additional storage structures inclu

• different kinds of access path structures for fast value-dependent access

• sort orders for efficient support of sequential processing according to a given sort criterion

• atom clusters for fast processing of frequently used molecules

• partitions for separating frequently used attribute clusters from those less frequently used.

However, these storage structures introduce storage redundancy to be maintained by the access system
derlying concept is to make storage redundancy available outside the access system by offering approp
trieval operations (i.e. scans), whereas storage redundancy has to be concealed by the access system
manipulation. However, sequential manipulation of all storage structures existing for a corresponding at
sults in a lack of efficiency which is not acceptable. Therefore, exploiting parallelism seems to be a natur
to speed up a single manipulation operation. In order to investigate this aspect in more detail, we are inte
the proposed storage structures into an already running prototype of PRIMA in order to obtain more expe
in utilizing parallelism in this context.
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