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Abstract fast and inexpensive microprocessors are used as processors
to achieve high cost-effectiveness compared to mainframe-
based configurations. Parallel database systems aim at pro-
viding both high throughput for on-line transaction process-
ing (OLTP) as well as short response times for complex ad-
hoc queries. To achieve high OLTP throughput, inter-trans-
action parallelism (multi-user mode) is required in order to

) . : . .““overlap transaction deactivations for I/O or remote database
data-intensive transactions (queries). In order to achiev

both Is d ic strateqies for load balanci d sch requests. Furthermore, single-user mode would resultin poor
oth goals dynamic strategies forload balancing and sche ., effectiveness since the available processing capacity

uling artefnecrla ssatr_y Wth'Ch tal;g the Cl:jrrert\)t syst.emtstate "Ncould not fully be utilized. Intra-transaction (intra-query)
account for aflocating transactions and subqueries O_proceparallelism is needed in order to provide short response times
sors and for determining the degree of intra-transaction Pag, complex queries [23]. OLTP and query performance
allelism. We study the load balancing problem for paralle\Should scale with the number of nodes: ideally adding pro-

join processing In Shared '.\‘O”P'”g qatabase systems. cessing nodes linearly improves OLTP throughput and query
these systems, join processing is typically based on a d’response times

namic redistribution of relations to join processors thus ) ]
making dynamic load balancing strategies feasible. In palnfortunately, supporting both high OLTP throughput and
short query response times are partially contradicting sub-

ticular, we study the performance of dynamic load balancins i '
strategies for determining the number of join processors ardoals due to increased resource and data contention between
the two workload types. Data contention problems may be

for selection of the join processors. In contrast to previou: - A )
studies on parallel join processing, we present a multi-useSelved by a multiversion concurrency control scheme which

performance analysis for both homogeneous and heterogguarantees that read-only queries do not suffer from or cause

neous/mixed workloads as well as for different database a@"Y 10ck conflicts [1, 21]. Increased resource contention, on
locations the other hand, is unavoidable since complex queries pose

high CPU, memory and disk bandwidth requirements which
1 Introduction can result in sig_nificant delays for c_oncurrently execut_ing

(OLTP) transactions. Furthermore, intra-query parallelism
Parallel database systems are the key to high performanineyitably causes increased communication overhead (com-
transaction and database processing [6]. These systems pared to a sequential execution on one node) thereby reduc-
lize the capacity of multiple locally distributed processinging the effective CPU utilization and thus throughput. In
nodes interconnected by a high-speed network. Typicallaqgition, it may be difficult to find a physical database allo-

cation supporting both workload types. Efficient OLTP pro-

cessing can be supported by a clustering of data so that
Permission to copy without fee all or part of this material is gg|ective queries can be processed with a minimum of com-
g_ranted provide_d that the copies are not mad_e or diSt_ribUIed for munication. Effective parallelization of complex queries, on
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the other hand, requires a declustering of data across many
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transactions and queries, there is a clear need of dynamic
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Parallel database systems have to support both inter-trans:
tion as well as intra-transaction parallelism. Inter-transac
tion parallelism (multi-user mode) is required to achieve
high throughput, in particular for OLTP transactions, anc
sufficient cost-effectiveness. Intra-transaction parallelism i:
a prerequisite for reducing the response time of complex ar



to control local resource contention, e.g., by adding suppoithe remainder of this paper is organized as follows. The next
for transaction priorities [16, 8, 2]. To effectively utilize a section contains a brief survey of related studies on load bal-
distributed system, the workload must be allocated amongncing and parallel join processing. In Section 3 we motivate
the processing nodes such that load balancing is achieved (@ need for dynamic load balancing strategies by presenting
that the capacity of different processing nodes is evenly utisome basic simulation experiments demonstrating that the
lized) to limit resource (CPU) contention. At the same timepptimal degree of join parallelism depends on the current
workload allocation should support a compromise with resystem utilization. Section 4 provides an overview of our
spect to communication overhead such that both a sufficiensimulation system. In Section 5 we describe and analyse sim-
ly high throughput and intra-transaction parallelism can b&lation experiments that were conducted to study the perfor-
achieved. This requires a dynamic query processing aprance of different load balancing strategies for different
proach where the degree of intra-query parallelism as well adatabase and workload configurations. Finally, we summa-
the determination of which processing nodes should procesie the major findings of this investigation.

agiven query are made dependent on the current system state

at query run time. As we will show, the optimal degree ofin-2  Related Work

tra-trqnsaction paralielism (whic_h yields the beSF FeSPONSK s\ bstantial amount of research has been conducted on load
t|m_e)_ is generally the Iowerthe h_|gher the system Is _Ut'l'zedbalancing in general distributed systems and in distributed
Th|_s is because the commumcgtlon overhe_ad a_lssomated W'Hberating systems [4, 34, 29]. However, these studies usual-
a high degree of mtra-transqctlon p_a!rallehsm is less affordl-y assumed that each job can be equally processed by any
able when processors are highly utilized. node and that each job only requires CPU and memory re-
In this paper, we study the performance of several static ansburces. Load balancing is much more complex for distrib-
dynamic load balancing (workload allocation) alternativesyted database processing since the performance is
for parallel query processing in Shared Nothing systemsnfluenced by additional factors like disk 1/O, data conten-
Currently, Shared Nothing represents the major architectugon and communication frequency. For non-parallel (dis-
for intra-query parallelism and is adopted by several DBMSributed) database processing, a so-called affinity-based
products and prototypes [6]. Unfortunately, the potential fojyorkload allocation is generally advisable [33, 24]. It as-
dynamic load balancing is limited for Shared Nothing beigns transactions with an affinity to the same database por-
cause for many operations the execution location is staticalljons to the same processing nodes to support locality of
determined by the partitioning and allocation of the databasgference and to reduce the communication requirements.
among processing nodes. This is particularly the case f&uch a workload allocation is primarily concerned with as-
scan (selection) operations which are always executed wheggyning entire transaction requests to processing nodes; a
the data to be processed resides. However, for database @prvey of such transaction routing strategies can be found in
erators like join which typically work on derived data (inter- [24]. For distributed and parallel database processing, an ad-
mediate results), dynamic load balancing becomes feasibifitional load distribution for smaller work granules (subque-
by dynamically redistributing the data. ries) has to be performed by the nodes’ DBMS. As already
For this reason, our performance (simulation) study primarimentioned, for Shared Nothing this load distribution is
ly concentrates on parallel join processing in multi-usetargely influenced by the physical database allocation, but
mode. While several previous studies have analysed the pgrarallel processing of some complex query types, in partic-
formance of parallel join processing (see next section), thesdar join queries, permits a dynamic load balancing.

