
,

ol-

Wide

unity,

as de-

, XML

y also

in large

uch as

M), or

s. They

ly sup-

rmation,

ynamic

velop-

., data

uch as

give

hat pro-

ful for

have to
XML Content Management
based on Object-Relational Database Technology

B. Surjanto, N. Ritter, H. Loeser
Computer Science Department, University of Kaiserslautern,

P.O. Box 3049, 67653 Kaiserslautern, Germany
{surjanto, ritter, loeser}@informatik.uni-kl.de

http://www.uni-kl.de/AG-Haerder

Abstract

XML (Extensible Markup Language) is a textual markup language designed for the creation of self-describing
documents. Such documents contain textual data combined with structural information describing the structure of the
textual data. Currently, products and approaches for document-oriented application domains focus mainly on the tex-
tual representation when processing and analyzing documents. Usually, they do not take advantage of the availability
of structural information and only support some of the relevant aspects of content management. On the other hand
existing research approaches for structure-oriented application domains prefer very fine granularities and give less
attention to operations revealing textual document contents.

We introduce XCoP (XML Content Repository) as a repository which is based on an object-relational database
management system (ORDBMS) and improves content management of XML documents thereby exploiting their
structural information. It allows users to reuse and process textual portions of document contents, calledfragments,
thus avoiding data redundancy and, as a consequence, update anomalies on replicated data. Moreover, it enables c
laborative development of documents and facilitates synchronization of fragment modification and versioning. In con-
trast to the existing tools and approaches, the fragment granularity in XCoP is flexibly configurable. At the same time,
XCoP also maintains the structural information of document contents and manages the relations between them.

Keywords: WWW, ORDBMS, Repository, XML, Content Management, Reuse

1 Introduction
As a new standard document markup language for the Web, XML recommended by the W3C (World

Web Consortium) [BPS98] has gained worldwide attention from both industry and research comm

since it is assumed to play a key role for data representation and data exchange on the Web. XML w

veloped as a textual markup language designed for the creation of self-describing documents, i.e.

documents contain textual data interspersed with structural information. The structural description ma

be used to express specific document semantics in order to facilitate the organization of and search

sets of documents.

Unfortunately, current products and approaches for document-oriented application domains s

web content management (WCM), document management (DM), document content management (DC

digital libraries, concentrate on the textual representation when processing and analyzing document

do not take advantage of the availability of structural information and do not adequately and complete

port other relevant aspects of content management: content reuse, search based on structural info

integration with operational databases as well as other external data sources in order to facilitate d

content generation, ensuring link consistency within and between documents, and collaborative de

ment of documents. In contrast, existing approaches for structure-oriented application domains, e.g

integration, management of semistructured data, or search engines, prefer very fine granularity s

markup elements within a document in order to exploit the corresponding structural information and

less attention to operations analyzing and processing textual document contents. We are convinced t

cessing support to both, textual document contents and structural information, would be very use

many application domains and could lead to substantial improvements when large sets of documents

be organized, classified and searched.
1



data-

ation.

alies on

e multi-

oach-

users

reused

s units.

or ap-

ifferent

make

h their

lopers

d user-

ia SQL

ges of

sides in

, called

.

anage

s on

paper,

added

llabo-

pple-

ment of

ts and

nally,

ers to

les con-

s de-

ach

ain a

t

t

In this paper, we introduce XCoP (XML Content Repository) which is based on object-relational

base technology and manages textual XML document contents together with their structural inform

XCoP allows the reuse of document contents by providing so-calledfragments. The use of our fragment

concept reduces many operational problems. It avoids data redundancy and, therefore, update anom

replicated document contents. Furthermore, it enables collaborative development of documents, sinc

ple users may work on different fragments of a document concurrently. Unlike existing tools and appr

es, the fragment granularity in XCoP is flexibly configurable by the users. Depending on their needs,

may specify, split, and merge fragments at runtime in suitable units they want to share. Frequently

fragments indicate data locality and, therefore, are stored by XCoP in the database in their entirety a

Regarding document composition this approach provides better performance in comparison to tools

proaches decomposing document contents down to the level of markup elements and store them in d

places. At the same time, XCoP extracts the structural information of document contents in order to

query facilities and other repository services more effective. These structural descriptions together wit

corresponding relations to document contents are maintained.

With the advent of object-relational database management systems (ORDBMSs) [Sto98], deve

can extend the database system by user-defined data types (UDT), user-defined routines (UDR), an

defined index structures. Furthermore, ORDBMSs allow users to access external data sources v

(Structured Query Language), enable (limited) object-oriented data modeling, still keep the advanta

relational database management systems (RDBMSs), and coexist with legacy data which mostly re

relational databases (RDBs). We develop XCoP as part of an integrated Web database framework

iWebDB, which is built by our database research group using the extensibility features of an ORDBMS

To the best of our knowledge, there are currently no approaches of XML repositories that m

documents at the content level, allow the flexible definition of content granularity, provide operation

both textual representation and structural information, and finally are based on an ORDBMS. In this

we deal with the content management of XML documents in XCoP and do not discuss other value-

repository services [BD94] provided by XCoP such as version control, configuration management, co

ration, context management as well as workflow control.

The remainder of this paper is organized as follows: Section 2 briefly introduces XML and its su

mental techniques considered here. Section 3 provides a list of requirements for the content manage

XML documents. In sections 4 and 5 we describe our approach for managing XML document conten

its implementation on the top of an ORDBMS. Previous related work is then reviewed in section 6. Fi

section 7 gives concluding remarks and an outlook to future work.

2 XML
XML is a metalanguage for describing document markup languages. It is extensible, i.e., it allows us

specify their own markup elements and structures which may be customized to their needs, and enab

suming applications to perform validation checks w.r.t. the specified structures. An XML document i

fined as a textual data object which must satisfy the so-calledwell-formednessconstraint and may further be

valid, i.e., fulfill certain validity constraints [BPS98]. An XML document consists of markup elements e

represented by a start tag and an end tag and character data in between, e.g.,<TITLE>Hello

World</TITLE> . Obviously, tags are delimited by angle brackets and end tags additionally cont

slash appearing in front of the markup element name (which isTITLE in our example). A markup elemen

may also be empty, e.g.,<DUMMY></DUMMY>(equivalent to<DUMMY/>). Furthermore, a markup elemen
2



de-

ype

s,

ecial

igure

g

e de-
may have attributes composed of name-value pairs embedded in the start tag or empty tag, e.g.,<AUTHOR

AGE=”50”> . An XML document is well-formed, if all its markup elements and attributes are properly

limited and nested.

Structuring XML Documents

Optionally, XML documents can be structured both physically and logically using a DTD (Document T

Definition) which comprises a set ofmarkup declarations. A document is physically composed of its part

called (general) entities, that are stored separately. In the DTD a (general) entity is specified by a sp

markup declaration, called(general) entity declaration. The XML specification also includes a facility for

separately storing any part of a DTD, calledparameter entity, usingparameter entity declarations. Entities

that reside outside their corresponding document are namedexternal entities, otherwiseinternal entities.

