
Enforcing Modeling Guidelines in an ORDBMS-based UML-Repository
N.Ritter, H.-P. Steiert

University of Kaiserslautern, Dept. of Computer Science
P. O. Box 3049, D-67663 Kaiserslautern, Germany

{ritter,steiert}@informatik.uni-kl.de

Abstract

Due to its rich set of modeling concepts and its broad application spectrum the Unified Modeling
Language (UML) has become widely accepted for modeling many aspects of software systems.
Since UML is not related to any particular design method, each software development project has
to establish its own modeling guidelines. Hence, tool support is needed for guiding the developer
throughout the modeling process and for enforcing project-related integrity of UML models. In
this paper, we present our approach for enforcing guidelines in UML-based software development
processes. For managing UML models, we implemented a UML repository on top of an object-
relational database management system (ORDBMS). Guidelines are expressed as OCL constraints
and are enforced either automatically, i. e., by the UML repository, or on user demand. For this
purpose, we take advantage of ORDBMS query facilities for checking guidelines by automated
mapping of OCL constraints to SQL expressions.

Keywords: UML, OCL, Modeling Guidelines, Repository, Object-Relational Database Systems

1 Introduction

In our SENSOR projecti we consider new object-relational database technology for
software systems which have to support data management tasks in software engineering
projects. In detail we aim at two goals. First, we are developing a shared UML repository
(UML, Unified Modeling Language, [4][5][12]) based on an object-relational database
management system (ORDBMS) [11] in order to support cooperation of developers and reuse
of design. Second, we want to generate database schemas and object-oriented database ap-
plication programming interfaces (API) for engineering applications from a graphically
specified UML model. This paper deals with some important aspects of our UML repository:
exploiting OCL constraints for preserving consistency of UML models and for enforcing
guidelines during the modeling process.

UML is becoming a de-facto standard for object-oriented modeling. The Object
Management Group (OMG) has adopted the UML into its Object Management Architecture
(OMA). Furthermore, UML has become broadly supported by the vendors of graphical
modeling tools. In comparison to other information models, e. g., the Entity-Relationship-
model [1], UML has lots of advantages. It is object-oriented and object-orientation has
become the leading software development technology. Also, UML offers a large set of
structural modeling elements including class structures and several options to define the
semantics of relationships. In addition, it comes along with modeling elements for describing
the behaviour of a system and for state-oriented aspects. The OCL (Object Constraint
Language, [6][13]) enables developers to specify constraints in a descriptive manner.
Unfortunately, OCL is only weakly represented in many descriptions of UML [3]. In this
paper we will focus on the use of OCL for our purposes.

Our implementation of a UML repository is based on the UML meta-model and is
implemented by exploiting an ORDBMS. The enhanced type system, the powerful SQL
facilities and the extensibility features of ORDBMSs have proven to be very helpful for our
purposes. The repository manages UML models. The implementation of the UML repository,
i. e., the mapping of the UML meta-model to an object-relational database schema, is
described in Sect. 2. In this section, we also outline how OCL constraints can be mapped to

SQL constraints. The usage of OCL in our project is not limited to global integrity constraints.
We also exploit OCL for enforcing project-related design guidelines. A short classification of
guidelines with examples and their implementation as SQL constraints is given in Sect. 3. The
sample constraints illustrated in Sect. 2 and Sect. 3 are manually mapped from OCL to SQL.
In order to provide adequate tool support for our approach we developed an OCL-to-SQL
compiler for automatic mapping of OCL constraints to SQL. This compiler is outlined in
Sect. 4. Sect. 5 concludes the paper.

2 The UML Repository

As mentioned before one of our research goals is to find out whether or not ORDBMSs
provide adequate mechanisms for managing engineering data. As a sample application we are
developing a UML repository based on an ORDBMS. Managing UML models designed as
part of the software development process within a UML repository has several advantages.
First, a shared database eases cooperation of developers involved in the development process.
Second, the repository serves as a basis for the reuse of design decisions documented as UML
models. Third, higher software quality can be achieved by analyzing UML models. This way
design errors can be detected early and design guidelines can be enforced. Query facilities
provided by ORDBMSs seem to be helpful for this (analyzing) task. Fourth, UML models can
be used to generate database schemas and APIs [8][10].

