
1

in: ZRI-Bericht 6/94, University Kaiserslautern, 1994.

Capturing Abstraction Relationships’ Semantics

for Concurrency Control in KBMSs

Fernando de Ferreira Rezende✳ and Theo Härder

Department of Computer Science - University of Kaiserslautern

P.O.Box 3049 - 67653 Kaiserslautern - Germany

Phone: +49 (0631) 205 3274/4031 - Fax: +49 (0631) 205 3558

E-Mail: {rezende/haerder}@informatik.uni-kl.de

November 1994

Abstract

Knowledge Base Management Systems (KBMSs) are a growing research area finding applicability
in several different domains. On behalf of this increasing applicability, the demand for ever-larger
knowledge bases (KBs) is growing more and more. Inside this context, knowledge sharing turns out
to be a crucial point to be supported by KBMSs. In this paper, we propose a way of controlling
knowledge sharing, i.e., we present a concurrency control (CC) technique tailored for the KBMS
environment. We show how we obtain serializability of transactions providing many different locking
granules, which are based on the semantics of the abstraction relationships. We discuss the main
challenges to be coped with by a CC technique for KBs and expose our solution to them. The main
benefit of our technique is the higher degree of potential concurrency, which may be obtained by
means of a logical partitioning of the KB graph and the provision of many lock types to be used on
the basis of each one of the partitions. By this way, we capture more of the semantics contained in
a KB graph, through an interpretation of its edges grounded in the abstraction relationships, and
make feasible a full exploitation of all inherent parallelism in a knowledge representation approach.

✳ Financially supported by the CNPq (National Council for the Scientific and Technological Development) of the
Secretary for Science and Technology of Brazil.

2

1. Introduction

KBMSs are a new product generation which is finding ever more applicability in many different areas, like
medicine, geology, engineering design, robotics, etc. As expected due to a growing applicability, the use of
KBMSs is becoming more and more widespread and, accordingly, the demand for ever-larger KBs higher
and higher. The main challenge of the research in the direction of KBMSs nowadays is to try the successful
adaptation of such systems to real-life production environments [MB90]. However, the complete success of
those systems in the market depends, among other things, of their potential for applicability. For instance,
it would be very inefficient to obligate users of such systems to access valuable resources and information
in mutual exclusion. Moreover, it would be neither viable (due to economical reasons) nor desirable (due to
restricted accesses) to have some KB being accessed by just one user at a time. On the contrary, KBMSs
should receive queries and updates in an interleaved fashion and control their concurrent execution against
some KB. Consequently, multiple transactions should be able to run at the same time for better performance
of such systems. Finally, it is exactly in this point that CC techniques for KBMSs play a crucial role, because
they are among the most important means for allowing large, multi-user KBs to be widespread.

The main goals

As a matter of fact, arbitrary concurrent accesses to a resource can lead to many inconsistencies in the
stored and retrieved information. All of that is because they can interfere with each other due to the inter-
leaving of operations. This interleaving can cause programs to operate incorrectly, even if they are free from
errors and no component of the system fails. The main objective of any CC technique is the coordination of
actions that operate in parallel, access shared data, and doing so potentially interfere with each other. In
the context of Database Systems (DBSs), CC has been studied extensively by the database (DB)

community1, and there is a vast amount of literature in this area. Unfortunately, CC has not received the
attention of the Artificial Intelligence (AI) community.

In this paper, we present our approach for CC in KBMSs. The main objective we have in mind is the
provision of serializability for ACID transactions. With serializability we mean that our technique is governed
by the Serializability Theory of Gray et al. [GLPT76], which states that if an execution produces the same
output and has the same effect on the DB as some serial execution of the same set of transactions, it is
correct, because serial executions are assumed to be also correct. With ACID transactions we mean that
the transactions running in our system have the properties of conventional ones, the ACID (atomicity,
consistency, isolation, and durability) properties pointed out by Härder and Reuter [HR83]. In other words,
our protocol neither treats the semantic knowledge of transactions in order to allow non-serializable execu-
tions to be produced, nor copes it with long-duration transactions (in fact, the transactions may span minutes
and even hours, but are not in terms of days or months).

Approaches for concurrency control

Among the most important classes of CC algorithms are locking, timestamps, and serialization graphs
[BHG87]. There are also a great body of variations of these classes based on multiple versions, multi-level,
optimistic methods, etc. In particular, the class of locking-based algorithms has shown its practicality and
performance. Additionally, locking-based algorithms have special solutions for graph structures, the
abstractions for KBs that appear to be the most appealing [CHM92, Ch93]. Consequently, we have chosen
to develop our CC technique for KBs based on locking.

With respect to locking, we could consider several alternatives to our development. At a first sight, predicate
locks [EGLT76] seem to be the best solution and the most desirable one. Among the reasons for that we
could mention that predicates offer very appropriate locking granules for each particular transaction. In
addition, we could try to use the predicates of knowledge languages in order to build the predicates for

1. [BHG87] presents a well-summarized consolidation of such studies.

3

locking. At last, with the appliance of predicates we could also lock non-existing objects, in other words, we
would elegantly avoid phantoms. Nevertheless, predicate locking has some substantial drawbacks which
lead to a lack of applicability. For example, it is not computationally efficient to check overlap between predi-
cates. In addition, to maintain a predicate lock table is also very costly. Mohan [Mo90] advocates that
comparing a new predicate against a predicate lock table of some reasonable size (e.g., containing 100
expressions) is just prohibitive. Gray and Reuter [GR93] state that predicate satisfiability is known to be NP-

complete (the best algorithms for it run in time proportional to 2N, where N = number of predicates).
Therefore, although being very desirable, it seems to be impossible to determine a reasonable solution for
the appliance of predicate locks in KBMSs.

Following another possible alternative, we could consider the most simple solution where every referenced
object is explicitly locked on demand. The two-phase locking (2PL) protocol of Eswaran et al. [EGLT76]
represents a well-known realization of such a strategy. This alternative is significant, however, for structures
where the objects have the same meaning, like for example records in a file. Unfortunately, this approach
does not make any assumption about the structure of the underlying data, and for structures like KB graphs,
where nodes have different meanings and edges represent different abstraction relationships, it proffers a
too simple solution. It would cause transactions to require too many locks, what would raise a great and
unnecessary overhead for the lock manager. In addition, it does not offer the possibility of locking non-
existing objects, and therefore phantoms are not at all avoided.

As another alternative, we could consider the KB graph as a structure with different granules of locks, and
apply explicit locks on its nodes. In addition, we could state that a lock on a node would implicitly comprise
locks on its descendants, what would minimize the number of locks to be acquired and managed. However,
to the correct behavior of such implicit locks, we would need to mark the ascendants with some tag
indicating that objects are being locked at a lower level. Such a sign would represent an intention to set locks
at a finer granularity and should prevent implicit or explicit conflicting locks on the ancestors. In other words,
we could consider the granular locks protocol (GLP, for short) of Gray et al. [GLPT76] for controlling the
concurrent accesses in a KB. Granular locks are known to be meaningful, because they provide transac-
tions the possibility of choosing, among different locking granules, the most appropriate one to accomplish
their tasks. In addition, the use of implicit locks significantly minimizes the number of locks to be set by
transactions. This protocol (and some extensions of it) has been a very popular approach in Object-Oriented
Database Management Systems (OODBMSs) (among others, examples are ORION [Ki90] and O2

[BDK92]). These are some of the reasons which lead us to hope to be able to use the power and elegance
of granular locks also in the KBMS environment.

This paper is organized as follows. After providing some particular CC issues in KBMSs (Sect. 2), we
discuss some important challenges of a CC technique for KBs, where we criticize related works (Sect. 3).
Thereafter, we introduce our protocol for allowing and above all controlling knowledge sharing (Sect. 4).
After the exposition of our proposal, we finally conclude the paper (Sect. 5).

2. Particular Concurrency Control Issues in KBMSs

2.1 The Abstraction Concepts

In describing the real world, people organize their knowledge in such a form which normally embodies some
abstractions. These abstractions permit the suppression of specific details, while emphasizing those
pertinent to the information to be described. Thus, abstractions turned out to be fundamental tools for
knowledge organization. More stringently, Mattos [Ma88] advocates that the abstraction concepts are the
most important constructs to be supported by any data or knowledge representation model. Such abstrac-
tions are expressed as relationships between objects, and have as main purpose the organization of such
objects in some form. Particularly, one can find two main kinds of composition principals in the real world.

4

The first involves simple objects in order to build a composite object, creating an one-level hierarchy. The
second involves composite objects in order to build a more complex composite object. This, in turn, may be
applied recursively (n times), creating so an n-level hierarchy. In the following, we provide a brief description
of the abstraction concepts of classification, generalization, association, and aggregation. In order to illus-

trate these concepts, we use as example a restaurant application2.

2.1.1 Classification

Classification is the most important, and probably the best understood form of abstraction. It is achieved by
grouping simple objects (called instances) that have common properties into a new composite object (called
class) for which uniform conditions hold [Ma88]. Classification establishes an instance-of relationship
between instances and class. Hence, it creates an one-level hierarchy. For example, suppose our
restaurant offers four kinds of wines, namely, bordeaux, cote-du-rhone, schwarzekatz, and liebfraumilch. In
such a case, we can congregate the common properties of all kinds of wines into a composite object called,
for example, wines (Fig. 1).

2.1.2 Generalization

Generalization is the complementary concept of classification. It allows a more complex composite object
(called superclass) to be defined as a collection of less complex composite ones (called subclasses). In
other words, it extracts from one or more given classes, the description of a more general class that
captures the commonalities but suppresses some of the detailed differences in the description of the given
classes [Ma88]. Generalization establishes a subclass-of relationship between subclasses and superclass.
Since it may be applied recursively, it creates an n-level hierarchy. Exemplifying, suppose our restaurant
offers, besides wines, also some aperitifs (pernod, champagne, and cointreau) and liquors (cointreau and
chantre). In this case, we can generalize these objects, creating a superclass named, for example,
beverages (Fig. 1).

Figure 1: Example of classification and generalization.

Since the properties described in the superclasses are generalized properties of their subclasses, there is
no need to describe over again these properties in the subclasses. This observation builds the most
important characteristic of generalization, namely inheritance, by means of which the properties of the
superclasses are reflected in the subclasses. This also holds for classification, i.e., the instances inherit the
properties of their classes, which inherit from their superclasses, and so forth.

2.1.3 Association

There are two types of association, namely element- and set-association [Ma88]. Element-association
allows the introduction of an object (called set) to describe some properties of a group of objects (called
elements). It suppresses the details of the element objects whereas emphasizing the properties of the group
as a whole. Hence, element-association creates an one-level hierarchy, and between elements and set an
element-of relationship is established. For example, we could group the objects bordeaux and cote-du-
rhone of our restaurant application into a set representing french-wines, and schwarzekatz and
liebfraumilch into a set representing rhine-wines (Fig. 2).

2. This restaurant example to be used throughout the paper is a simplification of the first application modeled by
means of the KBMS prototype KRISYS [Ma89].

pernod champagne cointreau chantre

aperitifs liquors

sc
sc

sc

i i
i

i i

sc: subclass-of

i: instance-of

Notation: beverages

bordeaux cote-du-rhone schwarzekatz liebfraumilch

iii
i

wines

5

On the other hand, set-association builds a more complex set object (called superset) in order to represent
properties of a group of set objects (called subsets). Set-association establishes a subset-of relationship
between subsets and superset. In addition, it may be applied recursively, thereby building an n-level
hierarchy. Exemplifying, in our restaurant application, we could group the sets french-wines and rhine-wines
into a superset representing wine-origins (Fig. 2).