An XML document is

logically structured by means

of the markup declarations

contained in a corresponding

DTD, which areelement dec-

larations and attribute list

declarations. Together they

represent a formal set of syn-

tactical rules determining

which markup elements and

attributes are available and

how they are to be applied.

Moreover, it is possible to de-

fine referencesbetween mark-

up elements within an XML

document. Such references are

described using attributes of

types ID and IDREF resp.

IDREFS. Each referred ele-

ment must have a unique iden-

tifier specified in its ID at-

tribute and references are rep-

resented by specifyingID val-

ues of the referred elements in

IDREF resp.IDREFS attributes of the elements that refer to them.

An XML document is said to be valid if it has a DTD and meets the constraints defined in the DTD. F

1 shows an example of a valid XML document (containing references).

Linking Mechanism

In addition to the unidirectional hyperlinks of HTML (Hypertext Markup Language), XLink (XML Linkin

Language, [Dot99]) provides more sophisticated linking constructs. In XLink, link characteristics ar

scribed by the so-calledlinking elements. Basically, there are two types of linking elements in XLink:sim-

<?XML VERSION=”1.0”?>
<!DOCTYPE PRODUCT-CATALOG [

<!ELEMENT PRODUCT (NAME, (QA-NOTE | MFG-INSTR)*)>
<!ATTLIST PRODUCT

PROD-ID ID #REQUIRED
TYPE (f-good | sf-good | raw-mat) ”f-good”
MAT-USED IDREFS #IMPLIED>

<!ELEMENT NAME (#PCDATA)>
<!ELEMENT QA-NOTE (#PCDATA | QA-METH | TEMP)*>
<!ELEMENT QA-METH (#PCDATA)>
<!ELEMENT TEMP (#PCDATA)>
<!ELEMENT MFG-INSTR (#PCDATA)>

]>
<PRODUCT-CATALOG>

<PRODUCT PROD-ID=”FL-20” MAT-USED=”PP-60 MIX-750”>
<NAME> Flexilene </NAME>
<QA-NOTE>

Perform QA immediately after jumbo production,
use <QA-METH>J-61</QA-METH> at <TEMP>45</TEMP>.

</QA-NOTE>
<MFG-INSTR>

Can only be produced on Line 2 or 4.
</MFG-INSTR>

</PRODUCT>
<PRODUCT PROD-ID=”PP-60” TYPE=”raw-mat”>

<NAME> Polypropylene 60 </NAME>
</PRODUCT>
<PRODUCT PROD-ID=”MIX-750” TYPE=”sf-good”>

<NAME> FlexiMix </NAME>
<QA-NOTE>

For european customers, assure mixing quality
using <QA-METH>M-16</QA-METH>. Otherwise, use
<QA-METH>M-30</QA-METH> with standard params.

</QA-NOTE>
</PRODUCT>

</PRODUCT-CATALOG>

Figure 1: An example of a valid XML document with references
3



ne

nti-

k

k).

can be

points

on of

on the

ica-

nts, and

the

ration

e ca-

antics)

urther-

-

t. Con-

sumers

mber

ink, a

gement

ts of

n and

s should

uld be

and

ed in a

or-

ment

ments

docu-
ple linksandextended links. Like HTML hyperlinks, simple links are unidirectional and thus have only o

locator used to locate aresourcewhose identification is based on the URI syntax (Uniform Resource Ide

fier, [BLF+98]) and specified in the reserved attributeHREF. In contrast to a simple link, an extended lin

can connect any number of resources usinglocator elementsand may bemulti-directional. An extended link

can also beout-of-linemeaning that all participating resources are remote (not parts of the extended lin

Addressing Parts of XML Documents

Based on the logical tree respresentation of an XML document, internal structures of a document

addressed using XPointer (XML Pointer Language, [DDM99]). XPointer can be used to locate nodes,

as well as character strings, and also to specify ranges of document parts.

3 Requirements for the Content Management of XML Documents
As motivated in the previous sections, we think that XML is the key technology for the next generati

Web applications and will become the standard format for data representation and data exchange

Web. Its simplicity, extensibility, and structuring capability make XML very attractive for various appl

tion domains (e.g., document management, knowledge management, e-commerce, intelligent age

many more). The potential impact of XML is obvious. Using XML as a single language for specifying

huge amount of information produced and consumed over the Web would provide better interope

among information providers as well as easier handling of documents by applications. Additionally, th

pability of RDF (Resource Description Framework, [LS99]) to describe metadata (representing sem

of Web resources makes the Web more appealing for both information providers and consumers. F

more, XML and XSL (Extensible Stylesheet Language, [DAB+99]) together offer a solution for a media

independent publishing that is achieved through the separation of the content and presentation forma

tent creators can therefore concentrate on producing their document contents and information con

may choose their preferred views. Obviously, we will have to be prepared to deal with a very large nu

of XML documents and their contents will have to be managed adequately and efficiently. As we th

corresponding management system has to fulfill the following requirements:

• Content Reuse
Sharing information for reuse must be considered being an essential property of a content mana

system when many information producers work with a large number of documents containing lo

information. The main benefits of information reuse are obvious: decrease of information replicatio

avoidance of update anomalies. In order to achieve these benefits, content management system

not only allow information reuse at a coarse and fixed level of granularity, e.g., documents, but sho

more flexible and allow dynamic determination of the appropriate granule of reuse.

• Exploitation of Structural Information
An XML document contains different kinds of structural information, such as markup elements

attributes used, hierarchies of markup elements, or document structure information optionally defin

corresponding DTD. Also XLink contains this kind of information, i.e., link information. Structural inf

mation is a kind of metadata that apparently is very useful for improving the search quality on docu

contents and enabling automatic content consistency checking (see next point).

• Content Consistency Enforcement
The physical and logical structure of documents defined in the DTD as well as links between docu

need to be handled adequately by enforcing their consistency, i.e., avoiding links to non-existing
4



tency

urces

inte-

ology,

on man-

tion

L data

nted.

g docu-

, basic

anage-

an-

ntation

en

XCoP

ose, a

al infor-

bjects.

c.) and

ts, ele-

d en-

d to be

e of a

ument

utomati-

eir re-
ments or resources. Actually, all kinds of structural information can effectively be used for consis

enforcement purposes.

• Integrated Management of XML Documents and Other Resources
XML documents are by nature interconnected with other XML documents and other kinds of reso

like various types of image files, a variety of word processing file types, etc. Thus, functions for an

grated management of XML documents and other resource types are required.

• Utilization of DB Techniques
Due to the considerable amount of XML data anticipated in future applications, approved DB techn

e.g., for efficient secondary storage management, query processing, concurrency control, transacti

agement, recovery, etc., is likely to be exploited for efficient content management.

