Enforcing Modeling Guidelinesin an ORDBM S-based UML -Repository

N.Ritter, H.-P. Steiert
University of Kaiserdautern, Dept. of Computer Science
P. O. Box 3049, D-67663 K aiser dautern, Germany
{ritter steiert}@informatik.uni-kl.de

Abstract

Due to itsrich set of modeling concepts and its broad application spectrum the Unified Modeling
Language (UML) has become widely accepted for modeling many aspects of software systems.
Since UML is not related to any particular design method, each software development project has
to establish its own modeling guidelines. Hence, tool support is needed for guiding the developer
throughout the modeling process and for enforcing project-related integrity of UML models. In
this paper, we present our approach for enforcing guidelinesin UML-based software devel opment
processes. For managing UML models, we implemented a UML repository on top of an object-
relational database management system (ORDBMS). Guidelines are expressed as OCL constraints
and are enforced either automatically, i. e., by the UML repository, or on user demand. For this
purpose, we take advantage of ORDBMS query facilities for checking guidelines by automated
mapping of OCL constraintsto SQL expressions.

Keywords: UML, OCL, Modeling Guidelines, Repository, Object-Relational Database Systems
1 Introduction

In our SENSOR project we consider new object-relational database technology for
software systems which have to support data management tasks in software engineering
projects. In detail we aim at two goals. First, we are developing a shared UML repository
(UML, Unified Modeling Language, [4][5][12]) based on an object-relational database
management system (ORDBMYS) [11] in order to support cooperation of developers and reuse
of design. Second, we want to generate database schemas and object-oriented database ap-
plication programming interfaces (API) for engineering applications from a graphicaly
specified UML model. This paper deals with some important aspects of our UML repository:
exploiting OCL constraints for preserving consistency of UML models and for enforcing
guidelines during the modeling process.

UML is becoming a defacto standard for object-oriented modeling. The Object
Management Group (OMG) has adopted the UML into its Object Management Architecture
(OMA). Furthermore, UML has become broadly supported by the vendors of graphica
modeling tools. In comparison to other information models, e. g., the Entity-Relationship-
model [1], UML has lots of advantages. It is object-oriented and object-orientation has
become the leading software development technology. Also, UML offers a large set of
structural modeling elements including class structures and several options to define the
semantics of relationships. In addition, it comes aong with modeling el ements for describing
the behaviour of a system and for state-oriented aspects. The OCL (Object Constraint
Language, [6][13]) enables developers to specify constraints in a descriptive manner.
Unfortunately, OCL is only weakly represented in many descriptions of UML [3]. In this
paper we will focus on the use of OCL for our purposes.

Our implementation of a UML repository is based on the UML metamodel and is
implemented by exploiting an ORDBMS. The enhanced type system, the powerful SQL
facilities and the extensibility features of ORDBMSs have proven to be very helpful for our
purposes. The repository manages UML models. The implementation of the UML repository,
i.e, the mapping of the UML metamodel to an object-relational database schema, is
described in Sect. 2. In this section, we also outline how OCL constraints can be mapped to

SQL constraints. The usage of OCL in our project is not limited to global integrity constraints.
We aso exploit OCL for enforcing project-related design guidelines. A short classification of
guidelines with examples and their implementation as SQL constraintsis given in Sect. 3. The
sample constraints illustrated in Sect. 2 and Sect. 3 are manually mapped from OCL to SQL.
In order to provide adequate tool support for our approach we developed an OCL-to-SQL
compiler for automatic mapping of OCL constraints to SQL. This compiler is outlined in
Sect. 4. Sect. 5 concludes the paper.

2 TheUML Repository

As mentioned before one of our research goals is to find out whether or not ORDBMSs
provide adequate mechanisms for managing engineering data. As a sample application we are
developing a UML repository based on an ORDBMS. Managing UML models designed as
part of the software development process within a UML repository has several advantages.
First, a shared database eases cooperation of developers involved in the development process.
Second, the repository serves as a basis for the reuse of design decisions documented as UML
models. Third, higher software quality can be achieved by analyzing UML models. This way
design errors can be detected early and design guidelines can be enforced. Query facilities
provided by ORDBM Ss seem to be helpful for this (analyzing) task. Fourth, UML models can
be used to generate database schemas and APIs[8][10].