In [5], UML itself is used to describe the UML meta-model. Since the graphical modeling
elements are not powerful enough to completely determine the semantics of UML, additional
invariants are used. These invariants are expressed in OCL, which is a descriptive object-
oriented constraint language. A textual comment in a natural language completes the
specification of UML.

Our UML repository is based on the UML meta-model [5] and is implemented by
exploiting an ORDBMS [11]. We have mapped the UML meta-model to an object-relational
database schema. In order to enforce data integrity in the UML repository we have
implemented the invariants as SQL constraints. The powerful SQL facilities and the exten-
sibility features of ORDBMS have proven to be very helpful for these purposes. The current
implementation only supports manipulating UML models via the SQL interface, but we
intend to additionally provide an API which is compliant to the UML CORBAfacility
Interface Definition [7].

Mapping the Meta-Model

Due to space restrictions, we cannot describe the features of ORDBMS in detail in this
paper. Nethertheless, a short introduction into the object-relational data model and the
extensibility features of ORDBMS is essential for a deeper understanding. In [11] Stonebraker

GeneralizationGeneralizableElement

*1..1

+generalization

*

+subtype

1..1

*1..1

+specialization

*

+supertype

1..1

ModelElement

Figure 1: UML class diagram: ‘ Generalization Hierarchy’

reclaims an ORDBMS to provide at least user-defined types (UDT), user-defined routines
(UDR), a rule system and inheritance hierarchies for types and tables. The implementation of
our UML repository exploits all these features.

Figure 1 shows a simpli fied excerpt of the UML meta-model, which will server us as an
example for demonstrating the principles of our approach (throughout this paper we use the
SQL dialect of the ORDBMS ‘I nformix Dynamic Server’) . Instances of the class ‘Gener-
alizalbeElement’ represent modeling elements which are able to participate in generalization
relationships. The relationships themselves are represented by instances of the class
‘Generalization’ . In the following we outline how these structures can be mapped to an object-
relational database schema.

In a first step each class of the UML meta-model is mapped to a user-defined type. We
exploit the type hierarchies provided by the ORDBMS in order to implement the inheritance
relationships in the UML model. This results in the following ROW TYPES:

CREATE ROW TYPE model_element_ty
(id oid_ty,

name name_ty);

CREATE ROW TYPE generalizable_element_ty
(is_root BOOLEAN,

is_leaf BOOLEAN,
is_abstract BOOLEAN

) UNDER model_element_ty;

CREATE ROW TYPE generaliztion_ty
(discriminatorname_ty,

subtype oid_ty,
supertype oid_ty

) UNDER model_element_ty;

Each ROW TYPE has an additional attribute ‘ id’ , which does not stem from the UML meta-
model. Values of this attribute uniquely identify instances in the database. Its type, ‘oid_ty’ , is
not a build-in type, but an user-defined OPAQUE TYPE. In contrast to ROW TYPEs, the internal
representation of an OPAQUE TYPE is hidden. A value of this type is not only unique in the
whole database, it also contains additional information. First, the name of the table used for
storing the instance and, second, the name of the type ‘oid_ty’ is contained. User defined
functions provide access to both.

Although references are included in the standard SQL:1999 [2], the commercial ORDBMS
used does not support references. Hence, the relationships between the classes are imple-
mented by foreign keys, i. e., the attributes ‘subtype’ and ‘supertype’ of ‘ generalization_ty’ .