• Dynamic Content Generation
The delivery of static XML documents or document contents is not sufficient for many applica

domains. Highly structured business data stored in DBS are often needed to be combined with XM

dynamically. Furthermore, dynamic generation of XML documents based on existing data is wa

Thus, functions for accessing external data sources and document contents as well as for processin

ment templates have to be provided.

• Repository Functionality Support
In order to manage several states of XML contents and to support the overall development life cycle

repository functions such as version control, configuration management, collaboration, context m

ment, and workflow control are required. This additional functionality completes an XML content m

agement system and leads to what we call anXML content repository.

4 XML Content Management in XCoP

In this section, we describe our approach for managing XML document contents. The textual represe

of XML document contents, calledtextual contents, and the corresponding structural information are tak

into consideration. DTDs, documents as well as (logical) document parts belong to textual contents.

manages both textual contents and the related structural information of XML documents. For that purp

conceptual model and a set of operations that support the processing of textual contents and structur

mation are provided. Everything that is managed by XCoP is conceptually modeled as repository o

They are further characterized by their attributes (e.g., owner, creation date, last modification date, et

structurally organized into various repository object types such as resources, documents, fragmen

ments, etc.

4.1 Managing Textual Contents

Although XML supports content reuse through external entities, it lacks functions for maintaining an

suring the consistency of document parts belonging together. Indeed, physical structures in XML nee

maintained manually using entity declarations specified in DTDs. Changes in the physical structur

document require manual updates in the DTD. In contrast, XCoP permits users to logically split doc

contents into parts without having to change DTDs, maintains these parts and ensures consistency a

cally. Moreover, splitting document contents enables collaborative work since users can work on th

spective parts independently.
5



child

ich are

ents.

-

g

TD

ts as

ample

for frag-

or-

use in

n and

ent’s

nding

ent oc-

an own

f DTD

o frag-

nularity

le frag-
Definition of Fragment

Comparable with the terminology

used in the XML Fragment Inter-

change [GV99], we introduce the

conceptfragment. A fragment con-

sists of textual contents and may

further comprise a set of other

fragments (child fragments) but not

itself. A fragment is well-formed,

if its textual contents match the

production [43] content of

XML 1.0 and all its child fragments are well-formed. Apparently, theoverall textual contentsof a well-for-

med fragment resulting from a proper integration of the textual contents of all direct and transitive

fragments is well-formed. A well-formed fragment is called aroot fragment, if it has exactly one markup

element at the top of its element hierarchy. A DTD fragment contains a set of markup declarations wh

specified properly as defined in the XML specification and may also be composed of other DTD fragm

A DTD fragment is called aDTD root fragment, if it contains text delimited by brackets (“[ ... ]”) as deman

ded by the productiondoctypedecl of XML 1.0. Consequently, we define an XML document bein

well-formed, if it consists of exactly one root fragment, and being valid, if it has a DTD (with only one D

root fragment) and exactly one root fragment whose textual contents meet the DTD.

Based on the fragment concept, we can flexibly determine portions of XML document conten

well as DTDs, so that they can be reused for building new (DTD) fragments. Figure 2 illustrates an ex

of fragment reuse and the corresponding structuring relationships spanning a so-calledfragment graph.

Fragment graphs are acyclic and directed. Their graphical representation uses rectangles as vertices

ments and arcs to describe theaggregrationrelationships between parent and child fragments. Arcs are

dered according to the appearance of the child fragments in their parent fragment.

Determining Fragment Granularity

One of the main strengths of XCoP is that it permits users to specify the fragments they want to re

arbitrary size and in a flexible way. We provide two simple techniques, named explicit fragmentatio

implicit fragmentation, for determining (DTD) fragments by the help of XCoP-specific PIs (processing in-

structions), calledmarkup PIs, that act like markup tags.

Explicit fragmentation happens by explicitly enclosing that part of a given document’s or fragm

textual content, which is supposed to become a new fragment, by a pair of markup PIs (<?XCOP

TAG=<EXPL-FRAGMENT>?>and<?XCOP TAG=</EXPL-FRAGMENT>?>) especially provided for that

purpose. Implicit fragmentation happens by marking an excerpt of a DTD or DTD fragment. Correspo

markup PIs are<?XCOP TAG=<IMPL-FRAGMENT>?>and<?XCOP TAG=</IMPL-FRAGMENT>?>.

The marked DTD excerpt may contain several element declarations. The meaning is that each elem

currence of an element declaration contained in the marked DTD excerpt is always to be treated as

fragment. Both techniques allow users to share and reuse fragments without having to take care o

updates. By default entire document contents (without DTDs) are treated as fragments, if there are n

mentation instructions. Thus, based on their needs users may freely determine a fixed fragment gra

(the spectrum reaches from the entire document down to a single markup element), decide for variab

a1

b1

b2 a2

c1

a1

Figure 2: An example of fragment reuse and its fragment graph

(a) Reuse of fragments (b) Fragment graph

a2

b1 b2

c1
6



time.

nt of
ment size, or just mix both. In addition, specifications of implicit fragmentation can be modified at any

In this case, the affected fragments and their relations to each other are reorganized accordingly.

Figure 3 shows how the

markup PIs are applied to speci-

fy implicit and explicit fragmen-

tation. Based on the given im-

plicit fragmentation, each

PRODUCT element together

with its textual contents will be

handled as a fragment. Addi-

tionally, according to the explic-

it fragmentation specification

the PRODUCT element with

PROD-ID=”MIX-750” has a

child fragment containing aQA-

NOTE element and its textual

contents.

Conceptual Model for Managing Textual Contents

Figure 4 illustrates a basic concep-

tual model for textual contents, i.e.,

XML documents, DTDs, fragments

and other kinds of resources. In our

model, a resource is represented by

a repository object which can be

identified by a URI. Resources are

either binary resources (e.g., images

or executable files) or textual re-

sources (e.g., ASCII text files). The

latter are refined in DTDs, docu-

ments, and fragments. A fragment

may consist of several child frag-

ments, which are ordered and may

be shared with other parent frag-

ments. Fragments include markup

elements and are further specialized

in DTD fragments that consist of

markup declarations. They are well-

formed resp. valid according to the definitions given previously.

4.2 Exploiting Structural Information

Currently, we use the following kinds of structural information in order to support automatic enforceme

document contents consistency and to provide appropriate search facilities:

<?XML VERSION=”1.0”?>
<!DOCTYPE PRODUCT-CATALOG [

<?XCOP TAG=<IMPL-FRAGMENT>?>
<!ELEMENT PRODUCT (NAME, (QA-NOTE | MFG-INSTR)*)>
<?XCOP TAG=</IMPL-FRAGMENT>?>
...