In [5], UML itself is used to describe the UML meta-model. Since the graphical modeling
elements are not powerful enough to completely determine the semantics of UML, additional
invariants are used. These invariants are expressed in OCL, which is a descriptive object-
oriented constraint language. A textual comment in a natura language completes the
specification of UML.

ModelElement

D
+subtype +generalization

‘ 1.1 ‘ *

GeneralizableElement Generalization

‘ 1.1 ‘ *

+supertype +specialization

Figure 1. UML classdiagram: ‘Generalization Hierarchy’

Our UML repository is based on the UML meta-model [5] and is implemented by
exploiting an ORDBMS [11]. We have mapped the UML meta-model to an object-relational
database schema. In order to enforce data integrity in the UML repository we have
implemented the invariants as SQL constraints. The powerful SQL facilities and the exten-
sibility features of ORDBMS have proven to be very helpful for these purposes. The current
implementation only supports manipulating UML models via the SQL interface, but we
intend to additionally provide an API which is compliant to the UML CORBAfacility
Interface Definition [7].

Mapping the Meta-M odel
Due to space restrictions, we cannot describe the features of ORDBMS in detail in this

paper. Nethertheless, a short introduction into the object-relational data model and the
extensibility features of ORDBMS s essential for a deeper understanding. In [11] Stonebraker

redaims an ORDBMS to provide & least user-defined types (UDT), user-defined routines
(UDR), arule system and inheritance hierarchies for types and tables. The implementation d
our UML repository exploits all these feaures.

Figure 1 shows a simplified except of the UML meta-model, which will server us as an
example for demonstrating the principles of our approach (throughou this paper we use the
SQL dided of the ORDBMS ‘I nformix Dynamic Server’). Instances of the dass ‘Gener-
alizdbeElement’ represent modeling elements which are &le to participate in generalization
relationships. The relationships themselves are represented by instances of the dass
‘Generalization'. In the foll owing we outline how these structures can be mapped to an oljea-
relational database schema.

In afirst step ead classof the UML meta-model is mapped to a user-defined type. We
exploit the type hierarchies provided by the ORDBMS in order to implement the inheritance
relationships in the UML model. This resultsin the following ROW TY PES:

CREATE ROW TYPE model_element_ty
(id oid_ty,
name name_ty);

CREATE ROW TYPE generalizable_element_ty
(is_root BOOLEAN,

is_leaf BOOLEAN,

is_abstract BOOLEAN
) UNDER model_element _ty;

CREATE ROW TYPE generaliztion_ty
(discriminatorname_ty,

subtype oid_ty,

supertype oid_ty
) UNDER model_element_ty;

Eadch ROW TYPE has an additional attribute ‘id’, which dces not stem from the UML meta-
model. Values of this attribute uniquely identify instances in the database. Itstype, ‘oid_ty’, is
not a build-in type, but an user-defined OPAQUE TYPE. In contrast to ROW TYPES, the internal
representation o an OPAQUE TYPE is hidden. A value of this type is nat only unique in the
whole database, it also contains additional information. First, the name of the table used for
storing the instance and, second, the name of the type ‘oid_ty’ is contained. User defined
functions provide accssto bah.

Althoughreferences are included in the standard SQL:1999(2], the ommercial ORDBMS
used does not suppat references. Hence the relationships between the dasses are imple-
mented byforeign keys, i. e, the atributes ‘ subtype’ and ‘supertype’ of ‘ generaization_ty’.