Figure 2: Example of element- and set-association.

2.1.4 Aggregation

Aggregation corresponds to the notion of property in the sense of composition. Like above, it involves two
types of objects: Simple and composite [Ma88]. Simple, atomic objects (called elements or parts) are the
ones which cannot be further decomposed. When they are aggregated in order to represent parts of a
higher-level, composite object (called component), we are applying the element-aggregation concept, and
the relationship between the parts and the component object is called part-element-of (or part-of, for short).
Element-aggregation builds an one-level hierarchy. In turn, component objects (called subcomponents)
may be used to build a more complex higher-level object (called supercomponent). This characterizes the
component-aggregation concept, and between subcomponents and supercomponent, a subcomponent-of
relationship is established. Since this concept may be applied recursively, it creates an n-level hierarchy.

However, aggregation is more stringently in the sense that it is used to express the idea that an object must
have some necessary properties in order to exist consistently. For example, suppose our restaurant offers
mousse-au-chocolat as a dessert. In turn, we could express that mousse-au-chocolat is composed of
mousse and cream (Fig. 3). Clearly, it is hard to imagine a mousse-au-chocolat without either the mousse
or the cream. This characteristic makes aggregation quite different from the other concepts.

Figure 3: Example of element-aggregation.

2.1.5 An Example Knowledge Base

The above explanations lead to the conclusion that KBMSs manage complex and structured objects, and
also different types of abstraction relationships. In fact, one of the most important aspects of KBMSs is that
objects can play different roles at the same time. Consequently, the KBs features can be visualized as a
superposition of the generalization, classification, association, and aggregation hierarchies (in fact graphs),
building altogether the so-called KB graph. In order to illustrate one such a KB graph, in Fig. 4 we provide
a more detailed example, complementing the ones we have seen, of the restaurant application.

In order to restrict the KB to a rooted and connected graph, we have added the objects global, the only root
of the whole graph, sets, the root of the association graph, classes, the root of the classification/generali-
zation graph, and finally aggregates, the root of the aggregation graph. We provide such objects in order to
have an adequate environment for the appliance of our protocol. In addition, we assume that all schemas
are directly or indirectly related to the root global. When a schema is neither a class/instance, nor a set/
element, nor a component/part, it is connected as a direct instance of global. In turn, all classes/instances,
sets/elements, and components/parts are directly or indirectly related to the predefined schemas classes,
sets, and aggregates, respectively. Moreover, we assume that the KB graph automatically stays in this form

bordeaux cote-du-rhone schwarzekatz liebfraumilch

wine-origins

french-wines rhine-wines
e

ss ss

eee

ss: subset-of

e: element-of

Notation:

mousse cream

mousse-au-chocolat
ppp: part-of

Notation:

6

(rooted and connected) as changes undergo over time3. At last, we use this KB throughout the paper.

Figure 4: The restaurant knowledge base.

2.2 Methods

In the last years, there have been considerable efforts in order to increase concurrency by means of the
semantic knowledge of transactions [Ga83, Ly83, FÖ89]. The main idea behind this use of transactions’
semantics is to allow non-serializable schedules, which preserve consistency and are acceptable to the
system users. With respect to KBMSs, the methods could be a starting point to the applicability of such an
approach. Methods are used in KBMSs in order to describe the operational aspects of objects’ attributes,
i.e., they characterize the behavior of the real world entity. Hence, the semantics of user- or system-defined
methods could be considered in order to allow more general, non-serializable schedules of transactions to
be produced. Such a semantic knowledge use could decrease the transaction response time, and could
then be useful when the cost of producing only serializable interleavings is unacceptably high. At the actual
point of our work, we did not make any considerations about the semantics of methods yet. In particular due
to the high cost and difficulty of determining the commit order of methods’ operations. This research
direction will be considered by us, in our future work, as soon as we get the basis of our protocol well-estab-
lished and robust. Therefore, methods currently compete for locks like any other transaction request in our
protocol (the same holds for the use of demons and rules).

3. Related Work

3.1 Some Important Challenges

Unlike conventional Database Management Systems (DBMSs), KBMSs impose some new and different

3. This representation and behavior are very similar to the ones used by KRISYS [Ma89] to represent KBs.

turtle-soup bouillabaisse greek-salad salade-nicoise fish-plate shrimp-cocktail steak-au-poivre veau-au-vin

soups salads cold-dishes
mousse cream

crepe-suzettemousse-au-chocolat

appetizers main-coursesdessertssunday-menu

dishesmenus

bordeaux cote-du-rhone schwarzekatz liebfraumilch

pernod champagne cointreau chantre

aperitifs liquors

beverages foods

offers

classes aggregatessets

wine-origins

french-wines rhine-wines
wines

c

ss

e

sc

sc sc

sc sc

sc

sc
sc

sc sc

sc
sc

sc
scsc

c
c

p

pp
pp

ss ss

e

e
e

sc
ss

i i
i

i i

i

ii
i

i

i

i

i

p
p

p

i

i iiii

sc: subclass-of i: instance-of ss: subset-of e: element-of p: part-ofNotation: c: subcomponent-of

global

c

i

7

challenges to be coped with by CC techniques. The most of them is more or less related to the structure
built by the objects in a KB (KB graph). In the following, we discuss four main points to be thought of when
designing a CC technique for KBs.

Different granules of lock

In KBMSs, accesses normally refer to different and variable granules. Sometimes a transaction accesses
just an object, be it for the manipulation of its slots, methods, aspects or whatever. However, it is also
common to have accesses involving a set of objects. Nevertheless, such sets are not necessarily constant.
On the contrary, they may span an object and its instances, or its elements, or parts, or even all descen-
dants. Thus, a CC technique for KBMSs should provide the possibility of locking different granules of
objects.

Large number of objects

Real world applications require the use of large amounts of knowledge for solving problems [Ma90]. In turn,
the larger the amount of knowledge, the larger the number of objects in a KB. This large number of objects
may cause problems to a CC protocol, due to the also large number of locks to be managed. Hence, it would
be useful to have some mechanism to minimize the number of locks to be set by transactions, and conse-
quently the number of locks to be managed by the lock manager. Such a mechanism might be realized by
means of the well-known hierarchically organized lock structure of implicit locks [GLPT76]. Therefore, a CC
technique for KBMSs should make use of implicit locks in order to improve the overall performance, in
particular the one of the lock manager.

Multiple abstraction relationships to objects

As already discussed and exemplified (Fig. 4), the objects in a KB form a complex and dynamic graph
structure. The complexity of such a structure is embodied by the many objects and relationships with
different semantics composing it, whereas its dynamics is characterized by its flexibility in incorporating and
dissimilating at any time objects and relationships. Therefore, it is possible to have multiple paths to objects
at any time. This, in turn, imposes an extra overhead for protocols which for example want to make use of
implicit locks, because an object with multiple parents may be accessed via a path that does not have any
locks on it, thus violating the implicit locks and leading to inconsistencies. A CC technique for KBMSs should
pay attention to such particularities.

Semantics of the relationships between objects

The relationships between objects in a KB are based on the abstraction concepts. In turn, each abstraction
concept has a particular and special semantics. This semantics should be used by a CC technique for
KBMSs, simply because it can increase the concurrency. For example, a user that wants to modify an object
and its instances does not necessarily stay in conflict with another one manipulating the elements or parts
of this same object. Such a conflict would exist if and only if some instance of this object is at the same time
an element or a part of it. However, as long as such a situation does not happen, the instances, elements,
and parts of an object build distinct and disjoint sets of objects. Thus, there is no point to prohibit parallel
access to such sets. Therefore, a CC technique for KBMSs should interpret the semantics of the many
relationships, and not at all generalize all of them as being merely structural connections between objects.

3.2 Existing Techniques and Respective Solutions

DDG policy

To the best of our knowledge, there is only one CC technique specially designed for KBMSs already
published, namely the Dynamic Directed Graph (DDG) policy [CHM92, Ch94]. It is an extension of the
locking protocol for hierarchical DBSs of Silberschatz and Kedem [SK80]. Whereas the former is able to

8

cope with cycles and updates in the underlying structure, this is not considered by the latter. Due to space

limitations, we will not provide an exhaustive discussion of this protocol here4. Nevertheless, among the
main drawbacks of this protocol, we can cite [Re94]: First, no difference is made between different
abstraction relationships, i.e., it does not treat, for example, neither a class and its instances, nor an
aggregate and its components, etc., as a single lockable unit. Hence, the semantics of the KB graph is not
at all exploited to improve the concurrency, and by this way a full exploitation of the possible parallelism is
not reached. Second, no kind of implicit locks is defined. Thus, using the DDG protocol, to lock a class with
thousands of instances, thousands of locks will be necessary. This may jeopardize the overall performance
of this protocol, and, in addition, lead the lock system to run out of storage. Third, phantoms are not taken
into consideration. As long as phantoms may happen, inconsistent results may be obtained by transactions.

Summarizing, with respect to the main challenges pointed out in the last subsection, the DDG policy neither
provides different granules of lock, nor does it cope well with large number of objects, nor does it interpret
the semantics of the relationships between objects. Finally, multiple paths to objects are handled by it,

wherein a transaction following the DDG policy must start locking the dominator5 of the set of nodes to be
ever accessed, and it, before locking any node, must have already locked all ascendants of this node in the
past and currently holds a lock on a least one of them. Although not being an elegant solution, because it
may require a very large number of unnecessary locks whenever an object is likely to have many ascen-
dants, it avoids the problem of multiple paths leading to an object.

Now, due to the lack of publications in this area, let us analyze some CC protocols of a related area, namely

OODBMSs. Again, we will not provide extensive discussion of these protocols here6, yet just some
comments. Let us start with ORION.

ORION

The CC mechanism of the OODBMS ORION [BCGKWB87, KBCGW89, KGBW90] supports locks on three
different types of hierarchy, namely the so-called granularity hierarchy for logical entities, the class lattice
hierarchy, and the composite objects hierarchy. Thus, ORION extended the GLP of Gray et al. [GLPT76]
and by this way, it provides implicit locks [GK88, KBG89, KBCGW87]. Nevertheless, the restricted number
of lock types used by ORION does not provide a teeming utilization of the parallelism. In addition, ORION
does not allow, for example, a subclass of an object and an element of the same object to be written simul-
taneously, not even a read on a class to be performed in parallel with a write on an instance of it.

With respect to the main challenges, ORION partially supports different granules of locks in the sense we
discussed. It applies the lock modes and locking protocol for a granularity hierarchy to a class lattice. But it
does not provide granules of locking based on an object and its elements, for example. A large number of
objects is also only partially well handled by ORION. It provides implicit locks for the instances of a class,
but not, for example, for the subclasses of a class, or elements of a set. Multiple paths to objects are coped
with by ORION by means of basically two proceedings. The first one is a restriction on its model, which
prohibits an object of being instance of many classes at the same time. This eliminates the problem for the
instances in the class lattices, but would be hardly applicable to KBMSs. In turn, classes may have several
direct superclasses, and hence the problem appears for classes, and is solved with the requirement that for
a query involving a class and its descendants, and for a schema change operation on a class, a lock must
be set not only on the class, but also on each of its subclasses. In summary, all subclasses of a class must
be explicitly locked in such cases. Lastly, the semantics of the relationships between objects is also not
completely considered by ORION, which interprets the semantics of classification and aggregation, but not

4. The reader is asked to see [Re94] for a detailed discussion and critical analysis of this protocol.
5. A dominator of a set of nodes in the KB graph is the one such that all paths from the root node to each node

of this set of nodes pass through it. For more details, the reader is referred to [CHM92].
6. The reader is asked to see [Re94a] for a more detailed discussion of OODBMS CC techniques and their

behavior in the KBMS environment.

