
Towards a modular, object-relational schema design

Wolfgang Mahnke

University of Kaiserslautern

P.O.Box 3049, 67653 Kaiserslautern, Germany

mahnke@informatik.uni-kl.de

Abstract. A modular or even component-based design is state-of-the-art in ap-

plication development. But both object-relational database management sys-

tems and the object-relational standard SQL:1999 lack proper abilities

supporting a modular schema design – the prerequisite for a component-based

schema design. Nevertheless, the high effort required for an object-relational

schema design strictly demands for a modular schema design. This paper de-

scribes the challenges of such a schema design and gives a vision of how a

modular, object-relational schema design should look like.

Keywords: schema design, ORDBMS, modularity, CBSE.

1 Motivation
„Modularity is the key to achieving the aims of reusability and extensibility“ stated

Bertrand Meyer in 1988 [13]. Nowadays, software is developed even in a compo-

nent-based way [1,5]. The idea behind this effort is to develop parts of the function-

ality independently of the context in which it is supposed to be used and later on to

build large systems by the combination of precasted components. This leads to a

high degree of component reuse and, in turn, to a faster development of large sys-

tems.

Regarding database schema design, there was no effort of doing it in a compo-

nent-based way for a long time. This is due to the fact that the relational data model

is very simple since there are just a few different kinds of schema elements (mainly

table and view definitions). But with the upcoming object-relational database sys-

tems this situation has quite changed [16]. First, there are many new concepts in the

object-relational data model like user-defined types (UDTs), triggers, table hierar-

chies, etc., which lead to a much more complex schema design. Second, parts of the

application logic can be integrated into the database system using user-defined rou-

tines (UDRs). Corresponding with a higher effort required for the schema design,

the need to reuse (parts of) the schema grows. Furthermore, dividing parts of the

schema into loosely coupled units leads to a higher maintainability of the schema.

However, the dependencies between the schema elements have to be kept under

control.

Whereas component models like J2EE [17] and DCOM [4] offer an environment

for a component-based application development, there are no such mechanisms in

ORDBMSs (see Section 3 for details).

In the following section, the research question is illustrated by an example of an

object-relational schema design. The related work is introduced in Section 3. After-

wards, Section 4 presents a framework for a modular, object-relational schema de-

sign by describing the different kinds of schema modules and their relationships.

in: Proc. 9th Doctoral Consortium of the 14th Int. Conf. on Advanced Information Systems

Engineering (CAiSE’2002), Toronto, May, 2002



One kind of schema module – the schema component – is discussed in detail. Then

we take a look at the relationships between the schema components and the compo-

nents outside the database. Section 5 finishes the paper with a conclusion and an

outlook to future work.

2 Research Question
The research question regarded in this paper can be phrased as:

„How should a modular, object-relational schema design look like?“

To obtain a deeper motivation for the need of a modular schema design, we give a

brief overview of an object-relational schema design without modularity. In this ex-

ample, the schema encompasses different semantic units. But the standard

SQL:1999 offers no possibility to aggregate the different schema elements (tables,

UDRs, UDTs, etc.) to schema modules. The example will point out different depen-

dencies between the schema elements and, in turn, dependencies between the se-

mantic units. A classification of the dependencies can be taken from [12]. In a

modular schema design, all dependencies between schema modules have to be

made explicit. Implicit dependencies have to be prohibited.

The example is used to denote all dependency types and illustrate them in an ex-

plicit way. It is a simplified excerpt derived from the SFB-501-Reuse Repository1

[6,9].

The Reuse Repository is designed to support all phases of a reuse process and the ac-

companying improvement cycle of the Quality Improvement Paradigm [3] by providing ad-

equate functionality. To gain more experience with the new object-relational technology

we have chosen the, as we call it, extreme extending (X2) approach, i. e., almost every-

thing has been implemented by using the extensibility infrastructure of the ORDBMS.

Thus, X2 means that not only the entire application logic runs within the DB server, but

also major parts of the presentation layer (GUI) reside within the DB server, because

HTML pages used for user interaction are dynamically generated within the DBS. In this

context, we do not want to describe the functionality of the Reuse Repository in detail.

Briefly summarized, its main functionality is to manage experience data and support a

similarity based search on such data.