In an ORDBMS an instance of a ROW TYPE can nd live for itself. It has to be stored in a
table. Therefore, eady ROW TYPE is as®ciated with a rrespondng dhtabase table.
ORDBMSs also suppat inheritance relationships among tables. Hence, the type hierarchy is
refleaed bythe foll owing table hierarchy:

CREATE TABLE model_element_ta OF TYPE model_element_ty
(PRIMARY KEY(id));

CREATE TABLE generalizable_element_ta OF TYPE generalizable_element_ty
(PRIMARY KEY(id)) UNDER model_element _ta;

CREATE TABLE generaliztion_ta OF TYPE generalization_ty
(PRIMARY KEY (id),
FOREIGN KEY (subtype) REFERENCES generalizable_element_ta (id),
FOREIGN KEY (supertype) REFERENCES generalizable_element_ta (id)
) UNDER model_element_ta;

The dtribute ‘id’ isused asaprimary key. In order to assgna wrred value to this attribute
for ead row, we exploit the rule system of the ORDBMS. If a new instanceis inserted or an
existing instance is modified, then atrigger is exeauted. This trigger assgns a new identifier
to attribute ‘id’ if its value is NULL, otherwise it cheds whether or not the value is corred.
Additiondlly, the foreign key constraints enforcereferential integrity.

Invariants

In addition, the OCL [6] invariants defined in the UML meta-model are mapped to SQL
constraints (more predsely, we map OCL constraints to SQL predicates, which can be used in
SQL constraints, triggers, and WHERE clauses). Hence, we preserve the mnsistency of UML
models managed by the repasitory. In the following, the mapping d OCL constraints is
demonstrated by two examples.

In [5], an OCL constraint is given defining the semantics of the dtribute ‘isRoat’ of class
‘GeneralizableElement’. If the value of this attribute is ‘true’ for any instance of
‘GenerdizableElement’, the instance must not have any relationship to an instance of
‘GeneralizableElement’ in role ‘generdizaion’. These semantics is predsely represented by
the foll owing OCL constraint:

context GeneralizableElement inv:
self.isRoot implies self.generalization->isEmpty;

Using an ORDBMS for storing UML models enables us to exploit its query faaliti es for
the evaluation d OCL constraints. The OCL constraint above results in the following SQL
ched-constraint:

CHECK NOT EXISTS
(SELECT*
FROM generalizable_element_ta AS t1
WHERE NOT (0 =(SELECT count(*)
FROM generalization_ta AS t2
WHERE tl.id = t2.subtype)));

Unfortunately, na all constraints are & smple & this one. Often, OCL constraints include
complex computations. For example, the operation *all Supertypes' of class' Generali zableEle-
ment’” computes the transitive dosure of al supertypes of a given instance of
‘GeneralizableElement’. In arder to map the following OCL constraint to an SQL constraint,
it isrequired to previously map the operation ‘al Supertypes to aUDR.

context GeneralizableElement inv:
self.isRoot implies self.generalization->isEmpty;

The UDR *all Supertypes (signature seebelow) can be implemented either in Java, C, or a
proprietary stored-procedure language and registered in the database.

CREATE PROCEDURE all_supertypes (generalizable_element ge)
RETURNING SET(generalizable_element_ty NOT NULL);

In order to map the previous OCL constraint given abowve ‘all_supertypes’ can be used as
follows:

CHECK NOT EXISTS
(SELECT*
FROM generalizable_element_ta AS t1
WHERE NOT (t1 IN all_supertypes(tl));

The discussions of this section clarify that in order to capture the semantics of the UML
meta-model completely, OCL constraints can be mapped to SQL. In the following sections,
we will see that these mapping mechanisms can also be used for other purposes further
supporting the modeling process with UML.

3 Enforcing Design Guidelines

In the previous section, we outlined how we map the well-formedness rules to SQL. Now
we want to detail this discussion by considering the objectives OCL can contribute to achieve.
Exploitation of constraints in the UML repository is not limited to enforcing the class
invariants specified in [5]. Furthermore, constraints are a helpful support for guiding the de-
velopers through the process of modeling [9]. We intend to exploit OCL constraints for the
following purposes:

* Design Guidelines

Design guidelines are additional constraints on UML models. Hence, the repository
enforces that only valid UML models are stored, i. e., UML models which fulfil both, the
invariants and the guidelines. We distinguish two kinds of design guidelines:

Global Design Guidelines

Global design guidelines hold throughout the entire process of modeling. In contrast to the
invariants specified in [5], they are strongly related to a particular project.