9

the ones of association and generalization.

O2

The CC technique used in the OODBMS O2 [BDK92, CF92, Dx90, Dx91] is based on a classification of

methods. In O2, methods are classified according to whether they are performed on a class or on an

instance, and as a reading or a writing method. In addition to this classification of methods, O2 also distin-

guishes the type of access a transaction requires to an object. There are the so-called real and virtual
accesses [CF92]. The main benefit of this classification is that reading (but not writing) a class is compatible
with either reading or writing any of its instances. Implicit locks on instances of a class are also provided.
Nevertheless, O2 lacks of some concepts. Aggregates and sets are not taken into consideration. Thus,

writes on a component or element of an object must be made in mutual exclusion, although not necessarily
conflicting. In addition, no kind of implicit locks is provided for subclasses of a class.

O2 supports only partially the mentioned challenges. It provides different granules of locks for instances, but

not for classes, sets, and aggregates. Implicit locks are also considered by O2 for instances, but not for

classes, sets, and aggregates. Multiple paths to objects are handled by O2 in a similar manner as by

ORION, with the inclusion of the distinction between real and virtual accesses which may be also used for
detecting conflicts. Finally, O2 takes into consideration the semantics of classification, but not of generali-

zation, aggregation and association.

GemStone

The OODBMS GemStone [MSOP86, PS87, BMOPS+89, BOS91] protects its concurrent transactions using
a combination of optimistic and pessimistic CC techniques. Particularly, the choice of whether to use the
optimistic or pessimistic technique depends on the degree of contention of an object. Using an optimistic
access, the objects do not need to be locked, being controlled by a shadowing mechanism. Instead, at
commit time, existing conflicts are detected. Finally, locks are used to control the pessimistic accesses. First
of all, optimistic methods may show very poor performance due to, among other things, the possibly high
percentage of transactions that must be aborted when, at commit time, conflicts are detected [Hä84, PR83,
Mo92]. In turn, the pessimistic method of GemStone does not provide implicit locks, and so transactions
may need to acquire a great number of locks, what can cause problems to the lock manager. Moreover, its
limited number of lock types restricts the parallelism, and it is unaware about the semantics of the relation-
ships between objects. Therefore, GemStone pays no attention to any of the challenges we pointed out.

ObjectStore

The CC mechanism of the OODBMS ObjectStore is similar to those used in conventional DBMSs. It
provides 2PL with a read/write lock for each page, i.e., the locking granularity is on a per-page basis. Every
time a user needs to access an object, the corresponding page is transferred to the workstation and locked
in the server in either exclusive or shared mode [LLOW91]. Therefore, ObjectStore does not show any
improvement with respect to CC. Finally, the many drawbacks of a page-based CC applied to OODBMSs,
and even many more if they would be applied to KBMSs, will not be discussed in the scope of this paper.

4. The LARS 7 Protocol

4.1 Generalization of Granular Locks

Granular locks were first introduced by Gray et al. in [GLPT76]. The basic idea of the GLP comes from the
choice of different lockable units, which are locked by the system to ensure consistency and to provide

7. Locks using Abstraction Relationships’ Semantics.

10

isolation. When choosing the lockable units for implementing this protocol, one will be always faced with the
dichotomy: Concurrency versus overhead. On one hand, concurrency is increased by a fine lockable unit
(e.g., a record or a field). Such a unit is appropriate for small transactions which access few units [GLPT76].
On the other hand, a fine locking granule is costly for complex transactions which access a large number of
granules. Such transactions would have to acquire and maintain a large number of locks [GR93], which
implies a larger overhead. Thus, a coarse locking granule (e.g., a file) would be more convenient for such
transactions. However, a coarse granule discriminates against transactions which only want to lock a fine
granule of the file [GLPT76]. The main benefit of the GLP is that it satisfies both of these situations, allowing
lockable units of different granularities to coexist in the same system. Moreover, this protocol created the
notion of implicit locks, stating that by putting a lock on a granule, all descendants of it become implicitly
locked without the necessity of setting further locks. Lastly, this protocol introduced the so-called intention
locks in order to prevent locks on the ancestors of a node which might implicitly lock it in an incompatible
mode. Those locks are used to sign the intention of a transaction to set locks at a finer granularity. Thus,
the GLP has a basic set of locks composed of the IS (Intention Share), IX (Intention eXclusive), S (Share),
SIX (Share Intention eXclusive), and X (eXclusive) modes, which are then applied to the nodes in a lock
graph (a hierarchy or a Directed Acyclic Graph (DAG)) (Fig. 5) [GLPT76].

Figure 5: A lock graph for granular locks.

Notwithstanding, a protocol like the GLP is designed for a single organization hierarchy, extended to DAGs
in case of index structures. If we would directly apply the GLP to a structure rich in semantics like KB graphs,
we would not at all be able to interpret their edges. To put it another way, using the GLP, when a shared/
exclusive lock on a node is granted to a transaction, all descendants of this node are implicitly locked in the
same mode, independently of the relationship the descendants have to the ascendant. With such a
behavior, many objects may be locked unnecessarily, because it is not possible to precisely specify which
kind of descendants should be implicitly locked, and thus the overall concurrency may be affected
negatively. This is the main reason why we refute to directly apply the GLP to KBs without modifications.

4.2 The Lock Modes

As we have seen, a KB graph is built through the superposition of the classification/generalization, associ-
ation, and aggregation hierarchies (or in fact DAGs). However, many accesses in a KB are directed to a
particular hierarchy, and not to the KB graph as a whole. Due to that, we are going to logically partition the
KB graph into those three main hierarchies. As a result, we obtain a combination of different abstraction
hierarchies, and we plan to apply hierarchical lock schemes on each one of them. By such a way, on one
hand we acquire a minimization of the locks in comparison with for example a conventional approach with
shared and exclusive lock modes, where every touched object must be locked. On the other hand, we define
more precisely the granule of lock to be accessed by a transaction, allowing it to lock just the objects it really
needs to access.

Thus, we create three different logical views from the whole KB graph. These are called the classification
(which includes also generalization), association, and aggregation graphs. Obviously, these logical views
are based on the abstraction relationships that are (or at least should be) provided by KBMSs. By this way,
we provide users with the possibility of looking at a KB, and abstracting from it just the viewpoint to be
worked out. In addition, this logical division is mirrored in each object of the KB. In order to exemplify it, let
us recall our restaurant KB (Fig. 4). Suppose there are three transactions running on it. Transaction T1
wants to access all sets and elements of the KB, whereas T2 the object menus as a class and all its

database

files indices

records

areas

11

instances, and finally, T3 the object menus as a component and all its parts. In such a case, the three
transactions are provided with respectively the viewpoints a), b), and c) illustrated in Fig. 6.

Figure 6: Different transactions’ viewpoints.

Following these logical partitions, we have created three distinct sets of lock types. Hence, similar to the
GLP, we have a basic set of lock modes, named: IR (Intention Read), IW (Intention Write), R (Read), RIW
(Read Intention Write), and W (Write). However, we have this basic set of lock modes to each one of our
logical partitions, i.e., to the classification (recognized by a subscript c (c) following the lock mode), associ-

ation (s), and aggregation (a) graphs, and not to the whole structure as in the GLP. We named those locks

as pertaining respectively to the sets of C_type, S_type, and A_type locks (in general, we call them typed
locks). In Table 1, we present the semantics of each one of them.

4.3 The Lock Compatibilities

Two lock requests for the same object by two different transactions are said to be compatible if they can be
granted concurrently [Gr78]. With respect to the compatibility of the above mentioned lock types, we have
two distinct situations to cope with. These are discussed in the next subsections.

4.3.1 Compatibility of locks on the same sets of objects (equal types)

First, if the locks requested and granted give respect to the same set of objects (either C_type vs. C_type,
or S_type vs. S_type, or A_type vs. A_type), then the compatibility matrix to be followed is the same of the
GLP known from the literature [GLPT76, Gr78] (Fig. 7).

Figure 7: Compatibility matrix for typed locks of the same type.

In order to illustrate the meaning of the compatibility matrix of Fig. 7, let us think of two concurrent transac-
tions operating in our restaurant KB (Fig. 4). Transaction T1 wants to read the object appetizers and all its
subclasses and instances. Eventually, it may also need to update some of those descendants. In this case,
T1 requests an RIWc lock on appetizers, and then it automatically receives read access rights to this object

and to all its subclasses and instances, being also allowed to request Wc locks on those, sometime. In turn,

T2 wants to read the object cold-dishes and its instances. In order to accomplish that T2 needs to request
an Rc lock on cold-dishes, but before doing that it must sign in the object appetizers its intention to read

some descendants of it. Thus, it must request to the lock manager an IRc lock on appetizers. Receiving this

request, the lock manager compares the lock already hold by T1 on appetizers against the one requested
by T2 with respect to the compatibility of both. As long as both locks, requested and granted, are compatible,

bordeaux cote-du-rhone schwarzekatz liebfraumilch

sets

wine-origins

french-wines rhine-wines

ss

e

ss ss

ee e
appetizers main-coursesdesserts

sunday-menu

menus
i p

p
p

menus

Result: the whole association graph Result: the classification Result: the aggregation
graph w.r.t. menus

i: instance-of ss: subset-of e: element-of p: part-of
Notation:

a) T1: Lock (all sets) b) T2: Lock (instances of menus) c) T3: Lock (parts of menus)

graph w.r.t. menus

[c | s | a]

Requested
Mode

Granted Mode [c | s | a]

IR IW R RIW W
IR ✓ ✓ ✓ ✓

IW ✓ ✓

R ✓ ✓

RIW ✓

W

12

they may be conceded simultaneously, what is true in this case. This example is illustrated in Fig. 8.

Figure 8: Concurrent transactions operating on the same set of objects.

Table 1: Typed locks’ semantics.

IRc gives intention shared access to the requested object and allows the requester to explicitly lock
both direct subclasses of this object in Rc or IRc mode, and direct instances in Rc mode.

IWc gives intention exclusive access to the requested object and allows the requester to explicitly lock
both direct subclasses of this object in Wc, RIWc, Rc, IWc or IRc mode, and direct instances in
Wc or Rc mode.

Rc gives shared access to the requested object and implicitly to all direct and indirect subclasses
and instances of this object.

RIWc gives shared and intention exclusive access to the requested object (i.e., implicitly locks all direct
and indirect subclasses and instances of this object in shared mode and allows the requester to
explicitly lock both direct subclasses in Wc, RIWc, Rc or IWc mode, and direct instances in Wc
or Rc mode).

Wc gives exclusive access to the requested object and implicitly to all direct and indirect subclasses
and instances of this object.

IRs gives intention shared access to the requested object and allows the requester to explicitly lock
both direct subsets of this object in Rs or IRs mode, and direct elements in Rs mode.