studies were all restricted to single-user mode. This correa number of studies has already addressed load balancing is-
sponds to a best-case situation with little or no resource coruyes for parallel query processing. However, dynamic load
tention; as a result there is little need for dynamic loachalancing was mainly considered for parallel Shared Mem-
balancing in this case (see Section 3). For dynamic load bagry (multiprocessor) DBMS so far [14, 15, 13, 18]. In this
ancing in multi-user mode, we investigate several heuristicgase, dynamic load balancing is easily achieved since the op-
for choosing the degree of join parallelism and/or the joirerating system can automatically assign the next ready pro-
processors themselves according to the current system stgtgss/subquery to the next free CPU. Furthermore, the shared
at query run time. Multi-user experiments will be presentegnemory supports very efficient interprocess communication
for both homogeneous and heterogeneous (mixed) workp that the overhead for starting/terminating subqueries is
loads. We also consider the influence of the database allocgwuch lower than for Shared Nothing. On the other hand, the
tion, in particular the degree of declustering (full vs. partialnumber of processors is typically small for Shared Memory
declustering). For comparison purposes, results for stati 30) thus restricting the degree of inter-/intra-transaction
load balancing strategies and single-user mode are also anghrallelism and the potential for dynamic load balancing.

ysed. For Shared Nothing, physical database design aims at sup-
porting a static form of load balancing for complex queries



by declustering relations across many nodes to supportples; the join result has the same size as the scan output on
high degree of intra-query parallelism [3, 10]. Such an apthe smaller relation. The scans on both relations are support-
proach is not only static but also limited to intra-query loaded by a clustered index. The system was assumed to consist
balancing. In multi-user mode, the chosen database allocof 80 processing nodes; both relations are declustered across
tion can easily lead to poor load balancing since the actui40 disjoint nodes (disks).

workload mix may constantly change while physical datarig. 1 shows the average single-user response times for this
base design must be based on an expected average load fjgin query and system configuration for different degrees of
file. Another form of static load balancing has beenjgin parallelism (1-80) and scan selectivities. The join pro-

considered in [5] in order to find a processor allocation folcessors are selected at random. For each selectivity we have
inter-operator parallelism (processing of multi-way joins).

The processor allocation was already determined at que
compile time assuming single-user mode; thus only intra
query load balancing can be achieved.

Dynamic forms of load balancing have been proposed fa

# of join
processors vs. 1 10 20 40 80
scan selectivity

0,
join processing in order to deal with data skew [31, 30, 7] 10% 5461| 1293 897\ 786 741
Thes_e approaches dynamically dgtermine the size of iqtg 1% 725 | 239 | 215 | 219 | 255
mediate results in order to redistribute the data among joi -
processors such that they have to perform about the sar 0.1% 182 | 140 | 144 | 162 | 201

join work (in order to minimize execution skew). However,
this also can only guarantee intra-query load balancin
which may easily be destroyed in the case of multi-use
mode. Other performance studies of parallel join processinprinted the best response time in boldface in Fig. 1 to indi-
for Shared Nothing (without data skew) also assumed sircate the optimal number of join processors. One observes
gle-user mode, e.g., [26, 27, 22]. The only multi-user perforthat a high number of join processors is most effective for
mance studies of intra-transaction parallelism for Share"large" joins, i.e., for high scan selectivity (10%). In this
Nothing we are aware of are [9, 19]. However, these papeicase, response times could continuously be improved by in-
only considered scan (selection) queries and did not addrecreasing the degree of join parallelism. For small joins (se-
dynamic load balancing. lectivity 0.1%) response times improved only for up to 10
join processors. This is because the work per join processor
3 The Need for Dynamic Load Balancing for decreases with the degree of join parallelism, while the com-
Parallel Join Processing munication overhead for redistributing the data increases.
. . L . Note that the response time improvements are constrained
In this section, we present some basic simulation results Chot only by communication delays, but also by the fact that

Ipargllbel Ijom. procTehssmg tcl)t |IIustratet:th§ n(e;ed .Ir?r dé’”?rq'(the scan portion of the response times is not improved when
oad balancing. 1he resufts were obtained with a de a'eincreasing the number of join processors.

simulator of Shared-Nothing systems to be described in Se o )
We observed that in single-user mode when the entire sys-

tion 4. Join processing is based on a dynamic redistributio - ) g :
of the relations to be joined. Typically the input data for thel€M IS at the disposal of a single query, the optimal degree of

join is obtained by scan operations that redistribute their oui®in Parallelism can statically be determined at query com-
put to a specified number of join processors by applying Qpile time (if no data skew occurs). This is because the opti-

hash function on the join attribute. By using the same has™Mal number of join processors is mainly determined by the
function for the two relations to be joined, it is guaranteec™@ti0 of communication overhead and useful work per node

that all matching tuples arrive at the same join processcand thus by rather static parameters such as the cost of mes-
[26]. sage passing, CPU speed, network capacity, database alloca-