As an example, assume that your team is using Java which does not support multiple
inheritance. Thus, a globa design guideline is supposed to control those UML models
which, mapped to Java, do not exploit multiple inheritance. Such a guideline is strongly
related to Java projects. It may be directly expressed as an OCL constraint, restricting the
number of superclasses for each specified class to at most one:

context: GeneralizableElement inv:
self.generalization->size <=1

The resulting SQL constraint is given below:

CHECK NOT EXISTS (SELECT *
FROM generalizable_element_ta ge
WHERE NOT (1 >= (SELECT count(*)
FROM generalization_ta g
WHERE ge.id = g.subtype)))

Temporary Design Guidelines
The use of global design guidelines may be too restrictive in some cases. Often, in early

modeling phases the guidelines should be less restrictive than in the final phases.

For example, object-oriented programming languages (OOPL) like Java and Smalltalk do
not directly support n-ary associations, because relationships are expressed through
references or collections of references. Usually, such associations are implemented by an

additional class conreding the asciated classs. In ealy analysis phases, such nary
asciations may be helpful. In later phases of the development process however, it is
more reasonable to have dasses dlowing a straight implementation. The following
constraint can be added to the invariants and design gudelines if avoidance of any nary
associations is wanted:

context Association inv:
self.connection ->size = 2

This constraint restricts the amourt of instances of ‘AssciationEnd conreded to ore
instance of * Asociation to exadly two. In the UML repaository it may be implemented by
a dhedk constraint:

CHECK NOT EXISTS (SELECT *
FROM association_ta a
WHERE NOT(2=(SELECT count(*)
FROM association_end_ta ae
WHERE ae.association = a.id)))

Process-related Design Rules

Whil e design gudelines are strongy related to the UML models dored in the UML repos-
itory, processrelated design rules are used to control the modeling process itself. We
intend to exploit OCL for design rulesin the foll owing ways.

Pre- & Postconditions

These rules are related to operations. Precondtions describe the states of a system, in
which the exeaution o an operationis all owed. By the same token, postcondti ons describe
states corred after exeaution.

OCL suppats pre- and postcondtions for operations, bu it is not possble to refer to the
before-state of an operation in the spedficaion d a postcondtion. Precondtions may
involve the parameters of the operation and postcondtions may involve the result.
Therefore, chedking pre- and postcondtions in the repository is smilar to cheding
guidelines with the exception that the SQL constraints may include parameters. A sample
mappingisgiven below.
context GeneralizableElement::remove_generalization(Generalization gen)
pre: self->generalization->includes(gen)

CHECK NOT EXISTS (SELECT *
FROM generalizable_element_ta AS ge
WHERE $gen IN (SELECT subtype
FROM generalization_ta AS g
WHERE g.subtype = $id))

This precndtionis asociated with * Generali zabl eElement::remove_generalization' which
removes an generdizaion relationship for a given instance of class
‘GenerdizableElement’. It chedks whether or nat the relationship exists. The term ‘$id’ in
the SQL statement is a variable which neadsto be boundto the value of the identifier of the
objed the operation is applied to. Additionaly, the variable ‘$gen’ has to be boundto the
identifier of the generalizaion relationship to be removed.

Design Goals

Design gals arerelated to long-term adivities. They are used to describe the intended final
state of a design adivity. In contrast to gudelines and pre- and paostcondtions, which are
enforced by the system, the developer itself may dedde when to examine adesign gal.
Thus, cheding constraints on demand is suppated in ou approach.

Following ou approadh, OCL can serve & a powerful tod for enforcing the preasenessof
UML models in general, for enforcing design gudelines and for guiding the developer
throughthe processof modeling.