]>
<PRODUCT-CATALOG>

<PRODUCT PROD-ID=”PP-60” TYPE=”raw-mat”>
<NAME> Polypropylene 60 </NAME>

</PRODUCT>
<PRODUCT PROD-ID=”MIX-750” TYPE=”sf-good”>

<NAME> FlexiMix </NAME>
<?XCOP TAG=<EXPL-FRAGMENT>?>
<QA-NOTE>

For european customers, assure mixing quality
using <QA-METH>M-16</QA-METH>. Otherwise, use
<QA-METH>M-30</QA-METH> with standard params.

</QA-NOTE>
<?XCOP TAG=</EXPL-FRAGMENT>?>

</PRODUCT>
</PRODUCT-CATALOG>

Figure 3: An example of fragmentations

Resource

Textual
Resource

Binary
Resource

Document

DTD
Fragment

{ordered}

0..*

0..*

Child

Parent

0..*
0..*

0..1
0..*

1

Repository
Object

Fragment

1

Figure 4: Conceptual model for managing textual contents

DTD
7



well as

tween

ts;

r with

-

loca-

d set of

pty set
• Well-formed XML document information:

markup elements, attributes, references between markup elements,compositionrelationships resulting

from the content model of markup elements, and the appearance order of markup elements, as

composition relationships between attributes and elements;

• DTD information:

entity declarations, element declarations, attribute list declarations, composition relationships be

element, element ordering as well as composition relationships between elements and attribute lis

• XLink information:

various types of linking elements (e.g., simple links, extended links, locator elements, etc.) togethe

XLink-specific attributes such astype , href , role , arc , etc.

Conceptual Model for Managing Structural Information

Figures 5 and 6 show conceptual

models for managing structural

information. Figure 5 illustrates

that a fragment has an ordered,

non-empty set of markup ele-

ments. Each of them may have

one or more attributes. We fur-

ther divide attributes into at-

tributes of typeID and attributes

of type IDREF(S) . On one

hand, a markup element withID

attribute can be referred by one

or more other element(s) via

IDREF(S) attributes. On the

other hand, an element with an

IDREF(S) attribute refers to

exactly one resp. many elements each with anID attribute. A simplified conceptual model of XLink is pre

sented in Figure 5. Various kinds of linking elements in XLink (i.e., simple links, extended links, and

tor elements) are modeled as types of markup elements. An extended link has an non-empty, ordere

locator elements. Finally, a simple link or a locator element refers to exactly one resource.

Figure 6 shows that markup

declarations, markup elements,

and attributes are also modeled as

repository objects. Markup decla-

rations are further classified into

element declarations, attribute

declarations, and entity declara-

tions, whereas an element decla-

ration may contain one or more

attribute declaration(s) and con-

sist of an ordered set of other element declarations. DTD fragments comprise an ordered and non-em

Attribute

IDREF(S)
Attribute

ID
Attribute

Fragment

Resource

{ordered}
1..*1

Extended
Link

Simple
Link

Linking
Element

Locator
Element

Element

0..*1

0..*
1refers_to

0..*

1refers_to

0..*1..*

refers_to

0..*
1 Parent

{ordered}
Child

1 0..*

Figure 5: Modeling structural information within fragments

Figure 6: Modeling structural information within DTD fragments

DTD
{ordered}

1..*1

Element
Declaration

Attribute
Declaration

Entity
Declaration

Markup
Declaration

1 0..*

Fragment

1

Parent

{ordered}

0..*

Child
8



s their

bjects,

d spe-

give

istin-

lation-

hecked

nges.

s

deliv-

ntified

f the

frag-

nd the

rre-

ment,

ponding

tents of

rations

gation)

iously,

ository

frag-

ameter

type.
of markup declarations. Due to simplicity, we ignore parameter entities and general entities as well a

relationships to entity declarations in the models given in this paper.

4.3 Processing Repository Objects

This section gives an overview of the operations provided to support the processing of repository o

particularly those that are related to textual contents and structural information. Operations are define

cifically for each repository object type. Although our actual modeling approach is object-oriented, we

a more generic description in the following in order to keep our explanations short and simple. We d

guish four categories: manipulation operations on repository objects, manipulation operations on re

ships, retrieval operations, and specific operations. Well-formedness resp. validity constraints are c

during operation executions whenever required, especially for such operations that effect content cha

Manipulation Operations on Repository Objects

This category contains operations for the creation, modification, and deletion of repository objects.

• createObject (initTextualContents: String): Object

This operation accepts an input stringinitTextualContents representing the initial textual content

of the repository object to be created. After its successful execution, the created repository object is

ered. When creating a document object, the corresponding root fragment and DTD (if any) are ide

and created (again by callingcreateObject ) and associated with the document object (seeCreateR-

elationship operation below). Likewise, a create operation for a DTD leads to the creation o

related DTD root fragment and the corresponding relationship. In case of the creation of a (DTD)

ment object, fragmentation markups within the textual contents of the fragment are recognized a

createObject operation is recursively performed for each child fragment. Afterwards, the co

sponding aggregation relationships are created. Similarly, structural information of a (DTD) frag

i.e., markup declarations resp. markup elements and attributes, are extracted and the corres

objects and relationships are created.

• updateObject (newTextualContents: String): Boolean

An update operation requires the new textual contents supposed to replace the existing textual con

a repository object. Update operations are usually performed by calling deletion and creation ope

on subordinated data structures.

• deleteObject (): Boolean

This operation deletes a repository object. An object can only be deleted if it does not share (aggre

subordinated objects with other objects of the same type. Similar to the operations mentioned prev

a delete operation may cause cascaded deletions.

Manipulation Operations on Relationships

The operations of this category are used explicitly to establish and delete relationships between rep

objects.

• createRelationship (partnerObject: Object [, relType: RelationshipType,

posExpr: PosExpr]): Boolean

A relationship to another repository object (e.g., from a document to a DTD, from a parent to a child

ment, from a fragment to an element, etc.) is established using this operation. The optional par

posExpr specifies the relationship position and is needed only in case of an ordered relationship
9



n by a

ment,

n a par-

p type

trast,

eclara-

nding

tional

bject,

-

textual

vel.

y

m-

ip type

to cer-

ments

ted

the text
For example, a position of a composition relationship between a parent and a child element is give

non-negative integer number specifying the order position of the child element in its parent ele

whereas an XPointer expression is used to specify a position of an aggregation relationship betwee

ent and a child fragment. If both participating repository objects are elements, then the relationshi

relType to be taken into account can additionally be restricted (composition or reference). In con

when creating a relationship between two elements, an element and an attribute, or two markup d

tions, changes in the corresponding fragment are performed accordingly.

• deleteRelationship (partnerObject: Object): Boolean

This operation just deletes a relationship existing to the partner repository object. The correspo

objects remain in the repository.

Retrieval Operations

Retrieval operations allow us to get the textual contents of a repository object and provide a naviga

access mechanism for repository objects based on their relationships to other repository objects.