. tion, relation sizes and scan selectivity. Provided these basic

Appelilrelptly, Fhe nu?b(-lzr of JOlntprocfei]gors (degrehe C,)f Jo".parameters are known or can be determined experimentally,
parallelism) is a critical parameter of this approach since 'we can thus use an analytical formula to calculate the ap-

determines the maximal response time speedup Comparedproximate response time for a given number of join proces-

a sequgntlal 10In processing. To §tudy which degree of 1%%0ors. This also allows calculation of the optimal degree of
parallelism minimizes response time we conducted a nun;

ber of simulati for both sinal d I Hoin parallelism by setting the derivative of the response time
er of simulation runs for both single-user and multi-us€i, 13 1o zero, similarly as described in [32].
environments. For this experiment we assumed a join quel

similar to the WisconsifoinABprimequery [12], but with For the multi-user experiment, we varied the arrival rate for
additional selections on both input relations. One relatioPUr j0in query. The resulting response time results for differ-

(A) contains 1 million tuples, the other (Bprime) 100.000 tu-ent degrees of join parallelism and 0.1% scan selectivity are

Figure 1: Single-user response time (in ms) for different
degrees of join parallelism and scan selectivities



shown in Fig. 2. The results show that multi-user mode sigtecture. The system has been implemented using the discrete
nificantly increases query response times due to increaseyent simulation language DeNet [17]. Our system consists
resource (CPU) contention and higher communication ovelf three main componentgorkload generation, workload
head. Furthermore, the effectiveness of join parallelism inallocationandprocessing subsysteffig. 3). The workload
creasingly deteriorates with growing arrival rates (queriegeneration component models user terminals and generates
per second, QPS). As a result, the optimal degree join paralvork requests (transactions, queries). The workload alloca-
lelism for single-user mode does not yield the best respong®n component assigns these requests to the processing
times in multi-user mode. Rather the optimal degree of joimodes (processing elements, PE) where the actual transac-
parallelism depends on the arrival rate and thus on the cution/query processing takes place. We first describe work-
rent system utilization; it becomes the lower the higher thédoad generation and allocation; in 4.2 we sketch the
system is utilized. This is because the communication overmodelling of workload processing.

head increases with the number of join processors which is

theless _af_ford_ablethe more restrict_ec_j the _CPU resourcesarg.1 \Workload Generation and Allocation

For the join with 0.1% scan selectivity (Fig. 2) the optimal

join parallelism was only 1 (sequential execution) for an arpatabase model

r_|val rate of 55.QPS' For this arrival _rate, the smgle_-user OPour database model supports four object granularities: data-
timum of 10 join processors results in a response time that

27 i hiaher than for th it ; Base, partitions, pages and objects (tuples). The database is
- imes higher than for the multi-user optimum. modeled as a set of partitions. A partition may be used to

represent a relation, a relation fragment or an index struc-

# of join ture. It consists of a number of database pages which in turn

processors ||, > 6 8 10 20 cgnsist of a specific nurr_1ber of objects _(tuples, index en-
vs. query tries). The number of objects per page is determined by a
arrival rate

blocking factor which can be specified on a per-partition ba-
single-user sis. Differentiating between objects and pages is important
n%ode 182\ 162 147 141) 140 144 in order to study the effect of clustering which aims at reduc-
15 QPS 204 | 184| 179 | 192 | 108| 257 ing thg num_ber of page accesses (disk I/Os) by storing relat-
ed objects into the same page. Furthermore, concurrency
35QPS || 249 | 240 | 261 | 338| 394| 894 control may now be performed on the page or object level.
Each relation can have associated clustered or unclustered
B*-tree indices.
We employ a horizontal data distribution of partitions (rela-
tions and indices) at the object level controlled by a relative
distribution table. This table defines for every partition P
Our experiment shows that the degree of join parallelisn@nd processing element Righich portion of Pis allocated
may be statically determined for single-user mode, but thd® PE.This approach models range partitioning and supports
there is a strong need for dynamic load balancing for paralldbll declustering as well as partial declustering.
join processing in multi-user mode. This leads to the prob- i
lem of how the degree of join parallelism can be determineé(vorkload generation
dynamically? For this purpose, we have implemented a sinfour simulation system supports heterogeneous workloads
ple heuristic in our Shared Nothing simulator. It uses the opconsisting of several query and transaction types. Queries
timal single-user join parallelism as the default which is therforrespond to transactions with a single database operation
dynamically decremented according to the system (CPUg-g., SQL statement). Currently we support the following
utilization at query run time. Apart from dynamically deter- query types: relation scan, clustered index scan, non-clus-
mining the degree of join parallelism p, we are also studyingered index scan, two-way join queries, multi-way join que-
several alternatives for selecting the p join processors frorfies, and update statements (both with and without index
the available processing nodes. In Section 5, the various logipport). We also support the debit-credit benchmark work-
balancing strategies are described in more detail when wead (TPC-B) and the use of real-life database traces [19].

55 QPS 310 | 325 | 381| 604| 856 ----

Figure 2: Multi-user response time (in ms) for different degrees
of join parallelism and arrival rates (selectivity 0.1 %)

present the simulation results. The simulation system is an open queuing model and allows
definition of an individual arrival rate for each transaction
4 Simulation Model and query type.