In an ORDBMS an instance of a ROW TYPE can not live for itself. It has to be stored in a
table. Therefore, each ROW TYPE is associated with a corresponding database table.
ORDBMSs also support inheritance relationships among tables. Hence, the type hierarchy is
reflected by the following table hierarchy:

CREATE TABLE model_element_ta OF TYPE model_element_ty
(PRIMARY KEY(id));

CREATE TABLE generalizable_element_ta OF TYPE generalizable_element_ty
(PRIMARY KEY(id)) UNDER model_element_ta;

CREATE TABLE generaliztion_ta OF TYPE generalization_ty
(PRIMARY KEY (id),

FOREIGN KEY (subtype) REFERENCES generalizable_element_ta (id),
FOREIGN KEY (supertype) REFERENCES generalizable_element_ta (id)

) UNDER model_element_ta;

The attribute ‘ id’ is used as a primary key. In order to assign a correct value to this attribute
for each row, we exploit the rule system of the ORDBMS. If a new instance is inserted or an
existing instance is modified, then a trigger is executed. This trigger assigns a new identifier
to attribute ‘ id’ if its value is NULL, otherwise it checks whether or not the value is correct.
Additionally, the foreign key constraints enforce referential integrity.

Invariants

In addition, the OCL [6] invariants defined in the UML meta-model are mapped to SQL
constraints (more precisely, we map OCL constraints to SQL predicates, which can be used in
SQL constraints, triggers, and WHERE clauses). Hence, we preserve the consistency of UML
models managed by the repository. In the following, the mapping of OCL constraints is
demonstrated by two examples.

In [5], an OCL constraint is given defining the semantics of the attribute ‘ isRoot’ of class
‘GeneralizableElement’ . If the value of this attribute is ‘ true’ f or any instance of
‘GeneralizableElement’ , the instance must not have any relationship to an instance of
‘GeneralizableElement’ in role ‘generalization’ . These semantics is precisely represented by
the following OCL constraint:

context GeneralizableElement inv:
self.isRoot implies self.generalization->isEmpty;

Using an ORDBMS for storing UML models enables us to exploit its query faciliti es for
the evaluation of OCL constraints. The OCL constraint above results in the following SQL
check-constraint:

CHECK NOT EXISTS
(SELECT *

FROM generalizable_element_ta AS t1
WHERE NOT (0 = (SELECT count(*)

FROM generalization_ta AS t2
WHERE t1.id = t2.subtype)));

Unfortunately, not all constraints are as simple as this one. Often, OCL constraints include
complex computations. For example, the operation ‘allSupertypes’ of class ‘GeneralizableEle-
ment’ computes the transitive closure of all supertypes of a given instance of
‘GeneralizableElement’ . In order to map the following OCL constraint to an SQL constraint,
it is required to previously map the operation ‘allSupertypes’ to a UDR.

context GeneralizableElement inv:
self.isRoot implies self.generalization->isEmpty;

The UDR ‘allSupertypes’ (signature see below) can be implemented either in Java, C, or a
proprietary stored-procedure language and registered in the database.

CREATE PROCEDURE all_supertypes (generalizable_element ge)
RETURNING SET(generalizable_element_ty NOT NULL);

In order to map the previous OCL constraint given above ‘all_supertypes’ can be used as
follows:

CHECK NOT EXISTS
(SELECT *

FROM generalizable_element_ta AS t1
WHERE NOT (t1 IN all_supertypes(t1));

The discussions of this section clarify that in order to capture the semantics of the UML
meta-model completely, OCL constraints can be mapped to SQL. In the following sections,
we will see that these mapping mechanisms can also be used for other purposes further
supporting the modeling process with UML.

3 Enforcing Design Guidelines

In the previous section, we outlined how we map the well-formedness rules to SQL. Now
we want to detail this discussion by considering the objectives OCL can contribute to achieve.
Exploitation of constraints in the UML repository is not limited to enforcing the class
invariants specified in [5]. Furthermore, constraints are a helpful support for guiding the de-
velopers through the process of modeling [9]. We intend to exploit OCL constraints for the
following purposes:

• Design Guidelines

Design guidelines are additional constraints on UML models. Hence, the repository
enforces that only valid UML models are stored, i. e., UML models which fulfil both, the
invariants and the guidelines. We distinguish two kinds of design guidelines:

Global Design Guidelines

Global design guidelines hold throughout the entire process of modeling. In contrast to the
invariants specified in [5], they are strongly related to a particular project.

