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Abstract:
The use of non-volatile semiconductor memory within an e
tended storage hierarchy promises significant performance i
provements for transaction processing. Although page-addr
sable semiconductor memories like extended memory, sol
state disks and disk caches are commercially available sin
several years, no detailed investigation of their use for transa
tion processing has been performed so far. We present a co
prehensive simulation study that compares the performance
these storage types and of different usage forms. The followi
usage forms are considered: allocation of entire log and da
base files in non-volatile semiconductor memory, using a s
called write buffer to perform disk writes asynchronously, an
caching of database pages at intermediate storage levels (in
dition to main memory caching). Our simulations are conduc
ed with both synthetically generated workloads and trac
from real-life database applications. In particular, simulatio
results will be presented for the debit-credit workload fre
quently used in transaction processing benchmarks.

1. Introduction
Disk I/O is a significant performance factor for transaction proces
ing. Typically, a large portion of a transaction’s response time is d
termined by synchronous disk I/O, e.g., for reading in a databa
page or writing log data. Furthermore, the overhead for disk I/O
(process switches, etc.) reduces the effective CPU utilization a
thus throughput. What is more,long I/O delays may prevent full
utilization of the available CPU capacity.This danger increas-
ingly becomes a reality since CPU speed is improving at a high r
while only modest improvements in disk latency could be achiev
so far [PGK88]. A consequence of this growing speed mismatch
that faster CPUs require much higher multiprogramming levels
overlap I/O deactivations. High multiprogramming levels, howe
er, cause increased data contention and potentially lock thrash
that may prevent full CPU utilization [FRT90, BHR91].
There are numerous approaches to improve I/O performan
Database management systems (DBMS) typically offer a va
ety of access methods like index structures, hashing schem
or clustering to optimize the physical database structure a
cording to the application’s access characteristics. DBMS al
cache database pages in main memory to limit the number
disk accesses. Increasing the size of the main memory datab
buffer together with the CPU speed is a simple means to im
prove I/O performance since hit ratios may be increased (few
disk reads). On the other hand, the number of disk writes (lo
ging, database writes) is not improved by a larger main mem
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ory buffer. In addition, it is unlikely that the I/O delay per
transaction can be reduced by an increased main memory b
er as much as the CPU speed improves. This is also because
database size on disk grows constantly and the database bu
must cache pages for more concurrent transactions.
Main memory databases(e.g., [GLV84, De84, Le86, Ei89])
promise a complete solution to the I/O problem by storing th
entire database in main memory. One problem of main memo
databases is cost. While the cost per megabyte declines fa
for main memory than for disks, disks still have a significan
cost advantage particularly for mainframe architectures. Apa
from technical problems, keeping large databases of hundre
of gigabytes memory-resident is simply not cost-effective fo
the foreseeable future [GP87, CKS91]. Mixed solutions whe
only some databases are kept memory-resident while others
side on disk incur a high DBMS complexity to support both ac
cess modes (e.g., different types of access paths, different q
ry optimization strategies, etc.).
Another approach to improve I/O performance is the use
disk arrays[PGK88, GHW90]. The main idea is to replace a
single large disk drive by an array of many smaller drives
improve I/O bandwidth and I/O rates. On the other hand, a
cess to a single page (which is the dominating access type
transaction processing) is not improved, but likely to be slow
er. In proposals like RAID (redundant arrays of inexpensiv
disks) [PGK88] up to four disk accesses are needed to upd
a single page because parity information stored on separ
disks must be accessed and updated (for fault tolerance r
sons). Higher I/O latency, however, increases transaction
sponse time and therefore data contention (longer lock holdi
times).
In this paper, we consider the use of extended storage hier
chies with intermediate storage levels between main memo
and disk to improve I/O performance for transaction proces
ing. Non-volatile semiconductor memories are particularly a
tractive as they provide not only fast access times but can a
reduce the number of disk writes. In [CKKS89], the use of a s
called “safe RAM” has been proposed to improve transactio
processing performance. Safe RAM is supposed to be a DRA
memory with enough backup power to copy the memory co
tents to a disk after a power failure. All write I/Os (databas
and log writes) should be directed to this store so that databa
reads remain the only I/O delays for transactions. The autho
argue that a comparatively small store is sufficient to signif
cantly improve performance compared to a disk-based arc
tecture. They also provide cost estimates to demonstrate
cost-effectiveness of such an approach.
There have been some performance studies on the use of d
caches, but these studies were not specifically concerned w
transaction processing applications. In [Sm85], for instanc
the use of disk caches was investigated for three I/O trac
from large IBM installations for which the disk caches wer
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found to be very effective. This study used the cache miss ra-
tios as the primary performance metric and did not consider
caching at multiple levels of the storage hierarchy.
We present a detailed performance study that analyses the use-
fulness of three different types of intermediate storage for
transaction processing: disk caches, solid-state disks and ex-
tended memory. We are not aware of any other performance
analysis that compares these storage types side by side. We
consider caching of database pages in main memory, in extend-
ed memory and in volatile or non-volatile disk caches. Fur-
themore, our simulation sytem supports the use of a write buff-
er in extended memory or in disk caches; portitions of the da-
tabase may be kept resident in main memory or can be
allocated to extended memory, solid-state disks or regular
disks. In the area of database performance evaluation, we fol-
low a unique simulation approach by supporting both a flexible
synthetic workload generation as well as the use of database
traces. Furthermore, our study is not limited to internal perfor-
mance metrics like miss ratios but directly determines through-
put and response time results.
Some of the questions we try to answer with our simulation
study are:
• What is the relative performance improvement for each type

of intermediate storage compared to disk-based configurati-
ons ?

• Can less expensive storage types (e.g., disk caches) achieve
comparable performance than expensive ones (e.g., exten-
ded memory) ?

• Does it make sense to use two or even three of the interme-
diate storage types together ?

• How does caching of database pages at more than one stora-
ge level affect performance ?

• Is a FORCE update strategy [HR83] where all modified pa-
ges are written from main memory to the permanent databa-
se at commit time affordable in the presence of non-volatile
semiconductor memory1 ?

The rest of this paper is structured as follows. The next section
discusses the use of extended storage hierarchies in more de-
tail. In section 3, we describe our simulation model. Section 4
presents the experiments conducted and analyses the simula-
tion results. Finally, we summarize our main findings in sec-
tion 5.

2. Extended Storage Architectures
In this section, we focus on the use of an extended storage hi-
erarchy to improve I/O performance for transaction process-
ing. For this purpose, we consider three types of page-addres-
sable semiconductor memories: disk caches, solid-state disks
(SSD) and extended main memory (Fig. 2.1). They are based
on semiconductor memory thus permitting substantially better
access times and I/O rates than disks. In contrast to main mem-
ory, these memories cannot directly be addressed by machine
instructions but are page-addressable similar to disks. This
means that in order to read data from such an intermediate
memory, the corresponding page must be read into main mem-
ory. Similarly, data cannot directly be modified in the interme-
diate memory but pages are altered in main memory and writ-
ten back at a later point in time. This page-oriented access in-
terface offers better failure isolation than main memory against

processor failures and software errors. In addition, the simp
access interface permits a lower cost per megabyte than
main memory. SSDs are always non-volatile (as the name i
plies) while disk caches and extended memories are curren
mostly volatile. However, non-volatility can be achieved fo
all three memory types by using a battery backup or uninte
ruptable power supply.
Approximate values for cost per megabyte and access laten
(as of 1991) are given in Table 2.1. The storage costs refer
mainframe systems and are therefore much higher than for P
or workstations. Solid-state disks improve the access time p
page by about a factor 10 compared to disks, however at a
to 50-fold cost per MB. Extended memory is about twice as e
pensive than solid-state disks [Ku87], but about 50- to 10
times faster. Typically, main memory is twice as expensive
extended memory (per MB).
Disk caches[Sm85, Gro85, Gro89] are completely managed b
the disk controllers and their existence is thus transparent
the accessing systems. That is, data in the disk cache is acc
ed via the conventional channel-oriented disk interface wi
access times largely determined by the speed of the chan
and disk controller. While volatile disk caches can only im
prove read performance, non-volatile caches also speed up d
writes. Solid-state disksare functionally equivalent to disks
but keep the entire data (all files) in non-volatile semicondu
tor memory [Ku87]. The channel-oriented interface results
about the same access time than for disk caches. However, d
caches keep only the ’active’ data in semiconductor memory
that for some fraction of accesses the slow disk accesses
main. Thus, the average access time for a SSD is better than
disks with a disk cache. On the other hand, a comparative
small disk cache may already be sufficient to save many di
accesses thereby reducing cost compared to solid-state dis
Extended memoryis used in IBM 3090 mainframe computers
as a volatile main memory extension [CKB89]. In contrast t
disk caches and SSDs, this so-called expanded storage (ES)
no channel-oriented interface but is largely managed by so
ware in the operating system (MVS, VM). Special machine in