4 Mapping OCL constraints

In order to exploit OCL constraints as described so far it is nat suitable to convert the con-
straints to SQL manually. Espedally regarding that guidelines evolve over time, which is
refleded by the temporary design gudelines, and that developers may want to ched design
goals in an ad-hoc manner, manual mapping is not accetable, because the work of trandating
the constraints is exhausting and error-prone. Additionally, developers would need to be
experts not only in UML and OCL but also for SQL and ORDBMS functionality. In order to
avoid these cmplexities we want to support automatic mapping d OCL constraints
(expressng invariants, design gudelines, etc.) by an OCL-to-SQL compiler. This compil er
works as foll ows.

After parsing the OCL constraint, the compiler generates an intermediate representation,
cdled trandation graph. The UML objed diagram shown in Figure 2 ill ustrates a sample
trandlation gaph. It results from parsing the design gudeline introduced in Sed. 3, which
restricts the upper bound @ superclasses for ead classin aUML model to at most one.

Allinstances

p
class | class para2 :"iiwameterl
iterator |: variable 1:
ize :

Integer
GeneralizableElement Size :
2 UmiClass Size

set| set

SetG:

ProieclionCoIleclionBvAssociaIionEndNotl‘e

objec(/:b@ associaliolllEnd : target
_—
Self ; Supertype :
VariableNode UmlAssaciationEnd

Figure 2: UML objed diagram: ‘ Sample Trandation Tre€’

The translation gaph consists of two kinds of nodes, translation nods and meta-data
nodes. In ou example, the objeds ‘ForAll’, ‘SetGE’, ‘Size, ‘SaG’, ‘Sef and ‘1' are
trandlation nocaes (dark coloured). Tranglation nods implement the code generation algo-
rithm, which depends on information abou the UML model and its mapping to the database
schema. Meta-data nodes (‘ Generali zebleElement’ and * Supertype’ (light coloured)) provide
thisinformation. These nodes represent instances of the dasses of the UML meta-model.

The dasses for building and representing this trandation gaph are ill ustrated by the UML
classdiagram shown in Figure 3. Of courseg, thisis not the whole UML model for translation

graphs but it suffices for explanation. For example, an instance of class‘ForAll’ has to be
conreded to instances of ‘SetNode', ‘VariableNode' and ‘PredicaeNode'. In the sample
trandation gaph (see UML objea diagram (Figure 2)) the node ‘ForAll’ is an instance of
class‘ForAll’. It is conreded to an instance of class ‘Alllnstances’, named ‘SetGE’. This
relationship is valid because dass'Alllnstances' is subclassof abstrad class‘ SetNode'. For
the same reasons, the objeds ‘Predicae’ and ‘Self’, instances of the dasses ‘GreaerEqual’
and ‘Variable', are mnreded to ojed ‘ForAll’. Also, the node ‘ SetGE’ has to be mnneded
with an instance of class ‘UmliClass. This is refleded by the relationship to
‘GeneralizableElement’, an instance of class ‘UmliClass, representing class
‘GeneralizableElement’ in the UML meta-model. This instance provides the meta-data needed
by ‘SetGE’ in the trandation process

The trandation processis based on SQL templates and construction rules, implemented by
the dasses assciated with the trandation noaks. The following SQL template is associated

1

1_| SetNode (<

\

‘ \ [ProjectionCollectionNode |
\ 1 { Jo.x

P

L
[ProjectionCollectionByAttibuteNode |
[|
[

1
0.* /R
target omi
/1 I
1

UmlAttribute

N
target
0.*

Ny ‘

target

set

Figure 3: UML classdiagram ‘Trandation Graph Nodes

with the ‘ForAll’ node:

NOT EXISTS(SELECT *
FROM ($SetNode$) AS $VariableNode$
WHERE NOT ($PredicateNode$))

SQL templates may contain generic parameters, enclosed by ‘$. As part of the trandation
process ead nock aks its subnocdes to provide an appropriate SQL fragment in order to
replace the generic parameters. In the sample trandation gaph abowve, the objed ‘ForAll’
receves three SQL fragments from its subnods * SetGE’, * Self’ and ‘ Predicae’.