As an example, assume that your team is using Java which does not support multiple
inheritance. Thus, a global design guideline is supposed to control those UML models
which, mapped to Java, do not exploit multiple inheritance. Such a guideline is strongly
related to Java projects. It may be directly expressed as an OCL constraint, restricting the
number of superclasses for each specified class to at most one:

context: GeneralizableElement inv:
self.generalization->size <= 1

The resulting SQL constraint is given below:

CHECK NOT EXISTS (SELECT *
FROM generalizable_element_ta ge
WHERE NOT (1 >= (SELECT count(*)

FROM generalization_ta g
WHERE ge.id = g.subtype)))

Temporary Design Guidelines

The use of global design guidelines may be too restrictive in some cases. Often, in early
modeling phases the guidelines should be less restrictive than in the final phases.

For example, object-oriented programming languages (OOPL) like Java and Smalltalk do
not directly support n-ary associations, because relationships are expressed through
references or collections of references. Usually, such associations are implemented by an

additional class connecting the associated classes. In early analysis phases, such n-ary
associations may be helpful. In later phases of the development process, however, it is
more reasonable to have classes allowing a straight implementation. The following
constraint can be added to the invariants and design guidelines if avoidance of any n-ary
associations is wanted:

context Association inv:
self.connection ->size = 2

This constraint restricts the amount of instances of ‘AssociationEnd’ connected to one
instance of ‘Association’ to exactly two. In the UML repository it may be implemented by
a check constraint:

CHECK NOT EXISTS (SELECT *
 FROM association_ta a
 WHERE NOT(2 = (SELECT count(*)
 FROM association_end_ta ae
 WHERE ae.association = a.id)))

• Process-related Design Rules

While design guidelines are strongly related to the UML models stored in the UML repos-
itory, process-related design rules are used to control the modeling process itself. We
intend to exploit OCL for design rules in the following ways:

Pre- & Postconditions

These rules are related to operations. Preconditions describe the states of a system, in
which the execution of an operation is allowed. By the same token, postconditions describe
states correct after execution.

OCL supports pre- and postconditions for operations, but it is not possible to refer to the
before-state of an operation in the specification of a postcondition. Preconditions may
involve the parameters of the operation and postconditions may involve the result.
Therefore, checking pre- and postconditions in the repository is similar to checking
guidelines with the exception that the SQL constraints may include parameters. A sample
mapping is given below.

context GeneralizableElement::remove_generalization(Generalization gen)
pre: self->generalization->includes(gen)

CHECK NOT EXISTS (SELECT *
FROM generalizable_element_ta AS ge
WHERE $gen IN (SELECT subtype

 FROM generalization_ta AS g
 WHERE g.subtype = $id))

This precondition is associated with ‘GeneralizableElement::remove_generalization‘ which
removes an generalization relationship for a given instance of class
‘GeneralizableElement’ . It checks whether or not the relationship exists. The term ‘$id’ in
the SQL statement is a variable which needs to be bound to the value of the identifier of the
object the operation is applied to. Additionally, the variable ‘$gen’ has to be bound to the
identifier of the generalization relationship to be removed.

Design Goals

Design goals are related to long-term activities. They are used to describe the intended final
state of a design activity. In contrast to guidelines and pre- and postconditions, which are
enforced by the system, the developer itself may decide when to examine a design goal.
Thus, checking constraints on demand is supported in our approach.

Following our approach, OCL can serve as a powerful tool for enforcing the preciseness of
UML models in general, for enforcing design guidelines and for guiding the developer
through the process of modeling.

4 Mapping OCL constraints

In order to exploit OCL constraints as described so far it is not suitable to convert the con-
straints to SQL manually. Especially regarding that guidelines evolve over time, which is
reflected by the temporary design guidelines, and that developers may want to check design
goals in an ad-hoc manner, manual mapping is not acceptable, because the work of translating
the constraints is exhausting and error-prone. Additionally, developers would need to be
experts not only in UML and OCL but also for SQL and ORDBMS functionality. In order to
avoid these complexities we want to support automatic mapping of OCL constraints
(expressing invariants, design guidelines, etc.) by an OCL-to-SQL compiler. This compiler
works as follows.