Due to the fact that our ORDBMS does not support a reference type, we have

implemented a UDT called ObjectID. An ObjectID value serves as a unique

identifier and stores information about the storage location (table) and the type of

the object. In addition to the ObjectID, there is a typed table called root_ta
(see Fig. 1) of the type root_ty including an ObjectID as primary key and

some triggers maintaining the ObjectID (e.g., keeping values unique). All tables

using the ObjectID inherit from root_ta. Together these schema elements

build a semantic unit providing an object identifier.

Another aspect of the Reuse Repository is related to user management, which is

simplified here as a typed table user_ta of the type user_ty. Because a user

needs an ObjectID, the type inherits from root_ty (1) and the table from

1. The SFB-501-Reuse Repository is part of the subproject A3 “Supporting Software Engi-
neering Processes by Object-Relational Database Technology“ of the Sonder-

forschungsbereich 501,“Development of Large Systems by Generic Methods“, funded by

the German Science Foundation.



root_ta (2). This kind of dependency is called refinement dependency.

The experience manage-

ment plays a central role in

our Reuse Repository. In our

example, experience data is

stored in the form of charac-

terization vectors (CV). Simi-

lar to the user, a CV should

have an ObjectID. There-

fore, the typed table cv_ta
inherits from root_ta (3)

and its type cv_ty from

root_ty (4). Because the

build-in types of the OR-

DBMS are not expressive

enough to represent a CV, we

used the UDT html (5) of the

Informix WebBlade [8]. The

use of data types of other se-

mantic units establishes struc-
tural dependencies. In the CV,

its creator has to be recorded,

which is realized with a for-

eign key relationship to

user_ta (6). The corresponding dependency is called reference dependency.

To retrieve experience data we have implemented a similarity-based search by a

UDR called SimSearch. The measures of similarity can be specified by parame-

ters. These parameters are stored in a table called properties_ta. To apply a

specific similarity function, each user refers to a set of parameters, where the same

set of parameters (e.g., the default set) can be used by several users. This relation-

ship is represented by a foreign key between user_ta and properties_ta.

Hence, the foreign key attribute is included in the user_ta (7). Although the de-

pendency is caused by the similarity search, the foreign key is realized in the refer-

enced semantic unit, the user management. Such a kind of dependency is called

reverse reference dependency. Calling SimSearch, occurrences of a user_ty
and of a cv_ty as comparison instance have to be specified as parameters (8).

SimSearch selects the parameters for the similarity function by reading the

user_ta and the property_ta (9). Afterwards a query is evaluated on cv_ta
(10) and the results are returned ordered by the similarity value. Evaluating a query

on tables of other semantic units leads to a derivation dependency.

Although we have observed a modular schema design in the Reuse Repository,

the modular structure can not be seen at the schema level. It can only be found in

the documentation. Because the implicit, hard-to-find dependencies are not made

explicit, reuse of single schema modules is impossible. Even if we would have an

explicit module structure, some kinds of dependencies would prevent the reuse of

schema modules and, therefore, have to be avoided. For example, the reverse refer-
ence dependency changes the structure of the referenced module. Therefore, the ref-

Refinement Dependency
Structural DependencyDerivation Dependency
Observer Dependency

Reference Dependency
Reverse Reference Dependency

1

2

3

4

5

6

7

8

89

10

ObjectID
UDT: ObjectID
UDT: root_ty
Table: root_ta
Trigger: CheckID

WebBlade
UDT: html

Experience Management
UDT: CV_ty
Table: CV_ta

User Management
UDT: user_ty
Table: user_ta

Similarity Search
Table: Properties_ta
UDR: SimSearch

Figure 1. Reuse Repository schema

ORDBMS



erenced module can not be reused in another context.

Consequently, for a modular schema design we demand:

• semantically interrelated schema elements must be managed within schema

modules;

• implicit dependencies between schema elements have to be made explicit at the

module level;

• schema modules and their relationships have to be managed as part of the

schema and disallowed dependencies have to be prevented.

So far, the example only deals with schema design. Later on, in Section 4.3 we

will regard the relationship between schema modules and components outside the

ORDBMS. But first, we will briefly consider related work in Section 3, and present

a framework for a modular, object-relational schema design in Section 4.

3 Related Work
Related work concerning object-relational schema design can be divided into two

categories: the object-relational standard SQL:1999 and additional mechanisms of-

fered by the ORDBMS vendors.