The *SetGE’ node depends on meta-data in order to deliver an appropriate SQL fragment.
It neads the name of the database table in which the tuples representing instances of the dass
are stored. In ou example, this name is provided by an instance of meta-class ‘UmlClass
representing the meta-data of the dass named ‘GeneralizableElement’. Hence parameter
$tablename$ in the SQL template below is replaced by ‘generdizable element _ta’. The
resulting SQL fragment is used to replaceparameter $SetNode$ in the SQL template éove.

SELECT *
FROM $tablename$

Ancther interesting knd d nodes are the projedion nods. We have identified four kinds
of projedion nodes, ‘ProjedObjedByAttribute’, ‘ProjedObjedByAssciationEnd,
‘ProjedColledionByAttribute’ and ‘ProjedColledionByAsziationEnd' . These nodes are
related to the two different ways of accessng structural feaures in OCL (either by accessng
an attribute or by navigating alongan asociation) and the two dfferent kinds of results (either
asingle objed or a wlledion d objeds). The trandation gaph in ou example cntains an
instance of class‘ProjedColledionByAssociationEnd, because the evaluation d the sample
constraints needs to navigate from class* Generali zableElement’ to the dass’ Generdizaion
and the expeded result is a mlledion d instances of class' Generdlizaion'. If asked by noc
‘Sizé to provide an SQL fragment it has to complete one of the foll owing templates:

SELECT T2.*
FROM $sourcetablename AS T1, $targettablename$ AS T2
WHERE T1.$foreignkey$ = T2.id AND T1.id = $object$.id

SELECT T2.*
FROM $sourcetablename$ AS T1, $targettablename$ AS T2
WHERE T1.id = T2.$foreignkey$ AND T1.id = $object$.id

SELECT T3.*
FROM $sourcetablename$ AS T1, $relationtablename$ AS T2, $targettablename$ AS T2
WHERE TL1.id = T2.$sourceforeignkey$

AND T2.$targetforeignkey$ = T3.id

AND TL1.id = $object$.id

The first template is related to a (1:1)-relationship, the second to a (1:n)-relationship and
the last is related to an (n:m)-relationship. The projedion nod dooses the template by
evauating the meta-data provided by ohed ‘supertype’. In ou example, ‘SetG' choaoses the
seaond template. Parameter $sourcetablename$ is replaceal by ‘generalization_element_ta,
$targettablename$ by ‘ generdizaion_ta', Horeignkey$ by ‘subtype’ and objed$ by ‘self’.

After processng al trandation gaph nods as outlined in this dion we obtain the
following SQL seach expresson:

NOT EXISTS
(SELECT * FROM generalizable_element_ta AS self
WHERE NOT
(1<=(SELECT COUNT(*)
FROM TABLE (MULTISET (
(SELECT T2.*
FROM generalizable_element_ta AS T1, generallization AS T2
WHERE T1.id = T2.subtype AND T1.id =selfid))))))

Compared to the SQL constraint presented in Sed. 3 which resulted from a manual
mapping d the same OCL constraint, the SQL expresson resulting from the dgorithm
discussed in this dion is much more mwmplex. So far, we did na consider any optimization
and performance isaues, bu the SQL constraints creaed by ou compiler seen to be a
challenge for every DBMS optimizer. Thus, generation d more dficient SQL constraints will
be amajor isaue of future work.

We have to admit that there ae some OCL constructs which are difficult to map, e. g., the
generic iterator operator. So far, we do nd allow to use such operators in OCL constraints.
However, we think that the extensibility feaures of ORDBMS will help us to fix this
problem.

5 Conclusions

In this paper, we have reported onour UML repository, which is based onthe UML meta
model and manages UML models. The UML repository is implemented by wsing an
ORDBMS. We have taken advantage of the enhanced type system in order to map the UML
meta-model to a database schema. Additionally, the examples presented throughou the paper
show that the powerful query fadliti es of an ORDBMS are very helpful for the mapping o
OCL constraints to SQL constraints. In contrast to a hard-coded implementation d the dass
invariants in modeling tods, ou approad is much more flexible. It alows to adapt the
invariants to the needs of a particular projed and its development phases. Some tods offer an
extensibility interface ad a scripting language, which may be used for this purpose, forcing
the modeler to be an expert in yet another programming language. We prefer to use asingle
language (OCL) for bath, tail oring the modeling tods and the modeling itself. In addition, we
can take alvantage from the ORDBMS optimizer, in arder to adiieve dficient evaluation o
constraints. To the best of our knowledge our approach is the first one taking advantage of the
new database techndogy for the purposes of cheding severa kinds of constraints.