1. FORCE permits simpler logging and recovery procedures compared
to the NOFORCE alternative requiring special checkpointing tech-
niques and redo recovery after a system crash [HR83]. In disk-based
DBMS, FORCE is generally not acceptable for high-volume applica-
tions since it can incur a significant increase in response time, data
contention and I/O overhead. Meanwhile, most DBMS adopt the NO-
FORCE approach, but FORCE is still used in several existing DBMS
including IMS (Full Function).

main

    extended  memory

solid   state  disk

disk  cache

magnetic disk

magnetic tape optical disk
    (e.g., WORM)

page-
addressable

semiconductor
stores

 cost   access

 (DASD)  disk  arrays

 memory
  time

 (SSD)

Fig. 2.1:  Extended storage hierarchy

Table 2.1:  Storage costs and access times

             price per MB            avg. access time
per page (4 KB)

   extended memory      500 - 1500 $             10 - 100 microsec
       SSD
   disk cache

       disk

(for large systems)

200 - 800 $                   1 - 3 ms
 ?                              1 - 3 ms
3 - 20  $                10 - 20 ms
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structions are provided to move pages between main memory
and ES. Currently, access times are two to three orders of mag-
nitudes faster than for SSDs and disk caches (about 75 mi-
crosec per 4 KB page including OS overhead). Since a process
switch (typically costing several thousand instructions) would
be more expensive than this delay, accesses to ES aresynchro-
nous, i.e. the CPU is not released during the page transfer.
While conceptually the ES sits between main memory and the
disk subsystem in the storage hierarchy, pages cannot directly
migrate from ES to disk. Rather all data transfers between ES
and disk must go through main memory since page transfers
are controlled by the accessing system rather than by a separate
ES controller.
Originally, the ES has only been used as a fast paging and
swapping device controlled by the operating system (LRU re-
placement of pages in ES). Meanwhile more flexible OS ser-
vices have been provided to permit programs (in particular, the
DBMS) to maintain data in ES [Ru89]. Fujitsu offers an ES-
like store called SSU (System Storage Unit) which is non-vol-
atile, has a capacity of up to 2 GB and supports a transfer rate
of 300 MB/s between main memory and SSU. In [BHR91,
Ra91], a special type of non-volatile extended memory has
been considered for use in centralized and locally distributed
transaction systems. In our performance study here, we will
only considernon-volatile extended memory (NVEM).

As shown in Table 2.2, there are three basic usage forms of the
storage types for transaction processing. The first one is to
keep entire (database or log) files resident in non-volatile
semiconductor memory (NVEM or SSD) thereby eliminating
all disk I/Os for the respective files. The second possibility is
to keep a write buffer in non-volatile semiconductor memory
(NVEM or disk cache). This approach fastens page writes
since the respective transaction can continue processing as
soon as the page has been written to the write buffer in semi-
conductor memory. The disk copy of the corresponding page is
updated asynchronously, i.e. without increasing response time.
Finally, the number of disk reads can be reduced by caching
database pages in a second-level database buffer (extended
memory, disk cache) which may be volatile. Database reads
could also be reduced by an increased main memory buffer, but
at a higher storage cost. Table 2.2 illustrates that only NVEM
supports all three usage forms, while SSDs are limited to keep
entire files and disk caches may be used as a write buffer and/
or for caching database pages.

3.  Simulation model
We developed a comprehensive simulation system called
TPSIM for studying a variety of storage architectures for trans-
action processing. TPSIM has been implemented using the
DeNet simulation language [Li89]. While TPSIM supports
centralized and distributed transaction systems, we concentrate
on the central case in this paper. In our model, a transaction
system consists of three major parts (Fig. 3.1): a SOURCE
which generates the workload of the system, a computing mod-
ule (CM) that is responsible for processing the transactions,

and a set of peripheral devices for storing database and
files. We consider caching in main memory, in extended mem
ory and in volatile or non-volatile disk caches. Furthermore,
write buffer can be allocated to non-volatile extended memo
or to disk caches. Parts of the database may be kept main m
ory-resident or can be allocated to non-volatile extended me
ory, solid-state disks or regular disks.
In 3.1, we describe the SOURCE component as well as our d
tabase model. Subsections 3.2 and 3.3 cover the CM model
external storage model, respectively.

3.1  Database and  load model
For database performance evaluation, the database and w
load model is of great importance since it largely determin
the performance results and the value of a study. To cove
wide range of applications, we have built three workload ge
erators supporting synthetic workloads and the use of datab
traces. One SOURCE modul creates general synthetic trans
tion loads with a high flexibility for studying different load
profiles. In particular, our synthetic model supports non-un
form database access being a prerequisite for effective cach
strategies which capitalize on the principle of locality of refer
ence. In this subsection, we first describe this synthetic mod
Afterwards, we briefly outline the implementation of the two
other workload generators. One of these generates synth
Debit-Credit transactions according to the benchmark defin
tion in [An85, Gr91], while the other one supports the use o
database traces.

General workload and database model
We limit the description of the synthetic workload and data
base model to those features that are used in the simulation
periments. The relevant parameters are summarized in Ta
3.1. In our model, the database is a collection ofpartitions. A
partition may be used to represent a file, a record type (re
tion), part of a record type, or an index structure. In the sim
lation system, partitions are used to define the reference dis
bution, to allocate the database to external devices, and
specify a concurrency control strategy (see below). A partitio
consists of a number of database pages which in turn consis
a specific number of objects (e.g., records). The number of o
jects per page is determined by the blocking factor which c
be specified on a per-partition basis. Differentiating betwee
objects and pages is important in order to study the effect
clustering which aims at reducing the number of page acces
(disk I/Os) by storing related objects into the same page. Fu

NVEM SSD non-vol.
disk

volatile
resident files
(database, log)
write buffer
(database, log)
database buffer

+

+

+

+

-

-

-

+

+

-

+

-

Table 2.2: Usage forms of intermediate storage types

cache

NVEM
channel

DISK DISK SSDvol. cache non-vol.

CM

DISK

Fig. 3.1:   Gross structure of  the TPSIM system

interface

TM
Transaction

CC
Concurrency

Control. . .

CPU

BM
Buffer  Manager

Manager

cache

SOURCE
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thermore, concurrency control may now be performed on the
page or object level.