After parsing the OCL constraint, the compiler generates an intermediate representation,
called translation graph. The UML object diagram shown in Figure 2 ill ustrates a sample
translation graph. It results from parsing the design guideline introduced in Sect. 3, which
restricts the upper bound of superclasses for each class in a UML model to at most one.

The translation graph consists of two kinds of nodes, translation nodes and meta-data
nodes. In our example, the objects ‘ForAll ’ , ‘SetGE’ , ‘Size’ , ‘SetG’ , ‘Self’ and ‘1’ are
translation nodes (dark coloured). Translation nodes implement the code generation algo-
rithm, which depends on information about the UML model and its mapping to the database
schema. Meta-data nodes (‘GeneralizableElement’ and ‘Supertype’ (light coloured)) provide
this information. These nodes represent instances of the classes of the UML meta-model.

The classes for building and representing this translation graph are ill ustrated by the UML
class diagram shown in Figure 3. Of course, this is not the whole UML model for translation

ForAll :
ForAll

Self :
VariableNode

Predicate :
GreaterEqual

GeneralizableElement
: UmlClass

1 :
Integer

Supertype :
UmlAssociationEnd

Size :
Size

SetG :
ProjectionCollectionByAssociationEndNode

SetGE :
AllInstances

predicate : predicate

iterator : variable

object : object

para1 : parameter2
para2 : parameter1

associationEnd : target

set : set

class : class

set : set

Figure 2: UML object diagram: ‘ Sample Translation Tree’

graphs but it suff ices for explanation. For example, an instance of class ‘ForAll ’ has to be
connected to instances of ‘SetNode’ , ‘VariableNode’ and ‘PredicateNode’ . In the sample
translation graph (see UML object diagram (Figure 2)) the node ‘ForAll ’ is an instance of
class ‘ForAll ’ . It is connected to an instance of class ‘All Instances’ , named ‘SetGE’ . This
relationship is valid because class ‘All Instances’ is subclass of abstract class ‘SetNode’ . For
the same reasons, the objects ‘Predicate’ and ‘Self’ , instances of the classes ‘GreaterEqual’
and ‘Variable’ , are connected to object ‘ForAll ’ . Also, the node ‘SetGE’ has to be connected
with an instance of class ‘UmlClass’ . This is reflected by the relationship to
‘GeneralizableElement’ , an instance of class ‘UmlClass’ , representing class
‘GeneralizableElement’ in the UML meta-model. This instance provides the meta-data needed
by ‘SetGE’ in the translation process.

The translation process is based on SQL templates and construction rules, implemented by
the classes associated with the translation nodes. The following SQL template is associated

with the ‘ForAll ’ node:

NOT EXISTS(SELECT *
FROM ($SetNode$) AS $VariableNode$
WHERE NOT ($PredicateNode$))

SQL templates may contain generic parameters, enclosed by ‘$’. As part of the translation

process, each node asks its subnodes to provide an appropriate SQL fragment in order to

replace the generic parameters. In the sample translation graph above, the object ‘ForAll ’

receives three SQL fragments from its subnodes ‘SetGE’ , ‘Self’ and ‘Predicate’ .

The ‘SetGE’ node depends on meta-data in order to deliver an appropriate SQL fragment.
It needs the name of the database table in which the tuples representing instances of the class
are stored. In our example, this name is provided by an instance of meta-class ‘UmlClass’
representing the meta-data of the class named ‘GeneralizableElement’ . Hence, parameter
$tablename$ in the SQL template below is replaced by ‘generalizable_element_ta’ . The
resulting SQL fragment is used to replace parameter $SetNode$ in the SQL template above.