• getObjectContents ([level: Integer]): String

By this operation, the textual contents of a repository object are retrieved. If applied to a repository o

which is not an attribute objects, a non-negative integer numberlevel is required representing the num

ber of the hierarchy levels (of the same object type) to be examined. This operation delivers the

contents which result from integrating the textual contents of all child objects up to the specified le

• getObjects (targetObjectType: ObjectType [, relType: RelationshipType,

targetObjectRole: ObjectRole, level: Integer]): ObjectList

This operation delivers a list of objects of typetargetObjectType that are connected to a repositor

object. A non-negative integer numberlevel representing the number of hierarchy levels to be exa

ined and the role of the target repository objecttargetObjectRole (i.e., child or parent) can optionally

be specified if origin and target object types are the same. If both are elements, then the relationsh

to be taken into account can additionally be restricted (composition or reference).

Specific Operations

Unlike the operations of the previous three categories, specific operations are exclusively applicable

tain repository object types. In the following, the specific operations on fragments are explained:

• splitFragment (targetRangeExpr: XPtrExpr): Fragment

A (textual) excerpt (specified by the XPointer expressiontargetRangeExpr) of a fragment object is

extracted to become a new child fragment.

• mergeFragment (role: FragmentRole, allowReplication: Boolean): Fragment

This is the reverse operation to the previous one. Depending on therole (i.e.,child or parent ) of a

fragment object, its textual contents are merged with its parent resp. child fragment(s). If shared frag

are involved it depends on the flagallowReplication , whether these shared fragments are replica

or the merge is denied.

• matchFragment (targetExpr: XPtrExpr): Boolean

This operations checks whether the textual contents of a fragment object contain parts that match

specified bytargetExpr .
10



brief-

ject-

the

for

) to the

d) data

ous for-

pro-

ill be
5 Implementation
In this section, we give an overview of iWebDB, our integrated Web database framework [LR99], and

ly describe how it can be used to implement XCoP. We want to start with a short introduction to ob

relational database (ORDB) technology, our implementations are based on.

5.1 Useful ORDB Technology

Current activities in developing ORDBMSs [SBM98] aim at integrating object-oriented concepts into

relational model. Theextensibilityproperty of ORDBMS can be considered to be extremely beneficial

efficiently implementing repository functionality, since it allows for:

• adding UDTs consisting of specially designed data structures and corresponding operations (UDRs

database schema;

• capturing arbitrary formats within UDTs by exploiting large objects (LOBs) types;

• linking externally stored data with database entries and controlling access to these (externally store

by database mechanisms;

• exploiting pre-defined extensions for accessing the database via the web, for managing data of vari

mats (text, HTML, video, audio, image, etc.);

• dynamically transforming externally stored data into relations, which may be incorporated into SQL

cessing.

The availability of these features was the reason, why we decided for ORDBMS. In the following, it w

outlined how we used these features.

5.2 iWebDB

iWebDB is implemented

based on an ORDBMS and

exploits OR extensibility fea-

tures such as UDT, UDR and

external data access. As de-

picted in Figure 7, iWebDB

currently consists of eight

modules, five of them being

DBS extensions, so-called

DataBlades (Informix), Ex-

tenders (IBM), or Catridges

(Oracle): Doc, ED (External

Data), eXtract, DG (Docu-

ment Generator), and XCoM

(XML Content Manager). In

addition, two client applica-

tions, SM (Site Manager) and

XCoEx (XML Content Ex-

plorer), exist. The module

DB Server

SM

Production
Data

....

MP
CGI Program or

Web Server Extension
JD

B
C

Web Server

(W
eb

 S
er

ve
r)

 F
ile

 S
ys

te
m

re
ad

/w
rit

e

Figure 7: Architecture of iWebDB

Web Documents,Templates,
and other Resources

Java application/Applet

XCoEx

JD
B

C

Doc

DG

Extension Bus

ED

eXtract

MP

Repository
Objects

Web
Documents

XCoM
11



pplica-

ocu-

tored

ying,

ored

ata,

/Doc.

he sys-

s docu-

ment

tes pro-

addi-

data

ders.

b doc-

ion can

Web-

uments.

Java

lient-

G (see

nd vari-

DB/MP

pages

ased on

ically
MP (Macro Processor) is a function library that can be used for client-side as well as for server-side a

tions. XCoM and XCoEx are specific components of XCoP.

• iWebDB/Doc
All base types and tables for WCM, e. g., types for storing XML, HTML, Postscript, and other text d

ments as well as images of different formats are provided by iWebDB/Doc. Each document is s

entirely. In addition to document storage, iWebDB/Doc provides functionality for managing, quer

and analyzing the (HTML) content, e. g., functions to extract the title, headers, hyperlinks, etc.

• iWebDB/ED
This module helps to simplify Web site administration by allowing the integration of externally st

files into iWebDB. It is based on the abstract table facility of SQL/MED (Management of External D

[JTC99]). File system data accessible via Web protocols, such as “file: ”, “ ftp: ”, and “http: ”, can

be made available in relational tables, the file contents in document formats provided by iWebDB

Available data can be queried using SQL. Thus, external data can seamlessly be integrated into t

tem. Users and other iWebDB components can access documents stored in a file system as well a

ments managed by the DBS in the same way by using SQL. iWebDB/ED is used by the docu

generator module to write generated documents to the file system and, in case of document templa

vided in the file system, to read them.

• iWebDB/eXtract
In order to enhance the search capabilities provided by iWebDB/Doc, iWebDB/eXtract provides

tional functions for analyzing documents. Furthermore, functionality is provided for storing extracted

in a special index structure being exploited by a search engine.

• iWebDB/SM
This module is the iWebDB tool for site management needed by all so-called information provi

Based on a graphical user interface (GUI), all tasks concerning installation and maintenance of We

uments and directories, user and group administration as well as en-/disabling document generat

easily be performed.

• iWebDB/MP
This module is a function library designed to be the foundation for building gateway programs for

based DB access. It offers an extensible macro processor for embedding special tags into Web doc

Among other things, it provides functionality for the execution of SQL statements, invocation of

functions, and the composition of documents. The library can be used to realize a fully functional c

or server-side Web database gateway (see Figure 7). In addition, it serves as a basis for iWebDB/D

below). The macro processor offers an API to access the context manager, so that namespaces a

ables can be created as well as values be read or set. Using this API, applications based on iWeb

can create their own namespace, define variables, and set values.

• iWebDB/DG
This module provides a document generator based on iWebDB/MP. Using SQL triggers, static Web

stored in the Web server file system are automatically refreshed whenever DB data the pages are b

has been modified. Thus, except for Web applications, Web information systems can avoid dynam

generated documents to offer up-to-date information.
12



two

text

itory

eges is

tivity).

tion of

CoM.

tions

namic

bili-

chema

).

aggre-

pecified

able

ad-

n col-

pe se-

nd (see

d indi-

ws of a

ting a

lements.

nism

sepa-

licate

the

ting
5.3 XCoP

After the overview of the iWebDB architecture and most of its components, we want now outline the

XCoP-specific components, XCoEx and XCoM.