The SOURCE component can generate transactions of multiple
transaction types. Each transaction type is characterized by its
arrival rate, the average number of object accesses per transac-
tion and the probability of write accesses. The number of ob-
ject accesses per transaction can be selected to be fixed or vari-
able; in the latter case the actual number of accesses is deter-
mined according to an exponential distribution over the
specified mean. Variability of transaction sizes is typical in
real applications and can have a significant effect on data con-
tention [Th91].
In our model, the access distribution of transaction types can
be controlled by means of arelative reference matrix. This
matrix defines for every transaction type T and database parti-
tion P which fraction of T’s accesses should go to P (see exam-
ple in Table 3.2). Within a partition uniform access distribution
is assumed. The actual reference frequencies are determined by
this relative reference matrix and by the arrival rates and num-
ber of object accesses per transaction type. The relative refer-
ence matrix is a powerful means for defining non-uniform ac-
cess patterns. In particular, it is by far more flexible than the
use of a so-called b/c rule [Ta85] specifying that b% of all ac-
cesses should reference c% of all database objects (frequently
used examples are the 80/20 and 90/10 rules). While such a
rule refers to the entire database and all transactions, the use of
a relative reference matrix allows specification of arbitrary de-
grees of locality within a given transaction type as well as be-
tween transaction types (intra- and inter-transaction type local-
ity). Uniform access distribution within a partition is also no
major restriction as a partition could represent a single object
in the extreme case.

Debit-Credit workload generation
As mentioned above, we have a special version of the
SOURCE module for the generation of Debit-Credit transac-
tions [An85, Gr91]. In this case, we use a largely fixed data-
base and load model with four partitions (representing the AC-
COUNT, BRANCH, TELLER and HISTORY record types)
and a single transaction type with a fixed number (four) of ob-
ject accesses and 100% update accesses. The number of objects
for these partitions determine how many ACCOUNT and
TELLER records belong to the same BRANCH record. While
the BRANCH record is randomly selected for a transaction, the
TELLER record is (randomly) selected from the set of TELL-

ER records associated with the selected BRANCH record. K
of the ACCOUNT accesses are to an account associated w
the selected branch, while the remaining accesses go to an
count of another branch (in [An85], K=85). The HISTORY
partition is sequentially accessed by all transactions. A sep
rate parameter permits clustering of BRANCH and TELLER
records. In this case, TELLER records are stored in the sa
page where their associated BRANCH record is stored. Th
reduces the number of page accesses per transaction to t
and is likely to improve hit ratios; in the case of page-leve
concurrency control data contention is also reduced.
Every transaction references the four record types in the sa
order so that no deadlocks can occur. The small TELLER a
BRANCH record types are accessed last to keep lock holdi
times for them as short as possible.

Use of database traces
In the trace-driven simulations, the database and load mode
largely determined by the trace information and the underlyin
application. The trace consists of a certain number of transa
tions of different types. For every transaction, the transacti
type and all database (page) references with their access m
(read or write) are recorded in the trace. Our workload gene
tor simply extracts the transactions from the trace and subm
them to the processing node according to a specified arriv
rate. There may be a common arrival rate for all transactions
the trace preserving the original execution order of the wor
load. Alternatively, we can specify a different arrival rate pe
transaction type.

3.2  CM model
The CM is responsible for processing the transactions assign
to it by the SOURCE component. As indicated in Fig. 3.1,
CM is represented by a transaction manager (TM), a buff
manager (BM), a concurrency control component (CC) an
CPU servers. The main parameters of these components
shown in Table 3.3.
The transaction managerTM controls execution of the trans-
actions. Its multiprogramming level (MPL) only determine
the maximal number of concurrently active transactions as w
use an open system. In the case that all MPL ’processing slo
are occupied, newly arriving transactions must wait in an inp
queue until they can be served. To account for the executi
cost of a transaction, TM requests CPU service at the begin
a transaction (BOT), for every object access and at the end
a transaction (EOT). The actual number of instructions fo
each of these services is exponentially distributed over a me
specified as a parameter. Processing an object access also
tails requesting an appropriate (read or write) lock from the C
component and asking the buffer manager to bring the cor
sponding database page into the main memory buffer (if n
there already). Commit processing consists of two phases.
phase 1, the BM is requested to write log data and possibly
force modified database pages to non-volatile storage. In ph
2, the CC is requested to release the transaction’s locks.
For concurrency control, we use strict two-phase locking (long
read and write locks) together with a deadlock detectio
scheme. Deadlock checks are performed for every denied lo
request; the transaction causing the deadlock is aborted
break the cycle. Our simulation system provides a choice b
tween page- and object-level locking. For comparison purpo
es, it is also possible to switch off concurrency control (no loc
conflicts). These choices are offered on a per-partition bas
This flexibility is desirable since real DBMS also use differen

Parameter Meaning
NumPartitions number of partitions in the database
NumTxTypes number of transaction types
RefMatrix relative reference matrix

Per-Partition Parameters
NumObjects number of objects in the  partition
BlockFactor blocking factor for the partition

Per-Transaction-Type  Parameters
ArrRate arrival rate
TxSize average number of objects accessed
WriteProb write probability
VarSize variable or fixed transaction size

Table 3.1:  Workload and database model parameters

  P1          P2              P3          P4

TT1
TT2

  1.0            -                -            -
   -            0.4             0.1         0.5

TT3  0.25        0.25           0.25       0.25

Table 3.2:   Example of  relative reference matrix
(3 transaction types, 4 partitions)
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locking strategies for different object types. For instance, we
can now use page-level locking for ’normal’ database objects,
object-level locking for frequently accessed administration da-
ta, and no locking for objects for which accesses are synchro-
nized by using latches or tailored protocols (e.g., HISTORY
accesses for Debit-Credit).
CPU requests are served by a single CPU or multiple CPUs
(multiprocessor). The number of CPUs and the capacity per
CPU in MIPS are provided as simulation parameters. Model-
ling synchronous accesses to storage devices required a special
CPU interface to keep the CPU busy until after an access has
been completed.
The buffer manager(BM) is responsible for caching of data-
base pages in main memory, for logging and for managing a
write buffer and/or database cache in extended memory
(NVEM). The database buffers in main memory and extended
memory are managed according to a global LRU (least recently
used) replacement strategy. Logging is modelled by writing a
single page per update transaction to the log file2. In the case
of a FORCE update strategy, all pages modified by a transac-
tion are also written out at commit time. In the case of NO-
FORCE, we have ignored the checkpointing overhead assum-
ing a fuzzy checkpointing scheme [HR83] which incurs little
overhead during normal processing.
Database partitions can be kept memory-resident (to simulate
main memory databases) or they can be allocated to a number
of different storage devices (see below). For memory-resident
partitions, obviously no caching is necessary (100% hit ratio)
and a NOFORCE scheme for update propagation is assumed
(i.e. only logging is performed at commit time). If a database
partition resides on an external (non-volatile) storage medium,
it is accessed either synchronously or asynchronously. In both
cases the buffer manager requests CPU service to account for
the I/O overhead. For asynchronous accesses the CPU is re-
leased before the I/O is actually performed, while synchronous
accesses keep the CPU busy until the read or write access is
completed.
The use of a write buffer and/or a 2nd-level database cache in
extended memory is also managed by the buffer manager as it
could be perfomed by the DBMS buffer manager in a real im-