SELECT *
FROM $tablename$

Integer

UmlClass

AllInstances

1

0..*

1

0..*
class

SetNode

Size

1

0..*

1

0..*

set

ProjectionCollectionByAssociationEndNode

GreaterEqual

ValueNode

1

0..*

1

0..*

parameter1

1

0..*

1

0..*

parameter2

ProjectionCollectionNode

ProjectionCollectionByAttributeNode

ProjectionObjectByAssicioationEndNode

UmlAssociationEnd

1

0..*

1

0..*

target

1

0..*
target

1

0..*

ProjectionObjectByAttribute

UmlAttribute

1

0..*

1

0..*

target

1

0..*

1

0..*

target

ProjectionObjectNode VariableNode

ObjectNode

1

0..*

1

0..*

variable

1

0..*

1

0..*

variable

ForAll

1

0..1

1

0..1

variable

1 0..*1 0..*

set

PredicateNode

1

1

1

1 predicate

Figure 3: UML class diagram ‘Translation Graph Nodes’

Another interesting kind of nodes are the projection nodes. We have identified four kinds
of projection nodes, ‘ProjectObjectByAttribute’ , ‘ProjectObjectByAssociationEnd’ ,
‘ProjectCollectionByAttribute’ and ‘ProjectCollectionByAssoziationEnd’ . These nodes are
related to the two different ways of accessing structural features in OCL (either by accessing
an attribute or by navigating along an association) and the two different kinds of results (either
a single object or a collection of objects). The translation graph in our example contains an
instance of class ‘ProjectCollectionByAssociationEnd’ , because the evaluation of the sample
constraints needs to navigate from class ‘GeneralizableElement’ to the class ‘Generalization’
and the expected result is a collection of instances of class ‘Generalization’ . If asked by node
‘Size’ to provide an SQL fragment it has to complete one of the following templates:

SELECT T2.*
FROM $sourcetablename AS T1, $targettablename$ AS T2
WHERE T1.$foreignkey$ = T2.id AND T1.id = $object$.id

SELECT T2.*
FROM $sourcetablename$ AS T1, $targettablename$ AS T2
WHERE T1.id = T2.$foreignkey$ AND T1.id = $object$.id

SELECT T3.*
FROM $sourcetablename$ AS T1, $relationtablename$ AS T2, $targettablename$ AS T2
WHERE T1.id = T2.$sourceforeignkey$

AND T2.$targetforeignkey$ = T3.id
 AND T1.id = $object$.id

The first template is related to a (1:1)-relationship, the second to a (1:n)-relationship and
the last is related to an (n:m)-relationship. The projection node chooses the template by
evaluating the meta-data provided by object ‘supertype’ . In our example, ‘SetG’ chooses the
second template. Parameter $sourcetablename$ is replaced by ‘generalization_element_ta’ ,
$targettablename$ by ‘generalization_ta’ , $foreignkey$ by ‘subtype’ and $object$ by ‘self’ .

After processing all translation graph nodes as outlined in this section we obtain the
following SQL search expression:

NOT EXISTS
(SELECT * FROM generalizable_element_ta AS self

WHERE NOT
(1 <= (SELECT COUNT(*)

FROM TABLE (MULTISET (
 (SELECT T2.*
 FROM generalizable_element_ta AS T1, generallization AS T2
 WHERE T1.id = T2.subtype AND T1.id = self.id))))))

Compared to the SQL constraint presented in Sect. 3 which resulted from a manual
mapping of the same OCL constraint, the SQL expression resulting from the algorithm
discussed in this section is much more complex. So far, we did not consider any optimization
and performance issues, but the SQL constraints created by our compiler seem to be a
challenge for every DBMS optimizer. Thus, generation of more eff icient SQL constraints will
be a major issue of future work.

We have to admit that there are some OCL constructs which are diff icult to map, e. g., the
generic iterator operator. So far, we do not allow to use such operators in OCL constraints.
However, we think that the extensibilit y features of ORDBMS will help us to fix this
problem.