• XCoEx
This module provides a GUI for manipulating and retrieving repository objects, resp. fragments. A

editor for editing textual contents is included. In addition, administration tasks related to repos

objects and their mapping to the (web server) file system as well as user and group access privil

also supported. XCoEx is implemented as a Java application using JDBC (Java Database Connec

• XCoM
This module is responsible for the server-side management of repository objects. The implementa

the conceptual models and the corresponding operations on the top of an ORDBMS is realized in X

XCoM will be detailed in the following subsections by showing how the conceptual models and opera

on repository objects can easily be mapped into an OR data model based on IDS/UDO (Informix Dy

Server with Universal Data Option, [Inf97]). Current limitations of IDS/UDO related to modeling capa

ties are also mentioned.

Mapping XCoP’s Conceptual Model to OR Data Model

The repository object types (as described in Section 4) are captured within an object-relational DB s

as follows (see Figure 8 for examples). Each object type is mapped to a so-callednamed row type, and each

subtype relationship to a correspondingsub-classrelationship type (see keyword UNDER in Figure 8(a)

Each subtype inherits the attributes (i.e., data fields) as well as operational properties (i.e., routines,

gates, and operators) of its supertype. Based on the defined type hierarchy, a table hierarchy can be s

(also illustrated in Figure 8(a)). The primary key constraint defined in the supert

repository_object  is inherited by all subtables.

With IDS/UDO, routine overloadingcan be accomplished as shown in Figure 8(b). Routine overlo

ing allows users to assign a single name (e.g.,create_object ) to multiple routines having different sig-

natures.

IDS/UDO does not support reference types and provides only limited set operation capability o

lection types. Because both techniques can be very useful for the implementation of relationship ty

mantics (e.g., aggregation), we have to employ referential integrity constraints instead as a workarou

Figure 8(c)).

Considering that a fragment represents the smallest unit of information specified by users an

cates data locality, it is advantageous to also store it as a unit. Fragments are therefore stored as ro

single tablefragment . Obviously, this storage approach achieves better performance when construc

document from its fragments as compared to other approaches that compose a document from its e

Moreover, concurrent work on fragments can be directly controlled by using the row locking mecha

offered by most (O)RDBMS vendors. Aggregation relationships between fragments are mapped to a

rate table (fragment_graph ). Theorder_pos column in thefragment_graph table reflects the or-

der position of a child fragment within its parent fragment.

Storing structural information, especially elements and attributes, within relational tables is a de

matter as reported in [FK99, STH+99, DFS99]. Based on the mapping schemes given in [FK99], we use

attribute approachfor storing structural information. Moreover, [FK99] describes techniques for transla
13



g their

a frag-

l acti-

n of

l macro

es not

d

f link
queries posed in an XML query language (e.g., XML-QL [DFF+98]) into SQL queries for the alternative

mapping schemes. Indeed, search quality on document contents is improved significantly by exploitin

structural information which is extracted and stored in tables. Furthermore, dependencies between

ment and its structural information are automatically controlled by triggers. Changes in a fragment wil

vate a trigger which accordingly maintains the corresponding structural information, and vice versa.

Other extensions of iWebDB, particularly MP, DG, and ED, allow dynamic content generatio

documents (and fragments) integrating existing legacy databases or external files by using specia

tags and templates. In our first prototype, we store the textual contents as LOBs, since IDS/UDO do

offer mechanisms comparable to theIBM DataLinks[Dav99] allowing to handle links to externally store

files. Finally, we again utilize referential integrity constraints and triggers for automatic enforcement o

and reference consistency.

CREATE ROW TYPE repository_object_t (
oid VARCHAR(8) NOT NULL, owner VARCHAR(20), cdate DATE);

CREATE ROW TYPE resource_t (
uri VARCHAR(255), contents BLOB) UNDER repository_object_t;

CREATE ROW TYPE textual_resource_t (
description VARCHAR(255)) UNDER resource_t;

CREATE ROW TYPE document_t (
content_status VARCHAR(8), dtd_oid VARCHAR(8), root_fragment_oid VARCHAR(8)
) UNDER textual_resource_t;

CREATE ROW TYPE dtd_t (
name VARCHAR(60), root_fragment_oid VARCHAR(8)) UNDER textual_resource_t;

CREATE ROW TYPE fragment_t (
is_root BOOLEAN) UNDER textual_resource_t;

CREATE ROW TYPE dtd_fragment_t (
) UNDER fragment_t;

CREATE TABLE repository_object OF TYPE repository_object_t (PRIMARY KEY (oid));
CREATE TABLE resource OF TYPE resource_t UNDER repository_object;
CREATE TABLE textual_resource OF TYPE textual_resource_t UNDER resource;
CREATE TABLE document OF TYPE document_t UNDER textual_resource;
CREATE TABLE dtd OF TYPE dtd_t UNDER textual_resource;
CREATE TABLE fragment OF TYPE fragment_t UNDER textual_resource;
CREATE TABLE dtd_fragment OF TYPE dtd_fragment_t UNDER fragment;

Figure 8: A sample OR schema

(a) Definition of type hierarchy and typed table hierarchy

CREATE FUNCTION create_object (document) RETURNING VARCHAR(8);
CREATE FUNCTION create_object (dtd) RETURNING VARCHAR(8);
CREATE FUNCTION create_object (fragment) RETURNING VARCHAR(8);
CREATE FUNCTION create_object (dtd_fragment) RETURNING VARCHAR(8);

(b) Routine overloading

ALTER TABLE document ADD CONSTRAINT (
FOREIGN KEY (dtd_oid) REFERENCES dtd (oid),
FOREIGN KEY (root_fragment_oid) REFERENCES fragment (oid));

ALTER TABLE dtd ADD CONSTRAINT (
FOREIGN KEY (root_fragment_oid) REFERENCES dtd_fragment (oid));

CREATE TABLE fragment_graph (
parent_oid VARCHAR(8), child_oid (8), order_pos SMALLINT,
PRIMARY KEY (parent_oid, child_oid),
FOREIGN KEY (parent_oid) REFERENCES fragment (oid),
FOREIGN KEY (child_oid) REFERENCES fragment (oid));

(c) Implementation of relationships between repository objects
14



f XML

RDBMS

oach is

rning

op-

as in-

ard

is tech-

rM,

licit

ntent

, Lore

man-

rained

ange

hav-

among

ch

ration

resid-

Base

files as

POET

ed

ed in

rity,

ations,

se ade-

of XML

he best

exist-
6 Related Work
With XCoP we contribute an integrated solution approach to content management requirements o

documents as presented in section 4. Unlike other tools and approaches that are either based on an

or an object-oriented database management system (OODBMS), the implementation of our appr

based on an ORDBMS. By exploiting the extension capabilities of an ORDBMS many tasks conce

content management can be delegated to the DBMS in an integrative way.