. . For parallel join processing we have implemented a repre-
Orlé,rczgﬂat;gn'csz?t:me?;qcegh:z dhirgtvr\ﬁre gngga;?g??%ntative strategy based on hash partitioning. It applies a
P Ing logt 9 ' ng "hash function on the join attribute to partition both input re-
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Figure 3:  Gross structure of the simulation system

lations (scan output relations) to a specific number of joirtors to be executed. For scan operators, the processor
processors (dynamic data redistribution). This hash partallocation is always based on a relation’s data allocation. For
tioning guarantees that tuples with the same join attribut@in processing, we support several static and dynamic strat-
value are assigned to the same join processor. This approaebies for determining the degree of join parallelism and for
has the advantage that it offers a high potential for dynamiallocating the join processes to processors (e.g., random al-
load balancing since the number and selection of join prolocation or based on the current CPU utilization). More de-
cessors constitute dynamically adjustable parameters. Wails are provided in Section 5.

also support the special cases where one or both relations are

partitioned on the join attribute so that only one or no relay » \workload Processing

tion may have to be redistributed (see Section 5). This reduc- ) ,
es the communication overhead for join processing but mayN€ Processing component models the execution of a work-

limit the potential for dynamic load balancing. For local join 102d 0n @ Shared Nothing system with an arbitrary number

processing we have modelled a sort-merge algorithm. A2 PE connected by a communication network. Each PE has
each join processor the input relations are first sorted on tHa-Cess to private database and log files allocated on external
join attribute. The sorted relations are then scanned argjorage devices (disks). Internally, each PE is represented by

matching tuples are added to the output stream. The corfi-fransaction manager, a query processing system, a buffer

plete join result is obtained by merging the results of the dis™a&Nager, a concurrency control component, a communica-

tributed local joins. tion manager and a CPU server (Fig. 3).

In the query graphs of our model, parallelism is expressed bl/'he transaction manager controls the (distributed) execution
means of a so-callegarallelization meta-operator (PA- of transactions. The maximal number of concurrent transac-
ROP). This operator implements inter- as well as intra-operions (inter-transaction parallelism) per PE is controlled by a
ator parallelism and encapsulates all parallelism issueSultirrogramming level. Newly arriving transactions must
similar to the exchange operator used in the Volcano protg?ait in an input queue until they can be served when this
type [11]. In particular, the PAROP operator comprises twdnaximal degree of |nter-tra_nsact|on parallelism is aIreagiy
basic parallelization functionsraergefunction which com-  féached. The query processing system models basic relation-

bines several parallel data streams into a single sequent@|OP€rators (sort, scan, join) as well as the PAROP meta-op-

stream, and aplit function which is used to partition or rep- €rator (see above).
licate the stream of tuples produced by a relational operatdrxecution of a transaction starts with the BOT processing

[6]. (begin of transaction) entailing the transaction initialization
overhead. For each database operation of the transaction, the
Workload allocation actual query processing is performed according to the rela-

Two forms of workload allocation have to be distinguished fional query tree. Basically, the relational operators process
First, each incoming transaction (query) is assigned to onl@cal input streams (relation fragments, intermediate results)
PE (acting as the coordinator for the transaction) accordingnd produce output streams. The PAROP operators indicate
to a placement strategy. Our simulation system supports diwhen parallel sub-transactions have to be started and per-
ferent placement strategies, in particular a random allocatiof®rm merge and split functions on their input data streams.

or the gse ofa rogtlng tatilleThe second form of W_orkload 1. The routing table specifies for every transaction typant
allocation deals with the assignment of suboperations to pro-processing element P&hich percentage of transacms of

cessors during query processing and depends on the operdype T; will be assigned to PEIt can be used to achieve an af-
finity-based transaction routing.




An EOT step (end of transaction) triggers two-phase commitescribe the single-user experiments. Multi-user experi-
processing involving all PE that have participated during exments for the homogeneous and heterogeneous workload are
ecution of the respective transaction. We support the optimanalyzed in 5.3 and 5.4, respectively.

zation proposed in [20] where read-only sub-transactions

only participate in the first commit phase. 5.1 Workload Profile and Simulation Parameter
CPU requests are served by a single CPU per PE. The aver-  Settings

age number of instructions per request can be defined se ig. 4 shows the major database, query and configuration pa-
rately for every request type. To accurately model the cost of ¥ '

. L . Tameters with their settings. Most parameters are self-ex-
query processing, CPU service is requested for all major

steps, in particular for transaction initialization (BOT), for planatory, some will be discussed when presenting the

i . . . §imulation results. The join queries used in our experiments
object accesses in main memory (e.g., to compare attribute

X oo erform two scans (selections) on the input relations A and
values, to sort temporary relations or to merge multiple inpu

- in parallel and join the corresponding results. Fheela-
streams), I/0 overhead, communication overhead, and com- : - .
mit processing lon contains 1 million tuples, thB relation 250.000 tuples.

o ) The selections oA andB reduce the size of the input rela-
For concurrency control, we employ distributed strict two-tjons according to the selection predicate’s selectivity (per-
phase locking (long rea(_JI and write locks). The local CONCUrgentage of input tuples matching the predicate). Both
rency control manager in each PE controls all locks on thgg|ections employ clustered indices. The join result has the
local partition. Locks may be requested either at the page @ame size as the scan output on B. Scan selectivity on both

detect global deadlocks and initiate transaction aborts t9gried between 10 and 80.

break cycles. We investigate three different strategies for database parti-

Database partitions can be kept memory-resident (to Simpning and allocation:
late main memory databases) or they can be allocated to a
number of disks. Disks and disk controllers have explicitly ~
been modelled as servers to capture 1/O bottlenecks. Disks
are accessed by the buffer manager component of the asse- Partial Declustering (PD)

ciated PE. The database buffer in main memory is managed Both relations are uniformly declustered across disjoint

according to a global LRU (Least Recently Used) replace- sets_ofPE. To supporta_static load balancing for scan op-
ment strategy. erations, each PE is assigned the same number of tuples.