plementation. In TPSIM, the use of the NVEM write buffer an
of the extended database buffer can be selected on a per-pa
tion basis. Different modes of NVEM caching can be chose
depending on which pages should migrate to the extended
tabase buffer when being replaced from the main memo
cache (only modified pages, only unmodified pages or all pa
es). Management of the NVEM cache also depends on the c
sen update strategy (NOFORCE or FORCE). In the case
NOFORCE, we ensure that every page is cached at most o
either in main memory or in NVEM. Therefore, whenever
page migrates from main memory to NVEM because of a r
placement decision (or from NVEM to main memory becaus
of a main memory miss and a NVEM hit), the page copy i
main memory (NVEM) is deleted. As a result, the NVEM
cache corresponds to a real extension of the main memo
cache with the most frequently accessed pages in main mem
ry. With FORCE such an approach is not appropriate since
page updates are written to the NVEM cache at EOT. If pag
written to NVEM would be eliminated from main memory a
EOT, we could get a very low buffer utilization and poor hit ra
tios in main memory. Hence, we leave pages that are written
the NVEM cache in main memory resulting in some replicatio
of pages.
For both update strategies (NOFORCE and FORCE), we d
not model a deferred propagation of modified pages fro
NVEM to disk. Rather, whenever a modified page is writte
from main memory to NVEM we directly start an asynchro
nous disk write for the respective page. The main advantage
this simple approach is that volatile memory can be used f
the cache thereby reducing overall cost. Non-volatility is on
needed for a small write buffer. With such an implementatio
modified pages are written to both the cache and the write bu
er. Writes occur at the speed of extended memory since
disk is updated asynchronously from the write buffer. All pag
es in the NVEM cache can therefore be considered unmodifi
so that they can be replaced from the cache without delay.
A deferred update strategy could reduce the I/O overhead a
frequency of disk writes if a modified page in NVEM is updat
ed multiple times before being replaced from NVEM. On th
other hand, if the page is not modified again extra overhead
introduced since the page must be read from NVEM to ma
memory before it can be written to disk. For NOFORCE, th
chosen approach seems reasonable since when a modified p
is written to NVEM (replaced from main memory) this indi-
cates that it has not been referenced for some time so that
likelihood that the page will be modified again in the near fu
ture is small. For FORCE, on the other hand, a deferred upd
strategy is clearly desirable for frequently modified pages. O
the other hand, the write traffic to NVEM is expected to b
much higher than for NOFORCE permitting only a compara
tively short residence time of pages in NVEM before a replac
ment becomes necessary to make room for new pages. Hen
for the majority of pages the simple update strategy may al
be a good choice for FORCE.

3.3  External devices
Database and log files can be allocated to a variety of extern
storage devices. Currently we support the use of conventio
disks, disks with volatile or non-volatile disk caches, solid
state disks and the use of non-volatile extended memo
(NVEM).There are numerous possibilities for allocating a da
tabase partition using up to four levels of the storage hierarc
(main memory, NVEM, disk cache / SSD, disk)3. A database

2. Possible optimizations like group commit or asynchronous buffer
replacement from main memory are not yet supported. Although
they are important for disk-based DBMS, they would reduce the per-
formance differences for the new I/O devices. One conclusion we
will draw from our performance study is that the use of non-volatile
semiconductor memory reduces the need for such optimizations
thereby simplifying buffer management.

Parameter Meaning
MPL multiprogramming level
InstrBOT average number of instructions for BOT
InstrOR avg. no. of instructions per object reference
InstrEOT avg. no. of instructions for EOT
CCmodei no CC,  page-level  CC,  or

   object-level  CC for partition i
NumCPU number of CPUs
MIPS MIPS rate per CPU
BufferSize size of main memory database buffer
UpdateStrategy FORCE or NOFORCE
Logging yes / no
InstrIO avg. no. of instructions per I/O
InstrNVEM avg. no. of instructions per NVEM access
MemResidenti memory residence of  partition  i  (yes/no)
AccessModei synchr. or asynchr.  access to partition i
CacheSizeNVEM size of NVEM cache
CachingNVEMi NVEM caching mode for partition i
WriteBufferNVEMi Use of NVEM write buffer for partition i (y/n)
WrBufferSizeNVEM Size of write buffer in NVEM

Table 3.3:  CM  parameters
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partition is stored either on a regular disk, a solid-state disk, in
NVEM or in main memory. Caching of database pages is sup-
ported at three levels, namely in main memory, in extended
memory and in volatile or non-volatile disk caches. Further-
more, a write buffer may be used either in NVEM or in a non-
volatile disk cache. The log file can be allocated in one of the
following ways: NVEM-resident, SSD, disk with a write buffer
either in NVEM or in disk cache, or on disk without using a
write buffer.
Table 3.4 shows the major parameters for defining the external
storage configuration. There can be at most one NVEM and an
arbitrary number of so-called disk-units.Disk-unit is used as
a generic term for devices that offer a disk interface such as
solid-state-disks, and disks with or without cache. The param-
eter "DBallocation" specifies for every partition whether it is
stored in NVEM or, if not, to which disk-unit it is assigned.
Similarly, the log file is assigned to NVEM or to one of the
disk-units.
A NVEM access is modelled by keeping a NVEM server busy
for a specified service time. This access time includes the time
to transfer the page between main memory and NVEM (NVEM
is directly accessed by the CM). Multiple NVEM servers may
be selected to permit concurrent NVEM access by different
transactions (in the case of synchronous NVEM access, the
number of CPUs determines the maximal concurrency).
Disk-units have in common that they are managed by one or
more disk controller(s) and that there is a transmission delay
for exchanging pages between main memory and disk-units.
The number of controllers per disk-unit and the average page
service time of the controller are provided as parameters. We
did not explicitly model a channel subsystem, but assumed suf-
ficient capacity so that page transfers do not cause a bottle-
neck.
If a disk-unit is used as a SSD, the I/O delay is determined by
the transmission time and the queuing and service time at the
controller assuming that the entire partition or log file is kept
in semiconductor storage. For the other disk-unit types, one or
more disk server(s) are modelled to account for the disk access
time. The use of multiple disk servers represents the case
where a partition is (uniformly) spread across multiple disks.
In the case of regular disk-units (no SSD or disk cache), every
I/O results in a disk access in addition to the controller delay
and transmission time.
For the mangement of disk caches we followed the realization
of IBM’s disk caches. We employ a LRU replacement scheme
for both volatile and non-volatile disk caches. For disk-units
with volatile cache, every write I/O results in a disk access as
in the case without cache. If the page to be written is found in
the disk cache (’write hit’), the copy in the cache is refreshed
(conceptually) and the LRU information is updated; on a write
miss the cache contents remains unaffected. For read I/Os the
disk access can be avoided, if the respective page is found in
the disk cache (’read hit’). If a read miss occurs, the page is
read from disk, stored in the disk cache and transferred to the
requesting CM.
In the case of a non-volatile disk cache, it is tried to satisfy all
write I/Os in the disk cache and to update the disk copy of a
modified page asynchronously, i.e. after the ’I/O done’ signal

has been returned to the CM. This is always possible for a wr
hit since no other page needs to be replaced from the cache
this case. If a write miss occurs, we select the least recently
cessed unmodified page from the cache as the replacement c
didate (a page is considered as unmodified as soon as its d
copy has been updated). When there is no unmodified page
the cache, i.e. for all cached pages the disk update is not
completed, we cannot satisfy the write I/O in the cache but d
rectly go to the disk. To reduce the likelihood of this case, w
immediately start the disk update when a modified page
stored in the disk cache. As for volatile disk caches, read I/O
are satisfied in the cache if possible (read hit) and a page
stored in the cache after a read miss.
If a disk-unit with non-volatile cache is solely used for log
ging, we do not employ LRU replacement, but simply use th
disk cache as a write buffer to avoid synchronous disk writ
if possible.
The described use of disk caches corresponds to the mana
ment of currently available caches, specifically the IBM 399
disk cache [MH88]. To reduce cost, however, the 3990 cac
uses non-volatile memory only for a write buffer (called non
volatile store, NVS) while the cache itself is volatile. The per
formance should be the same than with our method becau
they also bring every modified page (write hit or write miss
into the cache [MH88].

4.  Experiments  and Results
In this section, we present our performance results for a varie
of storage configurations and different workloads. Respon
time will be the primary performance metric in this study sinc
our simulation system uses an open queuing model. (TPS
also computes detailed statistics on the composition of r
sponse time and device utilization, waiting times, queu
lengths, lock behavior, hit ratios, etc. in order to explain the r
sults). Most of our experiments (subsections 4.2 through 4
use the Debit-Credit workload since this load is well-know
and widely used in performance benchmarks. In 4.1, the p
rameter settings for these runs are described. We study diff
ent allocation schemes for the log file (4.2) and database pa
tions (4.3). In addition we investigate the impact of the upda
strategy (FORCE vs. NOFORCE, 4.4) and of caching at diffe
ent levels (4.5). In 4.6, we analyse the effectiveness of cachi
for a real-life workload represented by a database trace. Fin
ly, we use a synthetic workload to study the influence of da
contention. Many more experiments have been conducted t
cannot be presented due to space limitations but which a
support our conclusions.