While XCoP supports content reuse extensively, iWebDB/Doc [LR99] only offers basic storage

tions at the document level. An implicit fragmentation technique for structured document contents w

troduced in HyperStorM [BAN+97], a DB application framework designed for managing SGML (Stand

Generalized Markup Language) documents and built on the top of an OODBMS. We have adapted th

nique in order to apply it to XML documents in XCoP. Beyond the possibilities provided in HyperSto

we allow users to modify implicit fragmentation specifications at run-time and additionally offer the exp

fragmentation method. HyperStorM does not exploit structural information of fragments and lacks co

management functionality, e.g., content reuse, external data sources integration, etc. Recently

[GMW99], a DBMS specifically designed to handle semistructured data, has been modified in order to

age XML data. Lore focuses on processing fine-grained structural information rather than coarse-g

textual content. It also lacks sophisticated content management functionality.

Fragmentation of XML documents has been proposed to W3C in XML Fragment Interch

[GV99]. This proposal only specifies a mechanism for processing parts of an XML document without

ing to take the entire document into account. Issues concerning fragment reuse and collaboration

concurrently working users are beyond its scope.

There are a number of commercial products for DM resp. DCM, e.g.,DynaBase[Dyn99] of Inso Cor-

poration, Documentum 4i[Doc99] of Documentum, BladeRunner[Bla99] of the e-content company, and

POET CMS[Poe99] ofPOET Software. All products use a full-text search engine but offer limited sear

capabilities w.r.t. structural information. Furthermore these systems support versioning and configu

management, collaborative works, and workflow functionality. Integration with external data sources

ing in file systems are not supported by all products. Most of them rely on OODBMS except for Dyna

and Documentum that use RDBMS. DynaBase and Documentum 4i are DM products and thus use

the smallest content unit, while others enable content reuse in variable size. Finally, BladeRunner and

CMS do not support dynamic content generation.

Recent research approaches [FK99, STH+99, DFS99] propose techniques for storing fine-grain

XML data in an RDBMS in order to leverage relational technology. We apply two techniques describ

[FK99] for storing both fine-grained structural information and textual contents in variable granula

while commercial products such aseXcelon[Exc99] of eXcelon Corp.andTamino[Tam99] ofSoftware AG

exclusively support processing of fine-grained XML. This, indeed, may lead to unnecessary fragment

complicates the content management of XML documents and, therefore, does not support content reu

quately.

7 Conclusion and Outlook to Future Work
In this paper, we have presented XCoP, a repository approach designed for content management

documents. XCoP integrates many content management services by utilizing ORDB technology. To t

of our knowledge XCop is the first approach exploiting ORDB technology for these purposes. Unlike
15



nforma-

obvi-

ntation

ine the

it and

plic-

al con-

ve been

rrent

een ex-

nd trig-

n types,

con-

l for

ims at

w con-

lpful

e-

t

ing products and approaches, processing both textual contents as well as corresponding structural i

tion of XML documents are supported. XCoP facilitates content reuse through fragmentation which

ously avoids content redundancy and enables collaborative work on documents. With our fragme

methods users can logically decompose an XML document into fragments and dynamically determ

granularity of the units they want to share. Two fragmentation methods have been introduced: implic

explicit fragmentation. An implicit fragmentation is applied to markup declarations of a DTD and an ex

it fragmentation to document contents. Furthermore, conceptual models for the management of textu

tents and structural information have been presented and corresponding manipulation operations ha

introduced. Finally, implementation techniques of XCoP based on the ORDBMS IDS/UDO with its cu

limitations have been discussed. The mapping of the conceptual models to an ORDB schema has b

emplary presented and ORDBMS features used, e.g., UDT, UDR, constraints, locking mechanism, a

ger, as well as those that are desirable, i.e., reference types and set operation support on collectio

have been discussed.

Currently, we are embedding structural information contained in RDF and working on version

trol, configuration management, and collaboration support. In contrast to WebDAV [CK00], a protoco

distributed authoring and versioning applying at the resource level (i.e., documents), our approach a

controlling the management of document fragments. Furthermore, context management and workflo

trol functionality are planned to be accommodated in XCoP.

Acknowledgments

The authors thank T. Härder, M. Flehmig, U. Marder, and H.-P. Steiert for fruitful discussions and he

comments on earlier versions of this paper.

References

[BAN+97] Böhm, K., Aberer, K., Neuhold, E. J., Yang, X.:Structured Document Storage and Refined D
clarative and navigational Access Mechanisms in HyperStorM, The VLDB Journal, Vol. 6, pp.
296-311, 1997.

[BD94] Bernstein, P. A., Dayal, U.:An Overview of Repository Technology, Proc. of 20th VLDB, pp.
705-713, Santiago, Chile, September 1994.

[Bla99] BladeRunner 1.5,the e-content company, 1999.http://www.xmlecontent.com/ .

[BLF+98] Berners-Lee, T., Fielding, R., Irvine, U. C., Masinter, L.:Uniform Resources Identifiers (URI) -
Generic Syntax, Network Working Group RFC 2396, IETF, August 1998.
http://www.ietf.org/rfc/rfc2396.txt .

[BPS98] Bray, T., Paoli, J., Sperberg-McQueen, C. M.:Extensible Markup Language (XML) 1.0, W3C
Recommendation, February 1998.http://www.w3.org/TR/REC-xml-19980210 .

[CK00] Clark, J., Kaler, C.:Versioning Extensions to WebDAV, Internet Draft, IETF Delta-V Working
Group, February 2000.http://www.webdav.org/deltav/protocol/ .

[Dav99] Davis J. R., :DataLinks - Managing External Data with DB2 Universal Database, IBM Corpo-
ration, February 1999.http://www-4.ibm.com/software/data/pubs/papers/. .

[DAB+99] Deach, S., Adler, S., Berglund, A., Caruso, J., Milowski, A., Zilles, S.:Extensible Styleshee
Language (XSL) Specification, W3C Working Draft, April 1999.
http://www.w3.org/TR/WD-xsl.

[DDM99] DeRose, S., Daniel Jr., R., Maler, E.:XML Pointer Language (XPointer), W3C Working Draft,
December 1999.http://www.w3.org/TR/WD-xptr .
16



for

ia,

ge-

ela-
.

ifi-

at
[DFF+98] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D.:XML-QL: A Query Language
for XML, W3C Note, August 1998.
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[DFS99] Deutsch, A., Fernandez, M., Suciu, D.:Storing Semistructured Data with STORED, SIG-
MOD’99, pp. 431-442, Philadelphia, 1999.

[Doc99] Documentum 4i,Documentum, 1999.http://www.documentum.com/ .

[DOT99] DeRose, S., Orchard, D., Trafford, B.:XML Linking Language (XLink), W3C Working Draft,
December 1999.http://www.w3.org/TR/xlink .