Our approad allows us to use OCL for both cheding validity of UML models (invariants
spedfied in [5]) and maintaining consistency regarding design gudelines. We have
introduced two kinds of design gudelines, global design gudelines and temporary gudelines.
In addition, two kinds of OCL constraints related to the modeling process have been
examined (pre- and postcondtions, design gals).

Currently, a @mpiler which maps OCL constraints to SQL constraints is under
development. We have explained the trandation algorithm by an example. It is based ona
trandation gaph consisting d translation nods and meta-data nodes. Ead transation noce
in the graph represents a building Hock of the dgorithm. An SQL constraint is reaursively
aggregated by expanding SQL templates, wheress the parameters in the template ae
substituted by SQL fragments provided by subnodes. Choasing the gopropriate SQL template
and expanding the parameters depends on meta-data, which is provided by meta-data nodes.
So far the compiler is limited to classinvariants. The next version will also accept pre- and
paostcondtions.

Finally, we want to mention that our efforts in a semantic-preserving mapping UML/OCL
to an ORDBMS interfacehas given us the oppatunity to gain lots of experience @ou UML/
OCL and to lean much abou its deficiencies and weeknesses. In addition we exped our
approadc to provide afounchtion for automated model analysis.

' Subprojed A3 Supporting Software Engineering Processes by Object-Relational Database Technology of the
Sonderforschungsbereich 501Devel opment of Large Systems by Generic Methods, funded by the German
Science Foundktion.

References

[1] P. P. Chen: The Entity-Relationship-Model — Towards a Unified View of Data, ACM Transadionson
Database Systems, 1(1), 1976

[2] 1SO Fina CommiteeDraft — Database Language SQL,
ftp://jerry.eceumassd.edu/isowg3/dbl/BA SEdocs/pubic, 1999

[3] P.F.Linington: Options for Expresing ODP Enterprise Communities and Their Policies by Using UML,
Proceeadings Third International Enterprise Distributed Objed Computing Conference (EDOC), Mannheim,
Germany, September 1999

[4] OMG, UML Notation Guide, Version 11, OMG Document ad/97-08-05, September 1997
[5] OMG, UML Semantics,Version 11, OMG Document ad/97-08-04, September 1997

[6]

[7]

(8]

[9]

(10

[11]

[12]
[13]

OMG, Objed Constraint Languege Spedficaion, Version 11, OMG Document ad/97-08-08, September
1997

OMG, OA&D CORBAfadlity InterfaceDefinition, Version 11, OMG Document ad/97-08-09, September
1997

W. Mahnke, N. Ritter, H.-P. Steiert: Towards Generating Objed-Relational Software Engineaing
Repasitories, 8. FachtagungDatenbanken in Biro, Technik und Wissenschaft, Freiburg, Germany,
March 1998

N. Ritter: DB-based Cooperation Services for Engineaing Applicaions, Ph. D. thesis (in german), 1997

N. Ritter, H.-P. Steiert, W. Mahnke, R. Feldmann: An Objed-Relational SE-Repaository with Generated
Services, Proc. Managing Information Techndogy Resources in Organizations in the Next Mill enium
(Computer-Aided Software Engineeing Tradk of IRMA’99), IDEA GroupPubl., May 1999

M. Stonebraker, P. Brown: Objed-Relational DBMSs - Trading the next grea Wave, Morgan Kaufmann
PublishersInc., San Francisco, 1999

UML Speficiation (draft), version 13 beta R7, ‘ http://www.rational.com/uml/resources/documentationy’

J. Warner, A. Kleppe: The Objed Constraint Language — Predse Modeling with UML, Addison Wesley
Longman, Inc., Realing, Massachusetts, 1999