4.1  Parameter settings for Debit-Credit experiments
Table 4.1 shows the default parameter settings for the Deb
Credit experiments. In all experiments, we used clustering

3. Not all combinations that could be chosen are meaningful. For in-
stance, a write buffer for a partition should be used either in NVEM
or in a volatile disk cache, but not in both storage types. Similarly,
when NVEM caching is employed for a partition there is no further
need for a write buffer in the disk controller.

Parameter Meaning
NumDiskUnits number of disk units
DBallocation i allocation of database partition  i
LogAllocation allocation of log file
NumNVEMservers    number of  NVEM servers (controllers)
NVEMdelay average NVEM access time per page

Per-Disk-Unit Parameters
DiskUnitType regular, vol. cache, non-vol. cache, SSD
NumControllers number of  disk controllers
ContrDelay average controller service time
TransDelay average transmission time per page
NumDisks number of disks
DiskDelay average disk access time per page
CacheSize size of disk cache / write buffer

Table 3.4:  Parameters for external storage devices
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BRANCH and TELLER records (see 3.1) so that BRANCH
and TELLER records reside in the same partition and only
three different pages are accessed by a transaction. The data-
base consists of 500 BRANCH/TELLER pages and 5 million
ACCOUNT pages. The size of the HISTORY partition is im-
material here since every transaction adds a new record at the
end of this sequential file. We did not set locks for HISTORY
assuming an implementation that synchronizes accesses to the
current end of this file by latches. The average pathlength of a
transaction is 250.000 instructions (BOT, four object referenc-
es, EOT) excluding I/O overhead. Given an aggregate CPU ca-
pacity of 200 MIPS, a theoretical maximum of 800 TPS (trans-
actions per second) can be processed. CPU processing ac-
counts for 5 ms per transaction in the case of 50 MIPS CPUs.
The multiprogramming level has been chosen high enough to
avoid queuing delays at the TM. Without I/O queuing delays,
the average access time per page is 50 microseconds for
NVEM, 1.4 ms for SSD and disk cache, 6.4 ms for log disks
and 16.4 ms for disks storing database partitions. For log disks,
a reduced access time has been assumed since the log file is se-
quentially accessed shortening disk seek times. The default ac-
cess mode is synchronous for NVEM-resident data, and asyn-
chronous for data stored on disk-units.
Parameters that are changed include the arrival rate, the allo-
cation of log and database files, the update strategy (FORCE,
NOFORCE), cache sizes, and the number of controllers and
disk servers per disk-unit.

4.2  Allocation of log file
In our first experiment, we considered four alternatives for al-
location of the log file: 1) the log file resides on a single disk,
2) log file is on a single disk with non-volatile cache used as a
write buffer (cache size: 500 pages), 3) the log is kept in solid-
state disk, and 4) the log is stored in non-volatile extended
memory. In all cases, the database partitions are stored on a
sufficient number of regular disks so that no bottlenecks are in-
troduced. NOFORCE was employed as the update strategy.
Fig. 4.1 shows the average transaction response time for the
four log file allocations. Arrival rates from 10 to 700 transac-
tions per second (TPS) have been used, resulting in a CPU uti-
lization of about 90% for 700 TPS. As expected, a single log
disk creates a bottleneck and limits the maximal transaction
rate to about 180 to 200 TPS for our parameter settings (due to
the chosen disk service time of 5 ms). In the case of a single

log disk without cache, queuing delays at the log disk cause
steep response time increase for arrival rates of more than 1
TPS. The use of a non-volatile disk cache (write buffer) help
to keep response time low and almost constant over the en
range from 10 to 200 TPS! This is because in this range all l
writes could be satisfied in the cache while the disk was asy
chronously updated. For 200 TPS, the log disk is fully utilize
and the disk writes for all cached pages are queued so that
more cache writes were possible. Still, the value of non-vol
tile disk cache is quite impressing since even for a higher di
utilization asynchronous I/Os are possible supporting bett
transaction rates and significantly shorter response times th
without such a cache.
The two other log allocations did not have a log bottleneck s
that 700 TPS could be processed. The best response times w
observed for the NVEM-resident log file which incurred an a
most negligible log delay. Slightly higher response times we
achieved for the SSD-based log. The response time increase
700 TPS is mainly because of increased CPU waits.
The simulation results show that a write buffer primarily im
proves response times since the log writes occur at the sp
of the respective type of semiconductor memory. The maxim
throughput is still limited by the disk I/O rate, although a high
er disk utilization can be supported than without write buffe
Group commit would permit significantly higher transaction
rates since the log data of multiple transactions can be writt
in one I/O. However, such transaction rates can also
achieved without group commit if the log is completely allo
cated to SSD or NVEM. Hence, these storage types support
high I/O rates reduce the need for optimizations like grou
commit and permit simpler logging strategies.
Higher transaction rates than with a single log disk could al
be achieved by using a disk-array with a declustering of the l
file across several disks [De84]. In a RAID-like implementa
tion [PGK88], however, the updating of parity information
would result in higher response times and could also lead
bottlenecks. The use of non-volatile disk caches or write bu
ers could largely improve the write performance of disk array

4.3   Allocation of database partitions
We studied the following six alternatives for allocating the da
tabase partitions: 1) all partitions (and the log) on disks with
out cache, 2) all partitions and log on disks with non-volatil
cache used as a write buffer, 3) like 2 but with the write buffe
in NVEM, 4) all partitions and log on SSD, 5) all partitions and
log in NVEM, 6) all partitions main memory-resident, log on
disk. Database partitions and the log have been assigned to

Table 4.1:  Parameter settings for  Debit-Credit

Parameter Settings
NumObjects 500 (BRANCH partition), 5.000 (TELLER),

50.000.000  (ACCOUNT)
BlockFactor 1 (BRANCH), 10 (TELLER),

10 (ACCOUNT), 20 (HISTORY)
InstrBOT 40.000
InstrOR 40.000
InstrEOT 50.000
CCmode page-level  CC (BRANCH, TELLER,

    ACCOUNT),  no CC (HISTORY)
NumCPU 4
MIPS 50
BufferSize 2000 pages
Logging yes
InstrIO 3000
InstrNVEM 300
AccessMode synchronous for NVEM-resident  files,

 asynchronous otherwise
NumNVEMservers 1
NVEMdelay 50 microseconds
ContrDelay 1 ms
TransDelay 0.4  ms
DiskDelay 15 ms for DB disks,  5 ms for log disks

Fig. 4.1:  Influence of log file allocation
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same device type to emphasize the relative differences. In all
cases we used a sufficiently high number of disk servers and
controllers to avoid bottlenecks. Again, the update strategy
was NOFORCE.
Fig. 4.2 shows the response time results for the above listed
configurations. Although the absolute values are small in all
cases, the relative differences are significant. All configura-
tions are CPU-bound since we eliminated potential I/O bottle-
necks and the amount of lock contention was modest. The best
results were again reached in the case of NVEM-resident data;
in this case response time is almost exclusively determined by
the queuing and service times at the CPU. The SSD-based con-
figurations also achieved very short response times. For mem-
ory-resident partitions response times are higher than for
NVEM-resident partitions because of the disk I/O for logging.
If the log had been allocated to NVEM in this case, about the
same response times than for NVEM-resident partitions were
achieved. Memory-resident partitions have an advantage at
higher transaction rates since they do not incur I/O overhead
for database accesses but only for logging permitting reduced
CPU waiting time and slightly higher throughput. This is also
the reason why response time for main memory-resident parti-
tions is better than for SSD-based partitions at 700 TPS in Fig.
4.2. Still, one can conclude that keeping the database in NVEM
or SSD brings performance comparable to main memory data-
bases, but at a lower cost. In addition, NVEM- and SSD-resi-
dent files can be supported by the operating system without af-
fecting the DBMS, while memory-resident databases require
explicit DBMS support4.
A significant response time improvement could already be ob-
tained by the use of a write buffer either in NVEM or with non-
volatile disk caches. Since a small write buffer is already suf-
ficient to achieve these improvements, such an approach is
clearly more cost-effective than keeping entire files (in partic-
ular, the ACCOUNT and HISTORY relations) resident in
semiconductor memory. The NVEM write buffer is only slight-
ly better than a disk cache write buffer so that the latter would
be sufficient. On the other hand, a single NVEM write buffer
can be used for multiple disks and disk controllers so that less
non-volatile memory may be needed than with a separate write
buffer in each disk controller.
The response time values can largely be explained by the I/O
behavior. The average hit ratio in main memory was about
72.5%5 for all arrival rates and configurations (except for
memory-resident partitions, of course) resulting in slightly
more than 1 miss per transaction (on ACCOUNT). Since all
pages are modified for Debit-Credit, every buffer miss resulted
in an additional I/O to write back the page to be replaced. As a
consequence, about 2 database I/Os and 1 log I/O occur per
transaction. In the disk-based configuration, all three I/Os oc-
cur at disk speed accounting for about 40 ms. The use of a write
buffer largely eliminated the delays for the two writes so that
response times could be cut by a factor 2. If the ACCOUNT
partition is also kept resident in semiconductor memory, the re-
maining read disk I/O can also be eliminated.
A more sophisticated buffer manager than the one used in
TPSIM would have achieved better response times for the disk-