5 Conclusions

In this paper, we have reported on our UML repository, which is based on the UML meta-
model and manages UML models. The UML repository is implemented by using an
ORDBMS. We have taken advantage of the enhanced type system in order to map the UML
meta-model to a database schema. Additionally, the examples presented throughout the paper
show that the powerful query faciliti es of an ORDBMS are very helpful for the mapping of
OCL constraints to SQL constraints. In contrast to a hard-coded implementation of the class
invariants in modeling tools, our approach is much more flexible. It allows to adapt the
invariants to the needs of a particular project and its development phases. Some tools offer an
extensibilit y interface and a scripting language, which may be used for this purpose, forcing
the modeler to be an expert in yet another programming language. We prefer to use a single
language (OCL) for both, tailoring the modeling tools and the modeling itself. In addition, we
can take advantage from the ORDBMS optimizer, in order to achieve eff icient evaluation of
constraints. To the best of our knowledge our approach is the first one taking advantage of the
new database technology for the purposes of checking several kinds of constraints.

Our approach allows us to use OCL for both checking validity of UML models (invariants
specified in [5]) and maintaining consistency regarding design guidelines. We have
introduced two kinds of design guidelines, global design guidelines and temporary guidelines.
In addition, two kinds of OCL constraints related to the modeling process have been
examined (pre- and postconditions, design goals).

Currently, a compiler which maps OCL constraints to SQL constraints is under
development. We have explained the translation algorithm by an example. It is based on a
translation graph consisting of translation nodes and meta-data nodes. Each translation node
in the graph represents a building block of the algorithm. An SQL constraint is recursively
aggregated by expanding SQL templates, whereas the parameters in the template are
substituted by SQL fragments provided by subnodes. Choosing the appropriate SQL template
and expanding the parameters depends on meta-data, which is provided by meta-data nodes.
So far the compiler is limited to class invariants. The next version will also accept pre- and
postconditions.

Finally, we want to mention that our efforts in a semantic-preserving mapping UML/OCL
to an ORDBMS interface has given us the opportunity to gain lots of experience about UML/
OCL and to learn much about its deficiencies and weaknesses. In addition we expect our
approach to provide a foundation for automated model analysis.

i Subproject A3 Supporting Software Engineering Processes by Object-Relational Database Technology of the
Sonderforschungsbereich 501 Development of Large Systems by Generic Methods, funded by the German
Science Foundation.

References

[1] P. P. Chen: The Entity-Relationship-Model – Towards a Unified View of Data, ACM Transactions on
Database Systems, 1(1), 1976

[2] ISO Final Commitee Draft – Database Language SQL,
ftp://jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public, 1999

[3] P. F. Linington: Options for Expressing ODP Enterprise Communities and Their Policies by Using UML,
Proceedings Third International Enterprise Distributed Object Computing Conference (EDOC), Mannheim,
Germany, September 1999

[4] OMG, UML Notation Guide, Version 1.1, OMG Document ad/97-08-05, September 1997

[5] OMG, UML Semantics,Version 1.1, OMG Document ad/97-08-04, September 1997

[6] OMG, Object Constraint Language Specification, Version 1.1, OMG Document ad/97-08-08, September
1997

[7] OMG, OA&D CORBAfacilit y Interface Definition, Version 1.1, OMG Document ad/97-08-09, September
1997

[8] W. Mahnke, N. Ritter, H.-P. Steiert: Towards Generating Object-Relational Software Engineering
Repositories, 8. Fachtagung Datenbanken in Büro, Technik und Wissenschaft, Freiburg, Germany,
March 1998

[9] N. Ritter: DB-based Cooperation Services for Engineering Applications, Ph. D. thesis (in german), 1997

[10] N. Ritter, H.-P. Steiert, W. Mahnke, R. Feldmann: An Object-Relational SE-Repository with Generated
Services, Proc. Managing Information Technology Resources in Organizations in the Next Mill enium
(Computer-Aided Software Engineering Track of IRMA’99), IDEA Group Publ., May 1999

[11] M. Stonebraker, P. Brown: Object-Relational DBMSs - Tracking the next great Wave, Morgan Kaufmann
Publishers Inc., San Francisco, 1999

[12] UML Speficiation (draft), version 1.3 beta R7, ‘http://www.rational.com/uml/resources/documentation/’

[13] J. Warner, A. Kleppe: The Object Constraint Language – Precise Modeling with UML, Addison Wesley
Longman, Inc., Reading, Massachusetts, 1999