IWs gives intention exclusive access to the requested object and allows the requester to explicitly lock
both direct subsets of this object in Ws, RIWs, Rs, IWs or IRs mode, and direct elements in Ws or
Rs mode.

Rs gives shared access to the requested object and implicitly to all direct and indirect subsets and
elements of this object.

RIWs gives shared and intention exclusive access to the requested object (i.e., implicitly locks all direct
and indirect subsets and elements of this object in shared mode and allows the requester to
explicitly lock both direct subsets in Ws, RIWs, Rs or IWs mode, and direct elements in Ws or Rs
mode).

Ws gives exclusive access to the requested object and implicitly to all direct and indirect subsets
and elements of this object.

IRa gives intention shared access to the requested object and allows the requester to explicitly lock
both direct subcomponents of this object in Ra or IRa mode, and direct parts in Ra mode.

IWa gives intention exclusive access to the requested object and allows the requester to explicitly lock
both direct subcomponents of this object in Wa, RIWa, Ra, IWa or IRa mode, and direct parts in
Wa or Ra mode.

Ra gives shared access to the requested object and implicitly to all direct and indirect subcompo-
nents and parts of this object.

RIWa gives shared and intention exclusive access to the requested object (i.e., implicitly locks all direct
and indirect subcomponents and parts of this object in shared mode and allows the requester
to explicitly lock both direct subcomponents in Wa, RIWa, Ra or IWa mode, and direct parts in
Wa or Ra mode).

Wa gives exclusive access to the requested object and implicitly to all direct and indirect subcompo-
nents and parts of this object.

turtle-soup bouillabaisse greek-salad salade-nicoise fish-plate shrimp-cocktail

soups salads cold-dishes

appetizers

scscsc

i i iii
i

sc: subclass-of i: instance-of
Notation: T1 : RIWc T2 : IRc

T2 : Rcread access right by T1

read access right by T1 and T2

13

4.3.2 Compatibility of locks on distinct sets of objects (different types)

The second situation with respect to the compatibility of the typed locks is the one where both are of different
types (either C_type vs. {S_type or A_type}, or S_type vs. {C_type or A_type}, or A_type vs. {C_type or
S_type}). In this case, the compatibility of the lock modes is not the same as above, because we are dealing
with distinct sets of objects. Let us try to build such a compatibility matrix. To do that, we need to compare
pairs of lock modes in order to find out whether conflicts may happen or not when both are granted simul-
taneously. Let us use as example an extreme case, IW and W lock modes. In the GLP, these lock modes
are incompatible, because if, for example, we set a W lock on a file, we automatically receive (implicit) W
locks on all records of such a file. Therefore, there is no reason to allow another transaction to set an IW
lock on this file because all records of it are already implicitly locked in a conflicting mode, and hence the
transaction may not access any records anyway. The same observation holds in the LARS protocol for IW
and W locks of the same type, of course due to the same reasons.

However, let us analyze a situation where two transactions require IW and W locks of different types on a
same object, say menus. Suppose we have a physical representation of menus like the one sketched in Fig.
9. As we can see, all relationships of menus are represented in a bidirectional way. Let us consider these
relationships top-down, like the way the transactions are going to request locks. Suppose T1 comes from

aggregates and wants to write8 the object menus and all its parts, namely desserts, appetizers, and main-
courses. T1 must require then, in addition to an IWa on aggregates, a Wa lock on menus. Suppose no other

transaction is actuating on menus in the moment, so that this lock may be immediately granted to T1. Once
granted, T1 is able to write the object menus and all its parts, accordingly to the semantics of Wa. Consid-

ering only the object menus in Fig. 9, we can say that T1 is able to write the fields of menus from 9 until end.
The fields 1-8 may neither be accessed nor traversed by T1 with its current lock, just because the semantics
of a Wa lock does not comprise the objects pointed by those fields (see Table 1). In other words, T1 may

write no descendants of menus, but only its parts. Let us go ahead with another transaction, T2. Suppose
T2 comes from the object foods to menus. In addition, suppose T2 sets an IWc on foods and tries to set an

IWc on menus, in order to set, further, a Wc lock on sunday-menu, an instance of menus. If we analyze the

semantics of IWc, we notice that this lock represents an intention to write subclasses and instances of an

object. In our example, it represents an intention to write the object sunday-menu. Using Fig. 9, we may
notice that T2 wants to traverse only the fields 1-4 of menus, the ones pointing to its subclasses and
instances. Therefore, although T1 has an Wa lock on menus, the lock manager may grant this IWc to T2,

because both transactions are accessing different fields of menus, and so they may not stay in conflict with

one another9. Therefore, when applied to distinct sets of objects, intention write and write lock modes are
compatible.

Our discussion has shown that conflicting lock modes applied to requests of the same abstraction hierarchy
may become compatible when issued for different abstraction hierarchies, e.g., IWc and Wa. In the same

manner, the remaining lock modes of Fig. 10 may be shown to be compatible according to the given table.
We leave this task for the reader. In Fig. 10, we can clearly see that our technique allows a much higher
parallelism than the original GLP. The boxes marked with darker shadows are where our technique offers
more concurrency, all of that due to the consideration given to the semantics of the edges in a KB graph.

8. In the scope of this paper, we use the term ‘to write an object’ as meaning an update operation in an existing
object. For insert and delete operations, we explicitly use the terms ‘to insert an object’ and ‘to delete an object’,
respectively.

9. Notice that if T2 would require a Wc on menus, it would conflict with T1, because T2 would be able to write not
only the fields 1-4, but also the ones after 12, i.e., the object menus itself.

14

Figure 9: Physical representation of the object menus.

Figure 10: Compatibility matrix for typed locks of distinct types.

4.4 Accessing Implicitly Locked Objects

In Sect. 3.1, we have briefly discussed that multiple abstraction relationships to an object in a KB may lead
to problems with the implicit locks, so that the isolation property of transactions [HR83] may be seriously
corrupted. As a matter of fact, an interference arises whenever an object with multiple parents is implicitly
locked via one of them. From now on, we call these objects with multiple parents bastards, in contrast to
purebreds, objects with only one parent.

To illustrate this problem, let us refer to Fig. 11. There, both transactions T1 and T2 required an IWc lock on

beverages. Both were granted because they are compatible. Thereafter, T1 followed the path to aperitifs
and locked it in Wc mode. Then, it received automatically write access right not only to aperitifs, but also to

its instances (pernod, champagne, and cointreau). Following another path, T2 locked liquors in Wc mode,

and received also write access rights to its instances too (cointreau and chantre). T1 and T2 may get into
troubles with one another, and for example a lost update may happen in the object cointreau. The problem
here is that none of the transactions knows a priori which are the instances of those objects due to the
dynamism of the KB graph; hence, both requested an explicit lock on a node in the hope that its descen-
dants were locked as a whole implicitly.

Figure 11: The problem with implicit locks in a graph structure.

schema-name: menus 8: /7: /6: /5: /4: /3:2:1: /

schema-name: sunday-menu ...4:...

schema-name: foods ...1: schema-name: aggregates ...9:...

schema-name: desserts ...12:...

schema-name: appetizers ...12:...

schema-name: main-courses ...12:...

1: has-subclasses
2: subclass-of
3: has-instances
4: instance-of

5: has-subsets
6: subset-of
7: has-elements
8: element-of

9: has-subcomponents
10: subcomponent-of
11: has-parts
12: part-of

12: /11:10:9: / <object data>

[s or a | c or a | c or s]

Requested
Mode

Granted Mode [c | s | a]

IR IW R RIW W
IR ✓ ✓ ✓ ✓ ✓

IW ✓ ✓ ✓ ✓ ✓

R ✓ ✓ ✓ ✓

RIW ✓ ✓ ✓ ✓

W ✓ ✓

pernod champagne cointreau chantre

aperitifs liquors

beverages

scsc

i i i i i

sc: subclass-of i: instance-ofNotation:

write access right by T1

write access right by T2

T2 : IWcT1 : IWc

T2 : WcT1 : Wc

object implicitly locked in conflicting modes

15

In order to find out possible conflicts with implicitly locked objects, we may access all ascendants or descen-
dants of an object. For this purpose, all relationships have to be represented in a bidirectional way. We could
follow basically five possible approaches. Let us discuss all of them separately.

4.4.1 Lock all referenced objects

The first and most simple approach is to explicitly lock all referenced objects. In the example of Fig. 11, if
either T1 or T2 locks all objects explicitly, the interference in cointreau is detected. This practically vanishes

the semantics of implicit locks, but it solves the problem10. Nevertheless, this method leads to a great
overhead, since many locks are required. In addition, it extinguishes the implicit locks, but as we have
discussed we do want to use them in the KBMS environment due to their nice properties and potential
advantages.

4.4.2 Search for conflicts

The second approach is, before accessing any implicitly locked bastard, to climb up the structure in order
to find out possible conflicts. In this case, a conflict is detected if such a bastard is already implicitly locked
by any other ascendant in a conflicting mode. In the above example (Fig. 11), T1 needs to upward traverse
the other path coming in cointreau in order to look for conflicts. In this particular case, it soon realizes a
conflict in liquors. This alternative requires less locks to be held than the first one, because it does not
consider explicit locks on all referenced objects, and still makes use of implicit locks, but it requires testing
locks. In turn, it also leads to some substantial drawbacks. Of course, it is very expensive if an object has
several parents, which in turn have several parents, and so on. In such a case, a transaction needs to
traverse very long paths in order to find out possible conflicts. After all, it may happen that there is no conflict
at all. In addition, too many deadlocks may happen with this approach. In the current example (Fig. 11), a
deadlock easily happens if T1 and T2 climb up the structure at nearly the same time. Lastly, this approach
is too pessimistic in the sense that the object, although being implicitly locked, may be not updated yet, or
even not be updated at all, what slackens the conflict and frees the transaction from any obligation of
detecting it.

4.4.3 Analysis of all descendants

The third approach is, before setting any explicit lock on an object, to analyze all descendants of this object

and explicitly lock the bastards11. As long as one proceeds so, any possible conflict is immediately avoided,
because the objects where potential conflicts may happen, are already explicitly locked. In the current
example (Fig. 11), this means that when transaction T1 sets a Wc lock on aperitifs, it needs also to set the

same lock on cointreau, the only bastard descendant of aperitifs. When following the same proceeding, T2
detects the conflict and must then wait until T1 terminates. This alternative is better than the previous one,
but it still is too expensive. In this case, the lock manager, always before granting an explicit lock, needs to
downward traverse all paths affected by this explicit lock and to set an explicit lock on all bastard descen-
dants. In addition, this alternative is also somewhat pessimistic, because the transaction may not need to
access all those descendants. At last, it may also lead to many deadlocks, like in the previous approach.

4.4.4 Lazy evaluation strategy

The fourth approach is to add to the previous one a kind of lazy evaluation strategy for lock conflict
resolution. In this approach, a transaction may request and be granted an explicit lock without further
proceedings. However, before effectively accessing an implicitly locked bastard, it must verify whether this
object is already locked in a conflicting mode by another transaction or not. If so, it must wait until this lock

10. This alternative is followed by ORION for its class lattices (see Sect. 3.2).
11. This alternative was pointed out by Garza and Kim [GK88] for the class lattices in ORION, implemented for

test purposes, but discarded.

16

is released. If not, it sets an explicit lock on this object, signalling that it has accessed it. This lock acts like
a tag in the bastard indicating that it has been already accessed via another parent of it.