based configuration by asynchronously writing modified pag
to disk (before their replacement). In this case, only two sy
chronous I/Os would have remained per transaction (read I
for ACCOUNT and the log write) thus considerably reducin
the difference to the configurations using a write buffer. On th
other hand, one can argue that there is no real need any m
to support asynchronous writes in the DBMS buffer manag
since the same performance improvements can be achieved
a write buffer in non-volatile semiconductor memory. Th
write buffer can be managed outside the DBMS, e.g., by t
operating system’s file manager in the case of a NVEM wri
buffer or by the disk controllers, so that not only log and data
base writes benefit from it but also other applications tha
transaction processing. Hence, using non-volatile semicond
tor storage in this way permits simpler DBMS buffer manage
ment without sacrificing performance.
Our results suggest that it may be good idea to use more th
one type of the intermediate memories together. For instan
the log and the small BRANCH/TELLER partition could be
kept resident in non-volatile memory (SSD or NVEM), while
the ACCOUNT and HISTORY relations may be stored on reg
ular disks with a write buffer.

4.4   FORCE vs. NOFORCE update strategy
To study the impact of the update strategy, we used the stora
allocations from the last experiment for the case of a FORC
update strategy. We obtained the same order of the different
location alternatives than for NOFORCE, but the relative di
ferences changed significantly. This is illustrated in Fig. 4.
where the response time results for three storage allocatio
are compared with each other.
Response times for FORCE are generally higher than for N
FORCE since there are more I/Os per transaction due to fo
ing modified pages to the database at commit6. While this
causes a considerable response time penalty for the disk-ba
configuration, the differences shrink with increasing speed
the used storage devices (Fig. 4.3). So even with a limit
amount of non-volatile memory used as a write buffer, re
sponse times for FORCE are almost as good than for N
FORCE. This indicates that high performance is achievab
even for a FORCE strategy since FORCE gains more from no
volatile semiconductor memory than the more optimized NO
FORCE alternative. It can also be seen from Fig. 4.3 th
FORCE using a write buffer supports even better respon
times than NOFORCE without using non-volatile semicondu
tor memory.
However, FORCE still causes more disk I/Os so that the I/
overhead is higher and I/O bottlenecks are more likely than f
NOFORCE. The increased I/O overhead caused a steeper
sponse time increase for FORCE in the case of 700 TPS sin
CPU utilization was higher than for NOFORCE. In addition
we had allocated the small BRANCH/TELLER partition to
multiple disks to avoid an I/O bottleneck. If this partition were
stored on a single disk, throughput for FORCE would be limi
ed to less than 70 TPS in the disk-based configuration or wh
a write buffer is used. Keeping the BRANCH/TELLER parti
tion resident in SSD or NVEM also avoids this bottleneck fo
FORCE.

4.5  Influence of caching for Debit-Credit4. However, main memory DBMS would achieve better performance if
they could significantly cut transaction pathlengths. In particular,
higher transaction rates per MIPS would then be possible.

5. For a main memory buffer size of 2000 pages, the hit ratio was
about 0% for ACCOUNT, 95% for HISTORY (due to the blocking
factor 20), 95% for BRANCH and 100% for TELLER (due to the
clustering with BRANCH records).

6. There are three write I/Os to force out the modifications at commit
On the other hand, no write I/O was necessary on a buffer miss b
cause there were always unmodified pages to replace. Since we h
the same hit ratios than for NOFORCE, there are about two dis
writes more per transaction than in the NOFORCE configurations.
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Fig. 4.4:  Impact of caching for different
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Fig. 4.3:  FORCE vs. NOFORCE
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Fig. 4.2:  Impact of database allocation
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In addition to main memory caching, we considered buffering
of database pages in NVEM and in volatile or non-volatile disk
caches . In a first experiment, we varied the main memory buff-
er size for the different configurations indicated in Fig. 4.4.
These simulation runs were conducted for the NOFORCE
strategy and an arrival rate of 500 TPS. Results for FORCE
will be discussed later in this subsection.
The response time results in Fig. 4.4 refer to main memory
buffer sizes from 200 to 5000 pages. In addition to the main
memory buffer, we studied the use of a 1000 pages second-lev-
el buffer in a volatile and non-volatile disk cache and in
NVEM. Furthermore, the results for using a disk cache write
buffer and a NVEM cache of 500 pages are shown in Fig. 4.4.
Since the main memory buffer is used for all partitions of the
database, the second-level cache was also shared for the four
partitions. In the configurations using non-volatile disk caches
or NVEM, these storage types were also used for logging.
Increasing the main memory buffer is most effective for a size
of less than 2000 pages since in this range many misses oc-
curred for the frequently accessed BRANCH/TELLER pages.
A buffer size of 2000 pages was needed to keep the 500
BRANCH/TELLER pages in main memory; a larger main
memory buffer (5000 pages) did not permit any significant re-
sponse time improvements any more. The use of a volatile disk
cache was only helpful for small main memory buffers where
some misses on BRANCH/TELLER could be satisfied in the
disk cache. As soon as the main memory buffer had reached the
size of the volatile disk cache (1000 pages), no further hits oc-
curred in the disk cache (Table 4.2a) so that the same response
times than without disk cache resulted. The use of non-volatile
semiconductor memory permits substantially more I/O savings
since all synchronous disk writes can be eliminated. So the use
of a write buffer alone (no read hits) accounted already for the
largest improvements compared to the disk-based configura-
tion. The difference from the results with a non-volatile disk
cache of 1000 pages to the results for a write buffer correspond
to the I/O savings due to read hits in the non-volatile disk
cache. Most effective was the use of a NVEM cache. Even a
NVEM cache of 500 pages permitted better response times
than with a non-volatile disk cache of 1000 pages.
To analyse the effectiveness of the different cache types in
more detail, Table 4.2 summarizes the hit ratios for the simu-
lation runs of Fig. 4.4 (NOFORCE). The main memory hit ra-

tios increase with growing buffer size, while the number of ad
ditional hits in the second-level caches decreases (for a m
memory buffer size of 5000 pages, there were no more hits
the second-level caches). The table shows that from the th
types of second-level caches, the NVEM cache supports
best hit ratios, followed by the use of a non-volatile disk cach
With a volatile disk cache lower read hit ratios than for bot
non-volatile disk caches and NVEM caches were obtaine
Disk caches were less effective than the NVEM cache sin
they are managed independently from the DBMS buffer
main memory. A consequence of this was that the same pa
were frequently cached in main memory and in the disk cach
This was particularly the case for the volatile disk caches:
soon as the main memory buffer size reached the size of
disk cache no more hits occurred in the disk cache holdi
merely a subset of the main memory cache. The double cach
of pages comes from the fact that after a miss in main memo
and in the disk cache, the page is cached in the disk cache
well as in main memory, although the hits will occur in main
memory in the first place. If the disk cache is larger than th
main memory buffer, more pages can be cached there so t
some hits in the disk cache can be achieved despite the dou
caching of the most frequently accessed pages.
NVEM caching achieved better hit ratios than with disk cache
primarily because a double caching of pages could complete
be avoided for NOFORCE (see section 3.2). In particular, aft
a main memory miss the respective page is only cached in m
memory and not in the NVEM cache. Only pages that are r
placed from main memory migrate to the NVEM cache. A re
sult of this technique is that the combined hit ratio for the ma
memory and NVEM caches was the same than for a main me
ory buffer of the same aggregate size. For instance, the sa