[Dyn99] DynaBase,eBusiness Technologies, Inso Corporation, 1999.http://www.ebt.com/ .

[Exc99] eXcelon,eXcelon Corporation, 1999.http://www.odi.com/ .

[FK99] Florescu, D., Kossmann, D.:A Performance Evaluation of Alternative Mapping Schemes
Storing XML Data in a Relational Database, Technical Report, INRIA, France, 1999.

[GMW99] Goldman, R., McHugh, J., Widom, J.:From Semistructured Data to XML: Migrating the Lore
Data Model and Query Language, Proc. of WebDB'99, pp. 25-30, Philadelphia, Pennsylvan
June 1999.

[GV99] Grosso, P., Veillard, D.:XML Fragment Interchange, W3C Working Draft, June 1999.
http://www.w3.org/TR/WD-xml-fragment .

[Inf97] Informix Dynamic Server with Universal Data Option 9.1.X, Informix Software, Inc., 1997.
http://www.informix.com/ .

[JTC99] ISO/IEC JTC1/SC32:Information Technology - Database Language SQL - Part 9: Mana
ment of External Data, ISO, 1999.

[LR99] Loeser, H., Ritter, N.:iWebDB - Integrated Web Content Management based on Object-R
tional Database Technology, Proc. of IDEAS'99, Montreal, Canada, pp. 92-97, August 1999

[LS99] Lassila, O., Swick, R. R.:Resource Description Framework (RDF) Model and Syntax Spec
cation, W3C Recommendation, February 1999.
http://www.w3.org/TR/REC-rdf-syntax .

[Poe99] POET Content Management Suite 2.0,POET Software, 1999.http://www.poet.com/ .

[STH+99] Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., De Witt, D., Naughton, J.:Relational Da-
tabases for Querying XML Documents: Limitations and Opportunities, Proc. of 25th VLDB,
pp. 302-314, Edinburg, Scotland, 1999.

[SBM98] Stonebraker, M., Brown, P., Moore, D.:Object-Relational DBMSs - Tracking the Next Gre
Wave, 2nd edition, Morgan Kaufmann Publishers, 1998.

[Tam99] Tamino, Software AG , 1999.http://www.softwareag.com/ .
17


	XML Content Management based on Object-Relational Database Technology
	B. Surjanto, N. Ritter, H. Loeser
	Computer Science Department, University of Kaiserslautern,
	P.O. Box 3049, 67653 Kaiserslautern, Germany
	{surjanto, ritter, loeser}@informatik.uni-kl.de
	http://www.uni-kl.de/AG-Haerder
	Abstract
	1 Introduction
	2 XML
	Structuring XML Documents
	Figure 1: � An example of a valid XML document with references

	Linking Mechanism
	Addressing Parts of XML Documents

	3 Requirements for the Content Management of XML Documents
	4 XML Content Management in XCoP
	4.1 Managing Textual Contents
	Definition of Fragment
	Figure 2: � An example of fragment reuse and its fragment graph

	Determining Fragment Granularity
	Figure 3: � An example of fragmentations

	Conceptual Model for Managing Textual Contents
	Figure 4: � Conceptual model for managing textual contents


	4.2 Exploiting Structural Information
	Conceptual Model for Managing Structural Information
	Figure 5: � Modeling structural information within fragments
	Figure 6: � Modeling structural information within DTD fragments


	4.3 Processing Repository Objects
	Manipulation Operations on Repository Objects
	Manipulation Operations on Relationships
	Retrieval Operations
	Specific Operations


	5 Implementation
	5.1 Useful ORDB Technology
	5.2 iWebDB
	Figure 7: � Architecture of iWebDB

	5.3 XCoP
	Mapping XCoP’s Conceptual Model to OR Data Model
	Figure 8: � A sample OR schema



	6 Related Work
	7 Conclusion and Outlook to Future Work
	Acknowledgments
	References
	[BAN+97] Böhm, K., Aberer, K., Neuhold, E. J., Yang, X.: Structured Document Storage and Refined ...
	[BD94] Bernstein, P. A., Dayal, U.: An Overview of Repository Technology, Proc. of 20th VLDB, pp....
	[Bla99] BladeRunner 1.5, the e-content company, 1999. http://www.xmlecontent.com/.
	[BLF+98] Berners-Lee, T., Fielding, R., Irvine, U. C., Masinter, L.: Uniform Resources Identifier...
	[BPS98] Bray, T., Paoli, J., Sperberg-McQueen, C. M.: Extensible Markup Language (XML) 1.0, W3C R...
	[CK00] Clark, J., Kaler, C.: Versioning Extensions to WebDAV, Internet Draft, IETF Delta-V Workin...
	[Dav99] Davis J. R., : DataLinks - Managing External Data with DB2 Universal Database, IBM Corpor...
	[DAB+99] Deach, S., Adler, S., Berglund, A., Caruso, J., Milowski, A., Zilles, S.: Extensible Sty...
	[DDM99] DeRose, S., Daniel Jr., R., Maler, E.: XML Pointer Language (XPointer), W3C Working Draft...
	[DFF+98] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D.: XML-QL: A Query Language ...
	[DFS99] Deutsch, A., Fernandez, M., Suciu, D.: Storing Semistructured Data with STORED, SIGMOD’99...
	[Doc99] Documentum 4i, Documentum, 1999. http://www.documentum.com/.
	[DOT99] DeRose, S., Orchard, D., Trafford, B.: XML Linking Language (XLink), W3C Working Draft, D...
	[Dyn99] DynaBase, eBusiness Technologies, Inso Corporation, 1999. http://www.ebt.com/.
	[Exc99] eXcelon, eXcelon Corporation, 1999. http://www.odi.com/.
	[FK99] Florescu, D., Kossmann, D.: A Performance Evaluation of Alternative Mapping Schemes for St...
	[GMW99] Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the Lore D...
	[GV99] Grosso, P., Veillard, D.: XML Fragment Interchange, W3C Working Draft, June 1999. http://w...
	[Inf97] Informix Dynamic Server with Universal Data Option 9.1.X, Informix Software, Inc., 1997. ...
	[JTC99] ISO/IEC JTC1/SC32: Information Technology - Database Language SQL - Part 9: Management of...
	[LR99] Loeser, H., Ritter, N.: iWebDB - Integrated Web Content Management based on Object-Relatio...
	[LS99] Lassila, O., Swick, R. R.: Resource Description Framework (RDF) Model and Syntax Specifica...
	[Poe99] POET Content Management Suite 2.0, POET Software, 1999. http://www.poet.com/.
	[STH+99] Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., De Witt, D., Naughton, J.: Relationa...
	[SBM98] Stonebraker, M., Brown, P., Moore, D.: Object-Relational DBMSs - Tracking the Next Great ...
	[Tam99] Tamino, Software AG , 1999. http://www.softwareag.com/.