The main difference of this alternative to the previous one is that a transaction needs to explicitly lock only
those bastard descendants which it actually accesses, leaving the others for the concurrent access by other
transactions. In the current example (Fig. 11), the Wc lock on aperitifs by T1 is immediately granted. T1 can

access pernod and champagne without problems, but if, and only if, it accesses cointreau, it needs then to
set an explicit lock on this object. On the other side, T2 performs a similar proceeding, and it only needs to
set an extra lock if it wants to access cointreau. In this case, if the lock on this bastard by T1 is already
released, for example because T1 has already modified it and committed, T2 can receive the lock, but if T1
still holds the lock, T2 must wait. This proceeding is certainly more precise than the others. In addition, it
involves less overhead because only the bastard descendants effectively accessed need to be explicitly
locked. Those which are not accessed are not locked, what minimizes the overhead of the lock manager
and increases the concurrency because they may be accessed by other transactions in the meanwhile.
Hence, implicitly locked bastards not touched via some parent may be accessed via another one. Appar-
ently, this approach also leads to deadlocks (to be discussed in Sect. 4.8.3). Let us summarize: This
approach requires, in a set of already implicitly locked objects, explicit locks only for those objects that are
actually accessed and that belong to more than one parent. For these reasons, this is the best alternative
to solve the problem with implicit locks in graph structures, and therefore we are going to follow it in the
LARS protocol.

4.4.5 Semantic optimizations

As a last point for discussion, we briefly mention a fifth approach, which represents an improvement in the
previous one, by means of the addition of some semantic optimizations. For example, if we state that when
all possible paths to an implicitly locked bastard are already explicitly locked by a transaction, this trans-
action does not need to set an explicit lock on this bastard when accessing it. In fact, all paths reaching this
bastard should already be covered by this transaction with explicit locks on its parents, and therefore the
potential conflicts would be already detected. This proceeding may be cheap in special cases, but in general
it is too difficult to be realized and too expensive.

4.5 The Locking Rules

Having presented the general lines of the LARS protocol, we are finally able to expose its complete rules to
be followed by transactions when requesting locks on objects in a KB (see Table 2).

4.5.1 The starting rule (1)

The first rule is clear when it states that transactions are allowed to directly set locks in the root object in any
mode, without further requirements.

4.5.2 The rules for requesting typed locks (2-6)

The second rule, in turn, states that an intention read lock (from the C_type, S_type, or A_type) on a non-
root object must be preceded by either intention read or intention write locks (from respectively the C_type,
S_type, or A_type) on at least one parent of this object, and so recursively until the root object is reached.
The third rule has a similar meaning, but for the intention write locks, requiring that they must be preceded
by intention read or read intention write locks on at least one path from that object to the root object. The
fourth rule states, first of all, that a read lock (from the C_type, S_type, or A_type) on a non-root object must
be covered by intention read or intention write locks (from respectively the C_type, S_type, or A_type) on
at least one path from this object to the root object. Thereafter, it requires that a transaction must explicitly

lock the bastard descendants12. This is basically required for avoiding conflicts with implicitly locked objects.
Thus, as already discussed, the LARS protocol makes a kind of lazy evaluation to detect conflicts in such

17

objects. If such an object is already locked in a conflicting mode via another parent of it, this transaction
must wait until this lock is released. If not, the transaction is granted the required explicit lock on this object,
and no other transaction will be able in the meanwhile to access it in a conflicting mode. The fifth and sixth
rules have a similar meaning, but for read intention write and write locks, respectively.

We now provide an example (Fig. 12) using again our restaurant KB (Fig. 4). Suppose T1 wants to read the
object turtle-soup as a part of the object sunday-menu. To do that it must follow rules 2 and 4 for requesting,
respectively, IRa locks on the parents of turtle-soup, and an Ra lock on it. On the other side, T2 wants to

write the object appetizers together with its subclasses and instances. In turn, it must follow rules 3 and 6
for requesting IWc locks on the ascendants of appetizers and a Wc lock on it, respectively. However, when

trying to access the object cold-dishes, T2 realizes that this object is a bastard, and, as stated by the rule
6, it requests a Wc lock on this object, and is granted because this object was free. The same may happen

for the object turtle-soup as long as T2 tries to access it. When trying this, either T2 must wait, if the Ra lock

on this object is still held by T1, or it may be granted, if T1 has already terminated.

Figure 12: Avoiding conflicts with implicitly locked objects.

12. There may be situations where a descendant may have two edges pointing to the same ascendant. For exam-
ple, when an object is at the same time instance and element of the same object. In such situations, the object
is considered to be a bastard, no matter whether the parents are the same object.

Table 2: Locking rules.

1 The root object can be locked directly in any mode.

2 Before requesting an IRc|s|a mode lock on a non-root object, the requester must hold a path to the
root in IRc|s|a or IWc|s|a.

3 Before requesting an IWc|s|a mode lock on a non-root object, the requester must hold a path to the
root in IWc|s|a or RIWc|s|a mode.

4 Before requesting an Rc|s|a mode lock on a non-root object, the requester must hold a path to the
root in IRc|s|a or IWc|s|a mode. In addition, before accessing any implicitly locked bastard descend-
ant, the requester must set an Rc|s|a lock on it.

5 Before requesting an RIWc|s|a mode lock on a non-root object, the requester must hold a path to
the root in IWc|s|a or RIWc|s|a mode. In addition, before accessing any implicitly locked bastard
descendant, the requester must set either a) an Rc|s|a lock on it, if it is a leaf object, or b) an
RIWc|s|a lock on it, if it is a non-leaf object.

6 Before requesting a Wc|s|a mode lock on a non-root object, the requester must hold a path to the
root in IWc|s|a or RIWc|s|a mode. In addition, before accessing any implicitly locked bastard
descendant, the requester must set a Wc|s|a lock on it.

7 Release all locks as soon as the transaction terminates (either commits or aborts).

dishes

foods

offers

classesaggregates
c

sc

sc

sc

sc

c

scsc: subclass-of

i: instance-of

p: part-of

Notation:

c: subcomponent-of

global T2 : IWc

T2 : IWc

T2 : IWc

T2 : IWc

T2 : IWc

T2 : Wc

T1 : IRa

turtle-soup bouillabaisse greek-salad salade-nicoise fish-plate shrimp-cocktail

soups salads cold-dishes

appetizers
sc

scsc

i iii
i

i

sunday-menu

p
T2 : Wc

T1 : IRa

T1 : IRa

T1 : Ra

write access right by T2

read access right by T1

predefined schemas

signs the existence of other paths

18

The most important benefit of explicitly locking bastard descendants, besides guaranteeing serializability,
is the slackness of the original requirement of the GLP of covering all paths until the root, and as a conse-
quence all ascendants, with intentions before granting an exclusive lock [GLPT76]. This is a serious
limitation when an object has several ascendants and is likely to be used via many of them. For example,
consider an aggregation relationship in our restaurant KB. An object, say rice, could be used in a large
amount of the menus, all of which would be its parents. In such situations, it is very inefficient to set intention
locks on all the parents [HDKRS89], and as a consequence on all paths to the root, because too many locks
are required, and a transaction may end up locking a large portion of the KB for a possibly simple operation,
decreasing seriously the concurrency and increasing the overhead. Therefore, our approach significantly
limits the overhead of the whole process of setting locks, and still provides, to a limited extent, a minimi-
zation of the number of locks to be set by transactions, through the use of implicit locks.

4.5.3 The commit rule (7)

The seventh rule is responsible for always producing strict executions [BHG87], when it requires the locks
of a transaction to be released only at its end.

4.6 Correctness Concerns

The goal of the LARS protocol is to ensure that distinct transactions never hold conflicting (explicit or
implicit) locks on the same object. In this section, we deliberate on aspects concerning correctness. Before
passing on to the proof of the LARS protocol, we need some definitions.

Definition 1: A directed acyclic graph (DAG), G, is a finite set of nodes N, and a set of arcs A (a subset
of N x N). The set of arcs A is divided into three disjoint subsets Ac, As, and Aa (Ac ∩ As =

Ac ∩ Aa = As ∩ Aa = ∅). Ac contains the set of arcs of the classification and generalization

abstraction concepts, As the set of arcs of the element- and set-association concepts, and,

at last, Aa the set of arcs of the element- and component-aggregation concepts.

Definition 2: A node p is a parent of node c, and c is a child of node p, if <p, c> ∈ A.

Definition 3: A node with no parents is a root . There is always only one root in G, namely, the predefined
node global .

Definition 4: A node with no children is a leaf . To consider a node a leaf, one must pay attention to the
set of arcs Ac, As, and Aa separately. For example, a node may be a leaf with respect to

Ac, but not necessarily with respect to As or Aa.

Definition 5: A path is a set of arcs of A, a1 . . . an, where ai = <bi, bi+1>, and bi ∈ N.

Definition 6: Node b is an ancestor of node c if b = c or b lies in some path from the root to node c.

Definition 7: Node b is a proper ancestor of node c if b is an ancestor other than c itself.

Definition 8: Node c is a descendant of node b if b is not a leaf and either c = b or c lies in some path
from b to some leaf.

Definition 9: Node c is a proper descendant of node b if c is a descendant other than b itself.

Definition 10: A bastard is any node which has more than one parent.

Definition 11: A purebred is any node which has only one parent.

Theorem 1: Suppose all transactions obey the LARS protocol with respect to a given lock graph, G, that
is a DAG. If a transaction owns an explicit lock on a bastard node of G or an explicit or
implicit lock on a purebred node of G, then no other transaction owns a conflicting explicit
lock on that bastard node or a conflicting explicit or implicit lock on that purebred node.

19

Proof: In theorem (1), we may notice that implicitly locked bastards are excluded, i.e., only
explicitly locked bastards are referenced. This observation comes from the fact that rules
(4), (5), and (6) require, for the eventually implicitly locked bastards, explicit locks on those
before the access may take place. Hence, any eventual implicit lock conflicts on bastards
may be immediately discarded by the provided compatibility matrices, when those are
turned on to explicit locks. Therefore, conflicts on bastards are obviously impossible.

It is sufficient to prove the theorem for leaf nodes, because if two transactions held
conflicting (implicit or explicit) locks on a non-leaf node, they would be holding conflicting
implicit locks on all purebred descendants as well as explicit locks on all touched bastard
descendants and, in particular, all leaf descendants of this non-leaf node. Suppose that
transactions Ti and Tj own conflicting locks on an object, say O. There are fifty-four different
possibilities of conflict on O, which can be grouped, per similarity, in five cases (see Table
3, where i stands for implicit and e for explicit locks).

Table 3: Possible conflicts on an object O.