Table 4.2:  Main memory and 2nd-level cache hit ratios (in %)

main memory buffer size
200 500 1000 2000

main memory 53.7 59.6 66.7 72.5
vol. disk cache 1000 12.8 5.6 0 0
nv disk cache 1000 13.0 7.4 3.8 0.8
NVEM cache 1000 14.8 11.0 5.7 1.1
NVEM cache 500 9.2 7.1 3.9 0.8

vol. disk cache 1000 12.4 6.9 0.1 0
nv disk cache 1000 12.8 7.0 0.1 0
NVEM cache 1000 13.1 7.2 3.4 0.6

NO-

FORCE

FORCE

main memory buffer sizes (500 TPS)
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combined hit ratios are obtained for the combinations of main
memory/NVEM cache sizes of 1000/0 and 500/500, 2000/0
and 1000/1000 or 1000/500 and 500/1000 (Table 4.2). Further-
more, since NVEM accesses are very fast basically the same
response times can be achieved for NVEM hits than for main
memory hits (e.g., in Fig. 4.4 we had the same response times
for the combinations 500/1000 and 1000/500). This is an im-
portant observation since it indicates that for NOFORCE per-
formance only depends on the aggregate buffer size of main
memory and NVEM cache. In particular, more cost-effective
solutions can be obtained by choosing a small main memory
and a larger NVEM cache size than only having a main mem-
ory cache of the same aggregate size. Since this result refers to
read hits, it can also be achieved for volatile caches in extended
memory.
Non-volatile disk caches reached higher read hit ratios than
volatile disk caches not because of the non-volatility but be-
cause of the different handling of write misses. For a non-vol-
atile disk cache, a modified page replaced from main memory
is inserted into the disk cache for a write miss as well as for a
write hit. For volatile disk caches, on the other hand, the page
is not cached upon a write miss. Due to the NOFORCE strate-
gy, however, there were many write misses so that in contrast
to non-volatile disk caches only few pages migrated from main
memory to the volatile disk cache. This result suggests that the
effectiveness of (IBM’s) volatile disk caches can easily be im-
proved by also caching pages on a write miss for files for
which an additional caching is performed in main memory.
Similarly, the effectiveness of disk caches could further be im-
proved by not caching a page after a read miss if it is known
that the page will be cached in main memory7. However, the
applicability of such an approach is limited since typically only
modified pages are written back from main memory to the disk
controller (this is no problem for Debit-Credit where all pages
are modified).
When using a FORCE strategy, the effectiveness of the 2nd-
level caches is generally lower since more pages are written
from main memory to the 2nd-level cache than for NOFORCE.
As a result, the average cache residence time per page is re-
duced thus lowering the probability of a re-reference. This is
reflected in Table 4.2 showing that the hit ratios in the 2nd-lev-
el cache are generally lower for FORCE than for NOFORCE.
It can be seen from the table that the hit ratios for volatile disk
caches are now very close to the values for non-volatile disk
caches. This is due to the fact that FORCE results in a high
write hit ratio in the disk cache since a page is written back (at
EOT) shortly after it has been read. The highest read hit ratios
were still obtained for a NVEM cache, although here the hit ra-
tios decreased most compared to NOFORCE. This was because
for FORCE a double caching of pages in main memory and
NVEM could not be avoided (see section 3.2).
We did not explicitly study caching at three levels for the same
partition, but the results can easily be predicted based on the
already presented findings. Disk caches used in addition to
NVEM and main memory caching would be similarly (in-)ef-
fective than their use in combination with an increased main
memory buffer. Since the NVEM already caches modified pag-
es, non-volatility would no longer be necessary for the disk
caches. On the other hand, the performance of a NVEM cache
could be approached by a database cache involatile extended
memory used in combination with disk cache write buffers to

avoid synchronous disk writes.

4.6   Influence of caching for real-life workload
To verify our observations for Debit-Credit, we conducted ad
ditional experiments with more realistic workloads represent
by database traces. We present the results for one of the tra
with a high share of read accesses. The trace consists of m
than 17.500 transactions of twelve transaction types and 1 m
lion database accesses. There are significant variations
transaction size; the largest transaction (an ad-hoc query) p
forms more than 11.000 accesses. The database size is abo
GB, but merely 66.000 different pages in 13 files were refe
enced during the trace period. About 20% of the transactio
perform updates, but only 1.6% of all database accesses
writes.
Fig. 4.5 and 4.6 show response time results for this trace a
the three types of second-level caches for a fixed arrival ra
and NOFORCE. Due to the low share of update accesses,
sults for FORCE were not significantly different from NO-
FORCE. Response times refer to a artificial transaction pe
forming the average number of database accesses. The par
eter settings have largely been chosen as for Debit-Cre
(Table 4.1), in particular the CPU and device characteristic
In Fig. 4.5, the size of the main memory buffer has been vari
from 100 to 2000 pages, while the second-level caches ha
fixed size of 2000 pages. In addition we have shown the resu
for a complete allocation of the database to NVEM and SS
Increasing the main memory buffer is most effective in th
disk-based configuration when only main memory caching
employed. Not only for the complete database allocation
non-volatile semiconductor memory, but also with the secon
level caches good response times could already be obtained
small main memory buffer sizes; increasing the main memo
buffer resulted only in minor improvements. So even volatil
disk caches were very effective for this read-dominated wor
load. In fact, they achieved basically the same hit ratios th
non-volatile disk caches. Non-volatile disk caches support
slightly better response times only because of the faster l
write. NVEM caching was again more effective than disk cach
ing (better hit ratios) since the double caching effect could b
avoided. So even for a main memory buffer of 2000 pag
(83.8% main memory hit ratio), an additional hit ratio of 3.4%
was achieved for the NVEM cache compared to 0.7% for th
disk caches. NVEM caching could utilize the fact that not onl
modified pages migrated from main memory to the second-le
el cache (as for disk caches), but that unmodified pages w
also written to NVEM when they are replaced from main mem
ory. We found that the best NVEM hit ratios result if all page
(modified and unmodified ones) migrate from main memory t
NVEM.
Fig. 4.6 shows the impact of the 2nd-level cache size on r
sponse times for a fixed main memory buffer size of 1000 pa
es. The result for cache size 0 refers to the case with ma
memory caching only. For small second-level cache sizes, v
atile and non-volatile disk caches did not permit significant h
ratios due to the double caching of pages. In contrast to Deb
Credit, however, some hits (0.6%) occurred for a volatile dis
cache of the same size than the main memory buffer (1000 p
es). Again, for this workload volatile disk caches achieve
about the same hit ratios than non-volatile disk caches a
NVEM caching was most effective.