o ) o As a result the larger relation A is declustered across
The communication network provides transmission of mes-  gnos, of the PE, while the remaining 20% of the PE hold
sage packets of fixed size. Messages exceeding the packet typles of relation B.

tsr:zeere(}e.gi.r,el(;irﬁuen;ssetf (())ff rgilliletttsuples) are disassembled into Separate Join Processors (SJP)
q P ' In this case we reserve 20 processors for join processing

. . ) and use partial declustering for allocating the two rela-
5 Simulation Experiments and Results tions across the remaining PE (i.e., A and B reside on
Our experiments concentrate on the performance of parallel disjoint PE). This allocation is only studied for configu-
join processing in multi-user mode. For comparison purpos-  'ations with 20 and more PE; in the case of 20 PE only
es, single-user experiments have also been conducted. The 10 processors gre rese.r\./ed for join prgcessmg.
focus of the study is to compare different static and dynamiafhe number of de(:ilcated' join processors in the SJP allgca-
load balancing alternatives for determining the degree dfonwas setto 20 since this was determined to be the optimal
join parallelism and for selection of the join processors. Fofl€gree of join parallelism for our join query in single-user
this analysis, we consider different database allocations withiode when both relations have to be redistributed.
full and partial declustering and the use of dedicated joifParameters for the 1/0 (disk) subsystem have been chosen so
processors with no associated permanent data. These seffat no bottlenecks occurred (sufficiently high number of
rate join processors may be able to improve load balancindisks and controllers). The duration of an I/O operation is
since they have no scan operations to execute. Two load proemposed of the controller service time, disk access time
files are studied for multi-user mode: a homogeneous workand transmission time. The parameter settings for the com-
load only consisting of join queries that are concurrentlymunication network have been chosen according to the EDS
executed as well as a heterogeneous (mixed) workload witbrototype [28].
both short OLTP transactions and join queries.

In the next subsection, we provide an overview of the param-
eter settings that are used for these experiments. In 5.2, we

Full Declustering (FD):
Both relations are uniformly declustered across all PE.



5.2 Single-User Experiments

In single-user mode we employed only static strategies fc
allocating the join work. Fig. 5a shows the average respons
times for our join query in the case of full declustering, Fig.
5b for partial declustering and the use of separate join prc
cessors. Parallel join processing is either performed on tt

(20 PE in the case of full declustering when both relations are
redistributed). However, no linear speedup is achieved since
the communication overhead for starting/terminating subop-
erations and data redistribution is comparatively high due to
the high selectivity; for more than 40 PE the increasing com-
munication overhead prevents further response time im-
optimal number of join processors (20 for #BR0, 10 oth- provements. _For _fuII _declusteri_ng and single-user . que,
rperformance is primarily determined by the communication

erwise) or on all PE holding tuples of relation A. Except fo . .
SJP, join processors are selected at random when not all F_overhead and not by the potential for dynamic load balanc-

are used for join processing: for SJP join processing is pe|ng. Thus the best response times were achieved for the spe-
formed on the dedicated joir,1 processors. In most cases tlcial case where no data redistribution was necessary for join
scan output of both relations was completely redistribu"[eiprocessmg' In the case when both relations are redistributed,

and sent to the join processors. We also considered two Spchoosmg the optimal number of join processors (20) outper-

cial cases permitting a smaller communication overhead fcforms the case where the join is performed on all nodes hold-

data redistribution. For full declustering, we ::1dditiona|lymgI fragments of relation A. Th's. is because the latter
studied the case when no redistribution is necessary becaLs?rat_egy_ causes more communlca_tlon over_h_ea(_j for data re-
both relations are partitioned on the join attribute and anIStrIbutlon for more than 20 PE smoce the join is the_n per-
signed to the same set of PE. For partial declustering, we "formed on more than 29 PE (80 A’. of all PE). Similar
cluded results for the case when only the smaller relation Io_bservatlonS hold for pa”_'a' de_cluste_zrln_g. However the spe-
needs to be redistributed, assuming relation A is already paC|al case where only relation B is redistributed performs best

titioned on the join attribute and the join is performed on theOnly for up to 40 PE; for Ia_rggr cqnﬂguranons Itis outper-
A nodes. formed by the strategy redistributing both relations but lim-

) ) , iting join processing to 20 PE. This was because the high
Fig. 5 shows that the use of intra-query parallelism for scal, mper of join processors in the former strategy causes a
and join processing reduces response times for up to 40 F

Configuration settings Database/Queries settings
number of PE (#PE) 10, 20, 40, 60, 80 || relation A: (200MB)
CPU speed per PE 20 MIPS #tuples 1.000.000
tuple size 200 bytes
avg. no. of instructions: blocking factor 40
BOT 25000 index type clustered B-tree
EOT 25000 storage allocation disk
I/0 3000 allocation to PE FD, PD, SJP
send message 5000
receive message 10000 relation B: (50MB)
copy 8KB message 5000 #tuples 250.000
scan object reference 1000 tuple size 200 bytes
join object reference 500 blocking factor 40
sort n tuples nlogy(n) * 10 index type clustered B-tree
storage allocation disk
buffer manager: allocation to PE FD, PD, SJP
page size 8 KB
buffer size per PE 250 pages (2 MB) || intermediate results:
storage allocation disk

disk devices:
controller service time

1 ms (per page)

join queries:
access method

via clustered index

transmission time_per page | 0.4 ms input relations sorted FALSE
avg. disk access time 15ms scan selectivity 0.25%

o no. of result tuples 625
commur.ucatlon size of result tuples 400 bytes
”et"‘léoik', 128 byt arrival rate single-user, multi-user (varied)
packetsize oytes query placement random (uniformly over all PE)
avg. transmission time 8 microsec

join parallelism
selection of join
processors

static / dynamic (DJP)

random / dynamic (LUP, ALUP)