Case 1. Under case (1) are classified all possible conflicts involving conflicting implicit locks
of the same type. We use as example the assumed conflict: Ti holds implicit Rc [O] and Tj

holds implicit Wc [O]. Since O is implicitly locked by Ti in Rc mode, Ti owns an explicit Rc

lock on some proper ancestor Y of O and, additionally, explicit Rc locks on the set of nodes

Z, ancestors of O and proper descendants of Y, which are bastards (rule (4)). Since O is
implicitly locked by Tj in Wc mode, Tj owns an explicit Wc lock on some proper ancestor Y’

of O and, additionally, explicit Wc locks on the set of nodes Z’, ancestors of O and proper

descendants of Y’, which are bastards (rule (6)). There are three subcases: (a) Z = Z’ = ∅,

(b) (Z ≠ ∅ ∨ Z’ ≠ ∅) ∧ Z ∩ Z’ = ∅, and (c) Z ∩ Z’ ≠ ∅. Subcase (a) has in addition three

subcases: (a1) Y = Y’, (a2) Y is a proper ancestor of Y’, and (a3) Y’ is a proper ancestor of
Y. Subcase (a1) is excluded by the given compatibility matrices, therefore impossible,
because Ti and Tj are holding conflicting Rc and Wc locks (respectively) on Y = Y’. Subcase

(a2) is impossible, because Tj must own IWc [Y], which conflicts with Rc [Y]. Subcase (a3)

is impossible, because Ti must own IRc [Y’], which conflicts with Wc [Y’]. Subcase (b) is

iRc eRc iWc eWc iRs eRs iWs eWs iRa eRa iWa eWa

iRc 1 2 3 4 3 4

eRc 2 5 4 5 4 5

iWc 1 2 1 2 3 4 3 4 3 4 3 4

eWc 2 5 2 5 4 5 4 5 4 5 4 5

iRs 3 4 1 2 3 4

eRs 4 5 2 5 4 5

iWs 3 4 3 4 1 2 1 2 3 4 3 4

eWs 4 5 4 5 2 5 2 5 4 5 4 5

iRa 3 4 3 4 1 2

eRa 4 5 4 5 2 5

iWa 3 4 3 4 3 4 3 4 1 2 1 2

eWa 4 5 4 5 4 5 4 5 2 5 2 5

T
r
a
n
s
a
c
t
i
o
n

Ti

Transaction Tj

20

obviously impossible because if neither Z nor Z’ are empty, they must have at least one
common node, otherwise, it would be impossible to implicitly lock O from two different
paths. Subcase (c) is impossible because Ti and Tj would be holding conflicting Rc and Wc

(respectively) locks on a same node z ∈ (Z ∩ Z’). Thus, the assumed conflict is impossible.
The other conflicts listed as case (1) are similar to this one, and follow therefore the same
arguments.

Case 2. Under case (2) are classified all possible conflicts involving an implicit lock and an
explicit lock, both of the same type. We use as example the assumed conflict: Ti holds
implicit Rc [O] and Tj holds explicit Wc [O]. Since O is implicitly locked by Ti in Rc mode, Ti

owns an explicit Rc lock on some proper ancestor Y of O and, additionally, an explicit Rc

lock on every node Z, ancestor of O and proper descendant of Y, which is a bastard (rule
(4)). Since O is explicitly locked by Tj in Wc mode, Tj owns IWc locks on a path from O to

the root (rule (6)). There are three subcases: (a) Tj holds IWc [Y], (b) Tj holds IWc [Z], and

(c) Tj holds both IWc [Y] and IWc [Z]. All of them are impossible because the lock types IWc

and Rc conflict. The other conflicts listed as case (2) are similar to this one, and follow

therefore the same arguments.

Case 3. Under case (3) are classified all possible conflicts involving implicit locks of
different types. We use as example the assumed conflict: Ti holds implicit Rc [O] and Tj

holds implicit Ws [O]. Since O is implicitly locked by Ti in Rc mode, Ti owns an explicit Rc

lock on some proper ancestor Y of O, which lies in a path p (p ⊂ Ac) from O to the root (rule

(4)). Since O is implicitly locked by Tj in Ws mode, Tj owns an explicit Ws lock on some

proper ancestor Y’ of O, which lies in a path q (q ⊂ As) from O to the root (rule (6)). By

definition (1), Ac ∩ As = ∅, therefore p ≠ q. By definition (10), O is a bastard. By rule (4), Ti

must own Rc [O] before accessing O. By rule (6), Tj must own Ws [O], what is impossible

because Ti owns a conflicting lock on O (namely, Rc [O]). Hence, the assumed conflict is

impossible. The other conflicts listed as case (3) are similar to this one, and follow therefore
the same arguments.

Case 4. Under case (4) are classified all possible conflicts involving an implicit lock and an
explicit lock, both of different types. We use as example the assumed conflict: Ti holds
implicit Rc [O] and Tj holds explicit Ws [O]. Since O is implicitly locked by Ti in Rc mode, Ti

owns an explicit Rc lock on some proper ancestor Y of O, which lies in a path p (p ⊂ Ac)

from O to the root (rule (4)). Since O is explicitly locked by Tj in Ws mode, Tj owns IWs locks

on a path q (q ⊂ As) from O to the root (rule (6)). By definition (1), Ac ∩ As = ∅, therefore p

≠ q. By definition (10), O is a bastard. By rule (4), Ti must own Rc [O] before accessing O,

what is impossible because Tj owns Ws [O], which conflicts with Rc [O]. Hence, the

assumed conflict is impossible. The other conflicts listed as case (4) are similar to this one,
and follow therefore the same arguments.

Case 5. Under case (5) are classified all possible conflicts immediately excluded by the
compatibility matrices. All of them are obviously impossible. ❑

4.7 Coping with Insert and Delete Operations - The Phantom Problem

Thus far, we have considered a KB as a fixed set of objects, which can be accessed by reads and writes.
Most real KBs can dynamically grow and shrink. Therefore, in addition to reads and writes, we must support
operations to insert new relationships and objects and delete existing relationships and objects. These
operations are supported by the following complementary rules (Table 4).

21

Table 4: Locking rules for insert and delete operations.

4.7.1 The rules for insertion and deletion of objects (8-9)

The eighth rule copes with the insertion of objects in the KB. Before explaining this rule, it is convenient to
notice that firstly, we assume that an object is always inserted with at least one relationship (when no
relationship is provided by the user, the object is considered to be an instance of global, see Sect. 2.1), and
secondly, when the user specifies more than one relationship, the LARS protocol treats such cases as being
an insertion of an object with one relationship, followed by as many insertions of edges (governed by rule
10) as asserted by the user. Hence, the eighth rule must always handle the object and its single parent.
Finally, it states that before inserting an object, its parent must be held in at least intention write mode (and
so recursively until the root object is reached). The type of such an intention write mode is dictated by the
abstraction relationship being inserted, i.e., C_type for classification/generalization, S_type for association,
or A_type for aggregation. Fig. 13 provides an example of the lock requests needed for inserting an object.
Suppose transaction T1 wants to insert the object cote-de-provence as an instance of wines. To accomplish
this task, T1 must request an IWc lock on wines, the parent of cote-de-provence. In turn, this IWc lock must

be covered by IWc locks on the parents of wines until the root global. Just after holding those locks, T1 is

then able to insert the object cote-de-provence. As soon as cote-de-provence is inserted, the lock manager
grants a Wc lock on this object to T1, which holds it until it terminates. An important point to be considered

here is the possible occurrence of phantoms in this operation. Phantoms are discussed in Sect. 4.7.3.

In turn, the ninth rule deals with deletion of objects in a similar way, with the extra requirement that the object
itself must be held in write mode. Notice that such a write lock implies intention write locks on a parent, on
a parent of the parent, and so forth until the root is reached. Also similar to the insertion, when an object
with several parents is to be deleted, the LARS protocol treats such cases as many deletions of edges
(governed by rule 11) as necessary, until the object has only one parent. Finally, the type of such write and
intention write locks are dictated by the abstraction relationship in question.

Figure 13: Locks for the insertion of an object.

4.7.2 The rules for insertion and deletion of edges (10-11)

The tenth rule copes with the insertion of edges in the KB graph, i.e., the creation of new relationships
between objects. It states that for inserting an edge, the object must be held in write mode, and the parent
in at least intention write mode, according to the abstraction relationship being inserted. Fig. 14 illustrates
the use of this rule, complementing the last example. Suppose that T1 wants to connect the recently created

8 Before inserting an object, the requester must hold the parent in IWc|s|a, RIWc|s|a or Wc|s|a mode.

9 Before deleting an object, the requester must hold it in Wc|s|a mode.

10 Before inserting an edge, the requester must hold the descendant in Wc|s|a mode, and the parent in
IWc|s|a, RIWc|s|a or Wc|s|a mode.

11 Before deleting an edge, the requester must hold the descendant in Wc|s|a mode.

sc
global

cote-de-provence

Notation:

T1 : IWc

object inserted by T1

predefined schemas
T1 : IWc

T1 : IWc

T1 : IWc

beverages

offers

classes

wines

sc

sc

sc

i

sc: subclass-of

i: instance-of

T1 : IWc

T1 holds Wcafter insertion ➔

22

object cote-de-provence as an element of french-wines. Following the rule 10, T1 must request a write lock
on this object, preferentially a Ws lock, since it is applying the association concept. However, this object is

not an element of any other object yet, what makes impossible the acquirement of a Ws lock on it. In such

particular cases, a transaction is allowed to acquire a write lock of another type. Since cote-de-provence is
an instance of wines, T1 requires a Wc lock on this object, and is granted because it in fact already holds

such a lock due to the proceedings of the last example. Thereafter, T1 must require an IWs lock on french-

wines, the new parent of it. In turn, this intention lock requires intention on the parents, recursively. Finally,
after holding all the required locks, T1 creates the new relationship. As we can see, the insertion of an edge
is a bit more complicated operation, because the transaction does not know a priori which are the roles of
the object itself and its parent in the current state of the KB. The same does not happen for the deletion of
an edge, which is treated by the rule 11. In such cases, the transaction does know the current role of the
objects, and by this way the path it must traverse for requesting locks.

Figure 14: Locks for the insertion of an edge.

4.7.3 The Phantom Problem

As stated by Bernstein et al. [BHG87], the phantom problem is the concurrency control problem for dynamic
databases. Granular locks provide physical locks, and being so we have problems with the so-called
phantoms also in the LARS protocol. Phantoms are characterized by inserted or deleted objects which may
seem to appear or disappear to some concurrent transactions like a ghost. The phantom problem was first
introduced by Eswaran et al. in [EGLT76], which also proposed the predicate locks for elegantly coping with
such situations. Since we do not have predicates in the LARS protocol, we must deal with them in some
other manner.

The most reasonable solution we found is to delegate to the transactions the decision about tolerating or
not phantoms. If a transaction decides to avoid phantoms at all, it must then request exclusive typed locks
on the object in the next higher level of the graph it is currently working on (what is foreseen by the locking
rules). Taking this measure accordingly, no phantoms may happen because no other transaction is able to
access any descendant of such an object, with respect to the working graph. Exemplifying, if a transaction
wants to insert an instance of some class, it must request a Wc lock on the class. Thereafter, any other

transaction may neither read nor write any instance of this class, due to the Wc lock hold by the inserting

transaction on it, and hence no phantom appears. On the other hand, such a measure may significantly
decrease the concurrency because the object as well as a certain subset of its descendants stay inacces-
sible to other transactions for the time the insert or delete transaction is running. Therefore, due to such pros
and cons, we decided to delegate to transactions the choice among either greater concurrency with
phantoms or lower concurrency without phantoms.

sets

wine-origins

french-wines

ss

e

ss

global

cote-de-provence

ss

Notation:

T1 : IWs

predefined schemas

T1 : IWs

T1 : IWs

T1 : IWs

ss: subset-of

e: element-of

T1 : IWc

T1 : IWc

T1 : IWc

T1 : IWc

beverages

offers

classes

wines

sc

sc

sc

i

sc: subclass-of

i: instance-of

T1 : IWc

sc

T1 : Wc

new edge inserted by T1 ➔

23

4.8 Final Considerations and Future Work

4.8.1 Including Indices in the KB Graph

Thus far, we have pretended that all accesses against a KB take place through the abstraction relationships.
However, the examination of KBMSs suggests otherwise. Hash tables, trees, sorted and unsorted lists,
arrays, access sequences, etc., are normally used to speed up the access to objects in KBs. Therefore, we
must expand the LARS protocol to work for KB graphs with indices. Adapting the main ideas of the GLP
with respect to indices to the KBMS environment, we first come to the following observations, which could
be used as a starting point for a solution:

(1) The indices could be treated as root nodes. Hence, we would have several roots in the KB graph, and
not only one as supposed so far. The main root would still be the predefined schema global (global
root), and all indices would build other roots (index roots).