4.7  Influence of  lock contention
To study the effect of data contention, we used a simple sy

7. Caching pages after a miss in the disk cache would still be appropri-
ate for sequential files for which prefetching can be utilized.
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Fig. 4.7: Page- vs. object-locking for
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Fig. 4.6: Impact of 2nd-level buffer size
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real-life workload  for real-life workload different allocation strategies
thetic workload with one transaction type accessing two data-
base partitions. The transaction type is of variable size and ac-
cesses an average of 10 database objects; the update probabil-
ity is 100%. 80% of the accesses go to a small partition of
10.000 objects, while the remaining accesses reference the sec-
ond partition of 100.000 objects. The access frequency per ob-
ject is thus 40 times higher for the small partition. For both par-
titions a blocking factor of 10 is assumed. Like for Debit-Cred-
it, an average pathlength of 250.000 instructions per
transaction has been chosen. We further assumed a buffer size
of 2000 pages and 4 CPUs with 50 MIPS each.
Fig. 4.7 shows the response time results for this transaction
type for arrival rates of 10 to 700 TPS and for three different
allocation strategies and two lock granularities. The log and
the two partitions are either all allocated to disk or NVEM; in
a third (mixed) allocation the smaller partition and the log are
kept in NVEM while the larger partition is stored on disk. Ei-
ther page-level or object-level locking is employed.
As Fig. 4.7 shows, page-level locking did not permit full utili-
zation of the available CPU capacity for the disk-based and
mixed allocation strategies. Throughput was limited to about
120 TPS for the purely disk-based allocation and to 150 TPS
for the mixed strategy. The lock bottleneck could be removed
for both configurations by employing object locking (in partic-
ular on the small partition) since this increased the number of
lock granules by a factor of 10. Interestingly, page-locking did
not cause any problems when both partitions and the log are
kept NVEM-resident. In this case, the I/O delay was signifi-
cantly reduced supporting very short response times. This, in
turn, substantially reduced the number of concurrently active
transactions as well as the lock holding time compared to the
other configurations resulting in negligible lock contention.
In the two other configurations, response time is largely deter-
mined by the disk I/O for logging and the larger partition (the
frequently accessed small partition could be cached in main
memory). The mixed allocation strategy only removed the I/O
delay for logging, while the disk I/Os for the large partition re-
mained. Furthermore, it could not be achieved as for Debit-
Credit that the most frequently accessed objects are referenced
last in a transaction. Rather, locks on the high-contention ob-
jects had to be held across several disk I/Os causing a substan-
tial lock contention. While object-level locking solved the
problem in our example, it would have been easy to create oth-
er scenarios with lock contention bottlenecks despite the use of

object-locking.
The experiment illustrates that restricting the use of non-vol
tile semiconductor memory to the storage of frequently acces
ed database files or the log, may not be enough to guarante
sufficiently low lock contention to fully utilize the available
CPU capacity. This is because the remaining disk I/Os can s
cause lock thrashing in the presence of high contention obje
(or long transactions). As our results indicate, this problem c
be resolved by further reducing the I/O delays (e.g., by storin
all files in non-volatile semiconductor memory) or by employ
ing a ’better’ concurrency control strategy, e.g., by using fine
grained locking or a special treatment of critical object an
transaction types.

5.  Conclusions
We have presented a performance evaluation of extended s
age hierarchies to improve transaction processing perfo
mance. We considered three types of page-addressable se
conductor memory (disk caches, solid-state disks (SSD) a
extended memory) that offer substantially lower I/O latenc
and higher I/O rates than disks. Compared to main memo
they are less expensive and provide better failure isolation d
to the page-oriented interface. Non-volatile semiconduct
memories can be used to keep entire files resident in the
thereby eliminating all (synchronous) disk I/Os for log or da
tabase files. A more space-efficient usage of the new memo
types results if they are used as a write buffer or for cachin
database pages at an additional level of the storage hierarc
A write buffer permits log and database writes to be satisfie
in non-volatile semiconductor memory and performing th
disk write asynchronously. Caching database pages at an in
mediate storage level may reduce the number of disk reads
lower cost than by increasing the main memory buffer size.
Our performance study has shown that the use of non-volat
extended memory, SSD and non-volatile disk caches signi
cantly improves response times compared to disk-based c
figurations in almost all cases. Transaction rates are increa
in cases with otherwise low effective CPU utilization becaus
of I/O bottlenecks (e.g., for logging) or lock contention. Lock
contention can almost completely be eliminated by storing t
log and the entire database in non-volatile semiconduct
memory. In this case, simple concurrency control strategi
like page-level two-phase locking are sufficient. However
synchronous disk I/Os can only partially be eliminated, the u
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of non-volatile semiconductor memory alone may not be suffi-
cient for high-contention applications to keep lock contention
small enough to guarantee full utilization of the available CPU
capacity.
We found that the use of a limited amount of non-volatile semi-
conductor memory reduces the need to employ sophisticated
buffer management strategies. This was illustrated by compar-
ing the performance of the FORCE and NOFORCE alterna-
tives for propagating modified database pages to the perma-
nent database. While the simpler FORCE strategy requires
more I/Os than NOFORCE, the resulting performance impact
often becomes insignificant when all force writes go to non-
volatile semiconductor memory (in fact, performance can be
improved compared to NOFORCE configurations without non-
volatile semiconductor memory). Similar conclusions apply
for other software techniques to limit the number of synchro-
nous disk I/Os like asynchronous page replacement and group
commit. On the other hand, if a DBMS already supports these
optimizations high transaction rates and sufficiently short re-
sponse times may be achievable with little or no non-volatile
semiconductor memory.
From the intermediate storage types considered here, non-vol-
atile extended memory (NVEM) supports the best performance
for transaction processing albeit at the highest cost. If the log
and entire database are kept NVEM-resident, the performance
is comparable to main memory database systems with a non-
volatile log buffer. The use of solid-state disks is a less expen-
sive alternative for keeping entire files resident in semiconduc-
tor memory and reduces I/O latency almost to the same degree
than NVEM. Similarly, a disk cache write buffer is almost as
effective than a NVEM write buffer. The main advantage of
NVEM is that it can be used in a more flexible way since it is
directly accessible by special machine instructions. So NVEM
can be used for storing entire files, but also for caching data-
base pages or as a write buffer (e.g., log buffer). In locally dis-
tributed systems, NVEM can be further utilized to speed-up in-
ter-system communication and to hold globally shared data
structures [Ra91]. These extended usage forms require special
support by the DBMS or/and operating system, while SSDs
and disk caches offer a disk-oriented interface so that their use
remains transparent to the DBMS (device independence).
Caching of database pages in a second-level buffer in addition
to main memory buffering is most effectively supported by an
extended database buffer in NVEM. For NOFORCE, NVEM
caching was optimal in the sense that main memory and NVEM
caching together achieved the same combined hit ratios than
with a main memory buffer of the same aggregate buffer size
alone. Since extended memory is less expensive than main
memory, the cost-effectiveness of caching can be improved by
choosing a small main memory and a large extended memory
buffer. NVEM caching supported significantly better hit ratios
than the use of volatile or non-volatile disk caches. Current
disk caches are optimized for one-level caching so that their
use in combination with main memory caching results in a dou-
ble caching of the most frequently accessed pages. Our results
suggest that all pages replaced from the DBMS buffer in main
memory should be kept in the second-level database cache for
future re-references. This can easily be achieved for the NVEM
cache if it is managed by the DBMS. The use of disk caches,
however, is transparent to the DBMS so that unmodified pages
do not migrate from main memory to the disk cache. Further-
more, modified pages replaced from main memory will not be
cached by current volatile disk caches if a write miss occurs.

Caching of pages in a second-level cache was found to be l
effective for FORCE than for NOFORCE because the hig
write traffic resulted in short cache residence times per pag
In addition, the pages forced out of main memory and stored
the second-level cache, also remained buffered in main mem
ry causing a double caching for modified pages.
While NVEM alone supports all usage forms of intermediat
semiconductor memory to reduce the number of synchrono
disk I/Os, the reduced cost of disk caches and SSD can ma
the combined use of two or even three of these storage typ
desirable. For instance, one could use non-volatile disk cach
to implement write buffers and SSD to keep entire files res
dent in semiconductor memory. Extended memory can then
used to hold a second-level database cache.
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