Figure 4:

System configuration, database and query profile.




comparatively high number of messages for redistributing.3 Multi-user experiments with homogeneous
relation B in addition to the high communication overhead  workload

for startup and termination of join processing. The homogeneous workload still consists of a single (join)

a) Full Declustering query type, but we employ intra-query parallelism in combi-

300 [T T T T 1734 nation with inter-query parallelism. Since we want to sup-
| e e opt. #ofjoin PE port_not only short response times but also good thrqughput
we increase the query arrival rate proportionally with the

number of PE. We first present multi-user results for some
of the static workload allocation strategies used in the pre-
ceding section. Afterwards we analyze the effectiveness of

four dynamic load balancing strategies.

250

join on all A PE
200

Static load balancing experiments

Fig. 6 compares the single-user with multi-user response
times for arrival rates of 0.4 and 0.5 QPS per PE in the case
L, o cataredstnbut of full dgclustering for both relqtions. With respect to jqin .
10010 20 30 40 50 60 70 80 processing, results for the special case ywth no data redistri-
bution are shown as well as for a redistribution of both rela-
b) Partial Declustering (PD)/ tions. In the latter case, we always use the optimal single-
Separate Join Processors (SJP) user join parallelism (20 for #P& 20) and randomly select
L B B S B B ] the join processors. One observes that for the considered ar-
— rival rates, the multi-user results are not much higher than
+—+PD,joinonallAPH for single-user mode if the joins can locally be performed
&——& PD, opt. # of join PE without any data redistribution. While the communication
overhead for redistributing both relations only causes a mod-
est response time increase in single-user mode, response
times rapidly deteriorate in multi-user mode for more than
20 PE. This is mainly caused by three factors. First, the use
of full declustering causes a maximal communication over-
head for scan and data redistribution as discussed above.
) . Second, since we increase the total query load proportionally
100 fedistribution of B relation with the number of PE the communication overhead even in-
20 30 40 50 60 70 80 creases quadratically with more processors. Thus, above a

response time [ms]

150

250

SJP
200

response time [ms]

150
PD, join on all A PE

[EnY
o

Figure 5:  Single-user results

A&—a 0.5 QPS/PE, no data redistribution

The use of separate join processors (SJP) did not prove use- < <0.4 QPS/PE, no data redistributjon

ful since all PE were lightly loaded in single-user mode so +——e single-user o
that they are all good candidates for join processing. Howev- v v single-user, no data redistributiq

>

er, reserving 20 PE for join processing results in a smaller 500 L
degree of scan parallelism since the two relations had to be 450 0.5 QPS/PE
assigned to fewer nodes. Hence, SJP response times weeg 400

substantially worse than for FD or PD and the SJP optimumg, 0.4 QPS/PE

lies at 60 PE rather than 40 PE. Full declustering achieved2 350
better response times than partial declustering for a lower 300
number of nodes, while PD outperforms FD for more than 2

20 PE. This is because FD allows a higher degree of scargx 250
parallelism, but also leads to a higher communication over-2 00
head for starting the scan operations and redistributing the

scan output. For a higher number of nodes the reduced com- 150
munication overhead of PD is more significantthanthe low- ;5o B 1+ 1 #PE
er scan parallelism. This is also due to the comparatively low 10 20 30 40 50 60 70 80
number of tuples to be processed per scan node for a higherrigure 6:  Multi-user results for full declustering
number of PE. (static load balancing)




certain number of PE excessive resource contention is intrérol node in order to support a dynamic load balancing. The
duced. Finally, load balancing is static and does not considéollowing four dynamic strategies have been implemented
the current system utilization, e.g., for determining the defor parallel join processing:

gree of join parallelism. - Dynamic adaptation of the degree of join parallelism
To analyse the impact of the database allocation in multi- (DJP)

user mode, we compare the full declustering results with  This strategy only determines the number of join proces-
partial declustering and the use of separate join processors sors dynamically; selection of the join processors from
(Fig. 7). For this purpose, we only consider the general case the available PE is at random. We use the single-user op
with redistribution of both relations for an arrival rate of 0.5 imum py, opras the maximal degree of parallelism for
QPS per PE. Fig. 7 shows that partial declustering clearly Multi-user mode and reduce this value according to the
outperforms full declustering for more than 10 PE due toits  CUIent system utilization. We tested several alternatives
lower communication overhead which is much more signif- for finding a good multi-user degree of join parallelism

. . : C and finally used the following formula:
icant in multi-user than in single-user mode. The use of sep- Pmu P y -p 1-) g
mu su-opt :

arate join processors is slightly more effective thanin single- |, this formula, u denotes the current average CPU utili-
user mode, but is still outperformed by PD and FD. The  zation of all PE obtained from the control node. For an
smaller number of scan processors for SJP allows for a re- average CPU utilization of 50% (u = 0.5), this approach
duced communication overhead, but this cannot fully com- reduces the single-user value by 12.5%;dc= 0.9 the

pensate the smaller degree of scan parallelism. SJP also degree of join parallelism is reduced by about a factor 4.
suffers from load imbalances between the scan and join pro- The formula reflects our observation that for a low CPU

cessors, in particular for more than 40 PE when the join pro-  Utilization (u < 0.5), reducing the degree of join parallel-
cessors become overloaded ism is more detrimental to performance than the commu-

nication overhead associated with the optimal single-
user degree of join parallelism. For u > 0.5, on the other
hand, communication overhead must be reduced to keep
resource contention acceptable.