(2) Typed read (Rc|s|a) locks on a node would require that all nodes on at least one path from that node to

at least one (any) root be covered by typed intention read (IRc|s|a) locks.

(3) Typed write (Wc|s|a) locks on a node would require that all nodes, first, on at least one path from that

node to the global root, and, second, on all paths from that node to all index roots be covered by typed
intention write (IWc|s|a) locks.

This is the simplest adaptation of the GLP to our environment. On one side, the acquirement of read locks
is made easier, because locking just one path to any index root in intention read mode suffices, and such a
path is potentially shorter than one to the global root. On the other side, write locks are costly to be acquired,
because all paths to all index roots must be locked in intention write mode, beyond a path to the global root
itself. Unfortunately, this topic is more complicated than it may seem. First of all, special index structures
must be tailored for the KBMS environment, and thereafter the CC protocol must be adapted to correctly
work with such structures. At the actual point of our work, we have not made enough considerations about
this topic, so that to make a reasonable and concrete proposal here. We are working on this topic, and leave
such a proposal for a later publication.

4.8.2 Multiple Inheritance

The multiple abstraction relationships to an object may lead to a particular situation where a transaction
requests incompatible locks on the same object. When multiple inheritance is allowed, this situation may
happen even more frequently. Suppose the simple scenario sketched in Fig. 15. There, transaction T1 holds
a Wc lock on object O4, which was granted via the path O1-O2-O4. After holding such a lock, T1 traverses

the path O1-O3-O4, and requests again a Wc lock on the same object O4. In such cases, the lock manager

must be aware of which transaction is requesting the incompatible lock. If the requesting transaction is the
same one which holds the incompatible lock, then the lock manager must simply grant the lock to it again.
On the other side, if the lock manager just checks whether the object is already locked in an incompatible
mode or not, it may produce situations where a transaction must wait for itself, and even worst, a transaction
may get deadlocked with itself. Therefore, the lock manager of the LARS protocol verifies, in case of
conflicting lock requests on the same object, which particular transaction is currently holding the lock. If both
transactions are the same, such a lock request is treated as being granted, if not, the requesting transaction
must wait until the conflicting lock is released.

4.8.3 Deadlocks

Deadlocks happen whenever there is a cyclical sequence of transactions each waiting for the next to
release a lock it must acquire (T1 ➔ T2 ➔ ... ➔ T1). As a matter of fact, granular locks are subject to
deadlocks. Thus, the LARS protocol is also susceptible to deadlocks. However, it suffers from a kind of
deadlock which does not happen in the GLP, namely, deadlocks with (implicitly locked) bastard objects. The

24

difference is that the rules 4, 5, and 6 of the LARS protocol require also explicit locks on those implicitly
locked bastards, what is not done by the GLP.

Figure 15: Incompatible lock requests by the same transaction via different paths.

Fig. 16 illustrates a scenario where such a deadlock occurs. There, T1 locked the object dishes in Wc mode,

and, according to the semantics of this lock, all its subclasses and instances were implicitly locked. Hence,
T1 starts performing some modifications. But when accessing turtle-soup, it realizes that this object has
another parent (sunday-menu), and requires then a Wc lock on this object, which is granted because this

object is free. In the meanwhile, T2 locked the object sunday-menu in Wa mode, and by this way all its

subcomponents and parts implicitly. In a similar way, when accessing steak-au-poivre, T2 detects that this
object has another parent (main-courses), and requests thus a Wa lock on it, which is granted. Thereafter,

T2 tries to access the object turtle-soup. In the same manner, it must request a Wa lock on it, due to its other

parent. This lock is not granted because T1 holds a lock on this object which conflicts with the one requested
by T2. T2 must then wait until T1 terminates. On the other side, T1 goes ahead and requests a Wc lock on

the object main-courses, also due to its other parent, which is granted. Thereafter, it similarly requests a Wc

lock on steak-au-poivre. Unfortunately, T1 must wait until T2 terminates because a conflicting lock on this
object is held by T2. Therefore, if no corrective measures are taken in such a situation, T1 and T2 will wait
for each other forever, what characterizes a deadlock.

Figure 16: Deadlocks with bastard objects.

With respect to deadlocks, Gray and Reuter [GR93] advocate that these are very, very rare events, and
Härder [Hä84] states that there are no general purpose deadlock-free locking protocols that always provide
a high degree of concurrency. On the other side, Yannakakis [Ya82, Ya82a] holds the opinion that it is very
easy to construct scenarios where deadlocks arise, and Silberschatz and Kedem [SK80] state that deadlock
detection and recovery in general is an expensive task and should be avoided whenever possible. Anyway,
our technique unfortunately does not avoid deadlocks, and so we will have an extra overhead for detecting
and resolving them. There are a lot of strategies to detect deadlocks. One of them is timeout, where the
system, finding that a transaction is waiting too long for a lock, just guesses that there may be a deadlock
involving this transaction and simply aborts it and restarts it later again (although imprecise in the detection
of deadlocks, it works). Waits-for-graph [Ho72] is another strategy, where the system maintains a graph

O1

O2 O3

O4

O5 O6

T1 : IWc

T1 : IWc

T1 : Wc

O1

O2 O3

O4

O5 O6

T1 : IWc

T1 : IWc

T1 : Wc

T1 : IWc

T1 : IWc

T1 : Wc

T1 requests incompatible
Wc locks on O4

global

classes aggregates

sunday-menu

turtle-soup steak-au-poivre

sc c

i i

pp

csc

sc
sc

T1 : IWc

T1 : IWc

T1 : Wc

T1 : Wc

T1 : Wc

T2 : IWa

T2 : IWa

T2 : Wa

T2 : Wa

T1 requests Wc on T2 requests Wa on ☞ deadlock

Notation:

predefined schemas

sc: subclass-of

i: instance-of

p: part-of

c: subcomponent-of

signs the existence of other paths

dishes

soups
main-courses

25

showing which transactions are waiting for other ones. When a cycle is found in this graph, it means
precisely that the transactions in the cycle are deadlocked. The system then chooses one of them as a

victim13, aborts it, obliterating its effects from the database, and restarts it later again. Particularly, we feel
that timeout does not always offer an optimal solution to deadlocks. Although being very easy to implement,
the number of transactions that may be unnecessarily aborted and restarted again may be unacceptably
high, due to the impreciseness of this technique. On the other side, waits-for-graph shows a very good
precision for all kinds of transactions, independently of their duration. An implementation and comparison
between both techniques is subject of our future work.

4.8.4 Lock Conversion

An important concept covered by the GLP is lock conversion [GLPT76]. Lock conversions are normally used
to increase (upgrade) the access mode a transaction has to an object (for example, if a transaction has read
some object and wants to modify it afterward, it can request to the system to upgrade its lock on this object
from shared to exclusive mode). Thus, all the system must do is a comparison between the currently
granted lock mode of the requester to the resource and the newly requested lock mode. The new mode will
be either the most restrictive between the old and the requested mode, or a combination of both.

In the LARS protocol, lock conversions are handled accordingly to the type of lock. To put it another way, a
transaction may upgrade a C_type lock to another one of this same C_type, but not to one of A_type or
S_type, for example. Fig. 17 shows the lock conversion table for typed locks. To give an example, if one
has an IWc lock on an object and requests an Rc lock on it, then the new mode is RIWc.

Figure 17: Lock conversion table.

4.8.5 Lock Escalation

Another important issue with respect to granular locks is lock escalation [GR93, BHG87]. A system
employing granular locks must decide the level of granularity at which transactions should be locking.
Generally, a fine-granularity locking is used as default, unless the system has some hint that the transaction

is likely to access several lockable units covered by the current lock mode14. In such cases, they may get
a single, coarse-granularity lock. The past history of a transaction’s behavior can be also used to predict the
need for coarse-granularity locks [BHG87]. After the transaction has acquired more than a certain number
of locks (usually set to 1000 according to Gray and Reuter [GR93]) of a given granularity, the system
executes some kind of heuristic to convert fine-granularity locks to coarse locks, requesting locks at the next
higher level of granularity. This process of trading fine-granularity locks for coarse ones is called lock
escalation. Albeit it may cause waiting or lead to deadlocks, it is an important aspect for improving the
performance of the CC protocol and for preventing the lock system to run out of storage when millions of
locks are acquired.

13. This choice is not always a simple decision due to another problem, worse than deadlock, because it is harder
to detect and wastes resources, named livelock. Livelocks are situations where each member of the livelock
set may soon want to wait for another member of the set, resulting in another abort and restart [GR93].

14. As an example of a hint, in some implementations of SQL, there is an SQL statement to explicitly lock an entire
table. With such a hint, the system can immediately try to lock the whole table.

Old
Mode

Requested Mode [c | s | a]

IR IW R RIW W
IR IR IW R RIW W
IW IW IW RIW RIW W
R R RIW R RIW W

RIW RIW RIW RIW RIW W
W W W W W W

[c | s | a]

26

Lock escalation is also taken into consideration by the LARS protocol. By means of it, for example, if a trans-
action has acquired an IWc mode lock on a class, and starts requesting too many Wc locks on its instances,

the LARS protocol will try to grant a Wc lock to this transaction on this class, implicitly locking all its instances

and alleviating its task of requesting so many explicit locks. Nevertheless, there is an aspect we must still
cope with. As stated by the locking rules 4, 5, and 6 of the LARS protocol, the transaction must request also
explicit locks on implicitly locked bastards. Due to this requirement, a lock escalation in the LARS protocol
alleviates the transaction from requesting locks just on purebred descendants, but the same is not true for
the bastards, because the transaction, obeying the locking rules, must still request locks on those objects.
We believe this aspect will not prejudice too much the performance of lock escalation in the LARS protocol.
Notwithstanding, if the LARS protocol is likely to be faced with situations like, for example, a class has
thousands of instances and all of them are bastards, then it may labor under difficulties, because even with
a lock escalation, a transaction requesting a lock on this class will be forced to request thousands of locks
on its instances, due to their other parents. A possible solution to this problem is to provide a lock escalation
covering all the parents of the objects being locked, and not only on the parent the transaction has acquired
an intention lock. In this case, with all parents being explicitly locked, their descendants could be accessed
without further synchronization needs. However, this proceeding, besides the possibility of being very
costly, could also decrease the concurrency, because too many objects would be explicitly locked by just
one transaction. A detailed investigation of this aspect is also another point we will take into consideration
in our future work.

5. Conclusions

KBMSs are a growing research area finding applicability in many different domains. The higher its demand,
the greater the necessity for knowledge sharing. In the near future, KBMSs will be applied more and more
in real world applications. As a matter of fact, the research for CC techniques tailored to the KBMS
environment plays a crucial role to this applicability. Moreover, it assumes a paramount importance as the
demand for ever-larger KBs grows.