550
500
450
400
350
300
250

- Join processing on least utilized processors (LUP)
In this approach, the degree of join parallelism is stati-
cally determined (e.g.,d3.op) but the join processors are
selected dynamically. We simply select the least utilized
processors as join processors.

- Adaptive LUP (ALUP)
This strategy is an adaptive variation of the previous one

artial
eclustering (PD)

response time [ms]

separate join PE (SJ

mvl
S

200 3 which exhibited an undesirable behavior. We observed
150 = that the simple LUP policy tends to select the same join

100 L1y 11 #PE processors for two consecutive queries (causing load im-
10 20 30 40 50 60 70 80 balances) since information on CPU utilization is updat-
Figure 7.  Multi-user results for different database alloca-  ©€d only periodically. The ALUP strategy tries to correct

tions (0.5 QPS/PE) the problem by artificially increasing the utilization of
those processors at the control node which have been se-
lected for join processing. This makes it less likely that
following queries choose the same join processors.

Combined dynamic strategy (DJP + ALUP)

Dynamic load balancing experiments
The preceding multi-user experiments showed that static

load balancing leads to poor performance for a higher num- This combined strate ; ;
X - gy dynamically determines the de-
ber of PE when both relations are to be redistributed. We gree of join parallelism g, according to the DJP policy.

now study whether performance can be improved by dynam- | addition the g, join processors are chosen according
ic load balancing. The primary metric we use for dynamical-  to the ALUP approach.
ly adapting the degree of join parallelism and for selectingsjmjation results for these strategies are shown in Fig. 8 for
the join processors is the current CPU utilization (_)f the proyn arrival rate of 0.5 QPS per PE and partial declustering.
cessors. For this purpose we assume that a designated ¢l comparison, we have also included the result for static
trol node_l_s p_er|0d|ca_lly informed py the PE ab(_)ut their|gag balancing (random selection af p,join processors).
current utilization. During the execution of a query, mforma—Fig_ 8 shows that the dynamic strategies clearly outperform
tion on the current CPU utilization is requested from the cong;4+ic [0ad balancing for more than 40 PE, except the simple
2. CPU requirements for the join portion of our query are lotl)n processpr sglectltc))ln po';CKUL#PhTEIS was du(;a to the
slightly higher than for the scan portion. For more than 40 PE above-mentioned problem o which prevented a more
however, there are more scan than join processors for SJP.




1200———T1—T— T "+ T T T "1 parison with Fig. 7 shows that in all three cases the dynamic
- [+——+LUP » strategy substantially improves response times compared to

= 1000f |®——estatic ; static load balancing. This was particularly the case for the
E 3 :gljgp : use of separate join processors which were overloaded for
£ 800F | (DIP+ALUP 7 more than 40 PE under static load balancing. The dynamic

b i A strategy eliminated the join bottleneck by also considering
% 600 ' the scan processors for join processing so that an even CPU
2 I ] utilization could be achieved across all PE. For more than 40
© 400¢ PE, SJP outperforms partial declustering since it incurs a
smaller communication overhead for scan processing.

20 . L.y, q#PE Again, full declustering incurs the highest communication

10 2'0 ' :I’,O ' I40 ' 50 60 70 80 overhead thus causing a high resource contention for a larger
Figure 8:  Multi-user results with dynamic load balancing number of PE even under optimal load balancing.

for partial declustering (0.5 QPS per PE)

5.4 Multi-user experiments with heterogeneous

workloads

~
o
o

(2]

o

o
T

In the homogeneous multi-user experiments, a comparative-
1+ ly good load balancing was already supported by the chosen
database allocation. Furthermore, the use of a single query
type resulted in a similar load situation at the different pro-
cessing nodes (except for SIP). We now study the effective-
p ness of dynamic load balancing for heterogeneous
workloads consisting of one OLTP transaction type and our
join query. For OLTP processing, we assume a simple trans-
. . 1 . 1 . l#pPe action type accessing only one relation (A or B) and that an

a1

o

o
T

Partial
Full Declusterin

Declustering

response time [ms]
N
o
o
T

Sep. Join Processe{s

100 —

| 1 | 1 | 1
10 20 30 40 50 60 70 80 affinity-based routing can achieve a largely local processing
Figure 9: Dynamic load balancing (DJP + ALUP) for different (Similar to debit-credit). For the concurrent execution of join
database allocations (0.5 QPS/PE) queries, we study single-user join processing (only one join

effective load balancing than for random allocation. Notequery is executed at a time concurrently with OLTP) and
that even the static case allowed for a comparatively goomulti-user join processing.

load balancing for the homogeneous workload. This is berig 10 shows the average join response times for two mixed
cause the scan workload is evenly balanced for the choswyorkioads differing in whether the OLTP transaction type is
database allocations and random selection of join process(accessing relation A (Fig. 10a) or relation B (Fig. 10b). In
also achieves a balancaderageCPU utilization. However,  poth cases we assume a partial declustering of the relations
the actual CPU utilization may still vary significantly for - and an OLTP transaction rate of 150 TPS (transactions per
dlfferent P!E and this fact is utilized py th_e ALUP policy. second) per A (B) node. The OLTP workload causes a CPU
This adaptive strategy could substantially improve responstjjization of about 50% per A (B) node. For multi-user join
times for higher utilization levels (large number of PE) by processing, we use an arrival rate of 0.1 QPS per PE. Static
selecting lowly utilized processors for join processing to ré|pad balancing for the join query refers to the case where the
dpce resource contention. Thg DJP was even more effec.tnjoin is performed on g, opeprocessors that are randomly se-
since it reduced the communication overhead by selectinigcted. For dynamic load balancing we use the combined
fewer join processors for a higher number of PE. The comgirategy which dynamically adapts the degree of join paral-

bined dynamic policy was clearly the best load balancingejism (DJP) and which selects the join processors based on

strategy. It could actually combine the advantages of thine current CPU utilization (ALUP).