Following this research direction, we have presented a CC technique tailored for KBMSs. The most
important characteristic of our technique is the partition of the KB graph into many logical ones, allowing by
this way transactions to concurrently access such partitions through different points of view. Thereafter, to
each one of these partitions, we have applied granular locks, providing thus many different lock types and
taking the necessary precautions with respect to the dynamism of the KB graph. In this manner, we have
captured more of the semantics contained in the KB graph in the sense that we do not consider descendants
of an object as being simply descendants of it, but, on the contrary, descendants with special characteristics
and significance, which are based on the abstraction relationships of generalization, classification, associ-
ation, and aggregation. This is the most important point of our technique, by means of which we can really
obtain a high degree of concurrency, with a full exploitation of all inherent parallelism in a knowledge repre-
sentation approach.

In addition, we have enumerated and commented some important challenges to be coped with by a CC
technique for KBMSs. First, the LARS protocol offers different granules of locks. Second, it considers
implicit locks, alleviating the task of managing too many locks due to the high number of objects in real world
applications. Thirdly, it copes well with multiple abstraction relationships to objects, by means of the
requirement of explicitly locking bastards, which, in turn, relaxes the necessity of covering all paths to the
root with intentions, reducing it to only one path. Fourth, it interprets the relationships between objects with
respect to their semantics, providing typed locks for all abstraction concepts. Finally, such power, flexibility,
and parallelism are by no means proffered by the related works we criticized.

At last, we have also discussed some topics of our future work in the final considerations. All those aspects
are going to be considered in the implementation of our technique. Particularly, we are going to use the

27

KBMS prototype KRISYS [Ma89], developed at the University of Kaiserslautern, as a practical vehicle for
the implementation. Of course, we shall not forget that the fundamental attribute of each successful CC
mechanism implementation is performance. Therefore, in our implementation, we are going to take into
account whatever aspect we can to improve throughput and decrease response time. We hope, in the near
future, to have the opportunity of preparing another paper with detailed aspects of the implementation of our
technique, considering pros and cons of the concepts and realization strategies we follow.

Acknowledgments

We would like to thank J. Reinert for the helpful discussions about the correctness concerns of our protocol.

References

[BCGKWB87] Banerjee, J., Chou, H.-T., Garza, J.F., Kim, W., Woelk, D., Ballou, N.: Data Model Issues for Object-Ori-
ented Applications. ACM Transactions on Office Information Systems, Vol. 5, No. 1, Jan. 1987. pp. 3-26.

[BDK92] Bancilhon, F., Delobel, C., Kanellakis, P. (Eds.).: Building an Object-Oriented Database System: The
Story of O2. Morgan Kaufmann Publishers, San Mateo, CA, USA, 1992.

[BHG87] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems.
Addison-Wesley Publishing Company, MA, USA, 1987.

[BMOPS+89] Bretl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Willians, E.H., Willians, M.: The Gem-
Stone Data Management System. In: Kim, W., Lochovsky, F.H. (Eds.), Object- Oriented Concepts, Da-
tabases, and Applications, ACM Press, New York, USA, 1989. pp. 283-308. (Chapter 12).

[BOS91] Butterworth, P., Otis, A., Stein, J.: The GemStone Object Database Management System. Communica-
tions of the ACM, Vol. 34, No. 10, Oct. 1991. pp. 64-77.

[CF92] Cart, M., Ferrié, J.: Integrating Concurrency Control into an Object-Oriented Database System. In:
[BDK92]. pp. 463-485.

[Ch93] Chaudhri, V.K.: On the Performance of a Multi-User Knowledge Base Management System. Internal Re-
port, University of Toronto, Toronto, Canada, Dec. 1993.

[Ch94] Chaudhri, V.K.: Transaction Synchronization in Knowledge Bases: Concepts, Realization and Quantita-
tive Evaluation. Doctor Thesis, University of Toronto, Toronto, Canada, 1994.

[CHM92] Chaudhri, V.K., Hadzilacos, V., Mylopoulos, J.: Concurrency Control for Knowledge Bases. In: Proc. of
the 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning, Cambridge, USA, 1992.

[Dx90] Deux, O. et al.: The Story of O2. IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 1,
March 1990. pp. 91-108.

[Dx91] Deux, O. et al.: The Story of O2. Communications of the ACM, Vol. 34, No. 10, Oct. 1991. pp. 34-48.

[EGLT76] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The Notions of Consistency and Predicate Locks in
a Database System. Communications of the ACM, Vol. 19, No. 11, Nov. 1976. pp. 624-633.

[FÖ89] Farrag, A.A.; Özsu, M.T.: Using Semantic Knowledge of Transactions to Increase Concurrency. ACM
Transactions on Database Systems, Vol. 14, No. 4, Dec. 1989. pp. 503-525.

[Ga83] Garcia-Molina, H.: Using Semantic Knowledge for Transaction Processing in a Distributed Database.
ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983. pp. 186-213.

[GK88] Garza, J.F., Kim, W.: Transaction Management in an Object-Oriented Database System. In: Proc. of the
ACM SIGMOD Int. Conf. on Management of Data, Chicago, USA, June 1988. pp. 37-45.

[GLPT76] Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.L.: Granularity of Locks and Degrees of Consistency in
a Shared Data Base. In: Proc. of the IFIP Working Conference on Modeling in Data Base Management
Systems, Freudenstadt, Germany, Jan. 1976. pp. 365-394.

[GR93] Gray, J.N., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publish-
ers, San Mateo, CA, USA, 1993.

[Gr78] Gray, J.N.: Notes on Database Operating Systems. In: Operating Systems: An Advanced Course,
Springer Verlag, Berlin, 1978. (Lecture Notes in Computer Science No. 60).

[Hä84] Härder, T.: Observations on Optimistic Concurrency Control Schemes. Information Systems, Vol. 9, No.
2, 1984. pp.111-120.

[HDKRS89] Herrmann, U., Dadam, P., Küspert, K.M., Roman, E.A., Schlageter, G.: A Lock Technique for Disjoint
and Non-Disjoint Objects. Technical Report No. TR.89.01.003, IBM Heidelberg Research Center, Heidel-
berg, Germany, Jan. 1989.

[Ho72] Holt, R.C.: Some Deadlock Properties in Computer Systems. ACM Computing Surveys, Vol. 4, No. 3,
Sep. 1972. pp. 179-196.

28

[HR83] Härder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery. ACM Computing Surveys,
Vol. 15, No. 4, Dec. 1983. pp. 287-317.

[KBCGW87] Kim, W., Banerjee, J., Chou, H.-T., Garza, J.F., Woelk, D.: Composite Objects Support in an Object-Ori-
ented Database System. In: Proc. of the 2nd Int. Conf. on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA’87), Orlando, Florida, USA, Oct. 1987.

[KBCGW89] Kim, W., Ballou, N., Chou, H.-T., Garza, J.F., Woelk, D.: Features of the ORION Object-Oriented Data-
base System. In: Kim, W., Lochovsky, F. (Eds.), Object-Oriented Concepts, Databases, and Applica-
tions, ACM Press, New York, USA, 1989. pp. 251-282. (Chapter 11).

[KBG89] Kim, W., Bertino, E., Garza, J.F.: Composite Objects Revisited. In: Proc. of the ACM SIGMOD Int. Conf.
on the Management of Data, Portland, Oregon, USA, 1989. pp. 337-347. ACM SIGMOD Record, Vol. 18,
No. 2, June 1989.

[KGBW90] Kim, W., Garza, J.F., Ballou, N., Woelk, D.: Architecture of the ORION Next-Generation Database Sys-
tem. IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 1, Mar. 1990. pp. 109-124.

[Ki90] Kim, W.: Introduction to Object-Oriented Databases. MIT Press, Cambridge, MA, USA, 1990. (Series in
Computer Systems).

[LLOW91] Lamb, C., Landis, G., Orenstein, J., Weinreb, D.: The ObjectStore Database System. Communications
of the ACM, Vol. 34, No. 10, Oct. 1991. pp. 50-63.

[Ly83] Lynch, N.: Multilevel Atomicity - A New Correctness Criterion for Database Concurrency Control. ACM
Transaction on Database Systems, Vol. 8, No. 4, Dec. 1983. pp. 484-502.

[Ma88] Mattos, N.M.: Abstraction Concepts: The Basis for Data and Knowledge Modeling. In: Proc. of the 7th
Int. Conf. on Entity-Relationship Approach, Rom, Italy, Nov. 1988. pp. 331-350.

[Ma89] Mattos, N.M.: An Approach to Knowledge Base Management - Requirements, Knowledge Representa-
tion, and Design Issues. Doctor Thesis, University of Kaiserslautern, Kaiserslautern, Germany, April
1989.

[Ma90] Mattos, N.M.: Performance Measurements and Analyses of Coupling Approaches of Database and Ex-
pert Systems and Consequences to their Integration. In: Proc. of the 1st Workshop on Information Sys-
tems and Artificial Intelligence, Ulm, Germany, Mar. 1990.

[MB90] Mylopoulos, J., Brodie, M.: Knowledge Bases and Databases: Current Trends and Future Directions. In:
Proc. of the Workshop on Artificial Intelligence and Databases, Ulm, Germany, 1990.

[Mo90] Mohan, C.: ARIES/KVL: A Key-Value Locking Method for Concurrency Control of Multiaction Transac-
tions Operating on B-Tree Indexes. In: Proc. of the 16th Int. Conf. on Very Large Data Bases, Brisbane,
Australia, Aug. 1990. pp. 392-405.

[Mo92] Mohan, C.: Less Optimism About Optimistic Concurrency Control. In: Proc. of the 2nd Int. Workshop on
RIDE: Transaction and Query Processing, Tempe, Feb. 1992.

[MSOP86] Maier, D., Stein, J., Otis, A., Purdy, A.: Development of an Object-Oriented DBMS. In: Proc. of the Int.
Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA’86), Portland,
Oregon, USA, Sep. 1986. pp. 472-482.

[PR83] Peinl, P., Reuter, A.: Empirical Comparison of Database Concurrency Control Schemes. In: Proc. of the
9th Int. Conf. on Very Large Data Bases, Florence, Italy, 1983. pp. 97-108.

[PS87] Penney, D.J., Stein, J.: Class Modification in the GemStone Object-Oriented DBMS. In: Proc. of the Int.
Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA’87), Orlando,
Florida, USA, Oct. 1987. pp. 111-117.

[Re94] Rezende, F.F.: Concurrency Control Techniques and the KBMS Environment: A Critical Analysis. Sub-
mitted to: Journal of Theoretical and Applied Informatics (RITA), Porto Alegre, Brazil, 1994.

[Re94a] Rezende, F.F.: Evaluating the Suitability of OODBMS Concurrency Control Techniques to the KBMS En-
vironment. Submitted to: Journal of the Brazilian Computer Society (JBCS), Campinas, Brazil, 1994.

[SK80] Silberschatz, A., Kedem, Z.: Consistency in Hierarchical Database Systems. Journal of the ACM, Vol.
27, No. 1, Jan. 1980. pp. 72-80.

[Ya82] Yannakakis, M.: Freedom from Deadlock of Safe Locking Policies. SIAM Journal of Computing, Vol. 11,
No. 2, May 1982. pp. 391-408.

[Ya82a] Yannakakis, M.: A Theory of Safe Locking Policies in Database Systems. Journal of the ACM, Vol. 29,
No. 3, July 1982. pp. 718-740.