DJP and ALUP policies so that communication overhear . .
. We observe that for the mixed workloads dynamic load bal-

and resource contention are reduced. The fact that respor_ ~." """ .

: . . . —_ancing is in deed even more effective than for the homoge-

times kept comparatively low despite the fact that arriva

. . : neous load, in particular for multi-user join processing.
rates increase proportionally with the number of PE show, . . .
. . Again, the differences between static and dynamic load bal-
that the combined dynamic strategy was able to support bo

i ; . _ancing increase with the number of PE. This is because the
a linear throughput increase as well as short response time o o . i
_ _ _ communication overhead per join query increases with more
In Fig. 9 we compare the effectiveness of the combined dyprocessors and thus the average CPU utilization. The abso-
namic load balancing strategy for full declustering, partiajyte join response times are substantially higher for OLTP
declustering and the use of separate join processors. A COlnrgcessing on the A nodes (Fig. 10a) since we have the four-
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a) OLTP on A nodes sors represent dynamically adjustable parameters. Our exper-

e—e multi-user join, static [~ T 7 iments demonstrated that effectively parallelizing join
= 11007 +— multi-user join, dynami 7 operations is much simpler in single-user than in multi-user
E 900: +— single-user join, static | ] mode. In single-user mode the optimal degree of join paral-
o ~—4 single-user join, dynanic ] lelism is largely determined by static parameters known at
= 700} query compile time, in particular the database allocation, re-
a : lation sizes and scan selectivity. Selection of the join opera-
5._’ 500t . tors is also easy since all processors are lowly utilized in
o ! L single-user-mode.

300 * % —4 R . . - .
I ] In multi-user mode, the optimal degree of join parallelism de-
00— 1+ 1. L1 11 pends on the current system state and is the lower the higher

| 1
PE
1o 20 30 40 50 60 70 8f the nodes are utilized. Using static load balancing strategies

b) OLTP on B nodes is therefore not appropriate for join processing in multi-user

6001 : mg:ﬂs;‘:”gm Z;f;t::mi Y mode and was shown to deliver sub-optimal performance.

I . . _ l We therefore studied four simple dynamic load balancing

+— single-user join, static . . . L

g 500f| +—s single-user join, dynanfic 4 strat_egles for dynamlcglly deterrr_umng the degree of join par-

= . allelism and for selection of the join processors. Most effec-
qg_’ 4001 . tive was a combined strategy which adjusts both parameters

° ¢ | according to the current load situation. It determines the

g 300 1 multi-user join parallelism by reducing the optimal single-

3 I | user join parallelism according to the current CPU utilization.
9] 200-— | Join processing is assigned to the least utilized processors. To
00— #PE avoid that consecutive queries select the same processors for

10 20 30 40 50 60 70 80 join processing, we found it necessary to artificially increase

Figure 10:  Static vs. dynamic load balancing (DJP + ALUP) the utilization of newly selected join processors to account for

for mixed workloads the delayed updating of information on the current CPU utili-
fold OLTP throughput in this case and thus a reduced poteZtion. With the dynamic strategy it was possible to keep join
tial for load balancing. For OLTP processing on the B nodesd€SPonse times low while increasing throughput Imearly with
the A nodes are only lightly loaded and therefore ideally suitth® number of nodes. The effectiveness of the dynamic load
ed for join processing. This could be utilized by our dynamic®@lancing strategy was particularly pronounced for mixed
load balancing strategy and caused a substantial resporworkloads consisting of short OLTP transactions and com-

time improvement for more than 20 PE (Fig. 10b). For 8(PleX join queries.

PE, dynamic load balancing could cut response times by heWhile the dynamic adaptation of the degree of join parallel-

(100% improvement) compared to static load balancing. ism was able to reduce the communication overhead, the
communication requirements and thus the potential for load

6 Summary balancing are largely influenced by the static database alloca-

We have presented a simulation study of parallel join prot!on' Wwe stud!ed dn‘ferent_ configurations with a full and par-
tial declustering of relations and the use of separate join

cessing in Shared Nothing database systems. In contrast . . :
processors. In multi-user mode, full declustering of relations

previous studies, we focussed on the performance behaviis enerally not acceptable for higher number of nodes. This
in multi-user mode since we believe this will be the operating 9 y P g '

mode where parallel query processing must be successful® becguhse dtr;)e m;]: reﬁsid potentlal_ for_scan pa;alleo:lsn;]_lshthen
practice. Multi-user mode means that only limited resourceohu'[vlvelgl eff dy :)Ie h|gh_0(r)]mmrl]m|cat|on o_ver_l_eadwﬂ:c IS

are available for query processing and that both respon:t € less atlorda e the higher t gsystem Is utilize - neuse
time and throughput requirements must be met. This neceof separate join processors can improve the potential for dy-

sitates dynamic scheduling and load balancing strategies fhamic load balancing since these processors have no scan

assigning relational operators during query processing work to perform. However, as our results for mixed work-
" loads have shown a similar potential for dynamic load balanc-

In contrast to scan operations, parallel join strategies offering may also be achieved without separate join processors

high potential for dynamic load balancing. This is becausgjnce the current utilization of the nodes may substantially
joins are generally performed on intermediate results whicjsfer.

are dynamically redistributed among several join processo
to perform the join in parallel. The number of join processor:
(degree of join parallelism) and the selection of these proce

In future work, we will study further aspects of parallel query
processing in multi-user mode that could not be covered in
this paper. In particular, we plan to investigate the impact of
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