SQL:1999
In the object-relational standard SQL:1999 [2], the only way of grouping schema

elements is using the concept of server modules, which are not sufficient for our

purposes. They can only contain UDRs and temporary tables, but can not be nested

to compose new server modules, have no interface concept and no relationships can

be defined between different server modules (see [12] for details).

ORDBMS vendors
The ORDBMS vendors offer some mechanisms to aggregate schema elements

called DataBlades [7] or cartridges [14]. But those are just administrative units to

(de-)install a group of schema elements at a time. The schema elements are simply

mapped to an unstructured, flat schema, thereby losing their inherent structure (see

[12] for details).

Another mechanism to group mainly UDRs offered by Oracle is called package

[15]. But packages can not include all kinds of schema elements, e.g., table defini-

tions, trigger definitions, etc. are not supported, they can not be nested and no rela-

tionships can be defined between different packages.

Summarizing it can be said that there are a few approaches to group schema el-

ements, but all of them are not sufficient for a modular, object-relational schema de-

sign.

4 A Framework for a Modular, Object-Relational Schema Design
In this section, we present a framework for a modular, object-relational schema de-

sign. We will discuss the need of different schema modules in Section 4.1, take a

closer look at the most important kind of schema modules – the schema component

in Section 4.2, and regard the relationship between schema modules and compo-

nents outside the ORDBMS in Section 4.3.



4.1 Different kinds of schema modules
Using our sample scenario we have identified different kinds of schema modules.

Such modules differ in the sort of schema elements they can hold, in the way they

are instantiated, and in the kinds of relationships among them. We have identified

three kinds of modules: schema components, schema packages and schema frame-

works (see [11]).

A schema component can exist independently of other schema modules. The

User Management, the Experience Management, and the Similarity Search are ex-

amples of schema components. Schema components are defined once and can be in-

stantiated several times. For example, the User Management may be needed more

than once in a single schema to manage different kinds of users for different appli-

cations using the same schema. The definition of a schema component only contains

definitions of the schema elements included. If it is instantiated, the corresponding

schema elements are instantiated within the namespace of the component. Each

component instance has its own namespace, in order to avoid name conflicts. All

kinds of schema elements can be included in a schema component.

A schema package serves to provide schema element definitions (like UDT or

UDR definitions) to other schema modules. For example, the schema package Web-

Blade offers the html data type. A schema package can not be instantiated, but the

schema elements defined in it are instantiated whenever it is used. These elements

belong to the namespace of the component that uses the package. Because a schema

package is always local to a schema component, it can not contain any sort of sche-

ma elements dealing with a global view, for example roles, user rights, and asser-

tions.

Another kind of schema module, offering a precasted framework, is called

schema framework. It has to be enhanced with concrete properties. Therefore, it can

not be instantiated by itself and has to be completed by a schema component. The

ObjectID is an example of a schema framework. Schema frameworks can be

instantiated in two ways; either as a private instantiation only for a single schema

component in the namespace of the component or to be used by many components.

In the latter case, the schema framework has its own namespace and many

components can complete the framework, like the ObjectID in the example.

Comparable to schema components it may contain all kinds of schema elements.

Depending on its type, a

schema module may use other

modules in different ways. Us-

ing other schema modules

leads to dependencies at the

schema element layer. To keep

these dependencies under con-

trol, all relationships between

the modules have to be speci-

fied explicitly, and only de-

pendencies according to these

relationships are permitted.

The different relationship

types are illustrated in Fig. 2.

schema component

complete

refine

import

integrate

include
import

include

utilize

include
import

Figure 2. Relationships between schema

schema framework

schema package



A schema package can only use other schema packages. If schema package P1

includes P2, the schema elements of P2 are copied into the namespace of P1. If P1

imports P2, P1 can use the schema elements of P2, but they are still in the namespace

of P2. Hence, the schema elements are only referenced.

Schema frameworks may include or import schema packages. These relationship

types have the same semantics as described above. A schema framework F1 can re-
fine another schema framework F2. In this case, F2 is enhanced by some properties,

but the resulting F1 is still no self-contained schema component. The schema ele-

ments of F2 are copied into the namespace of F1.

Comparable to the other schema modules, a schema component may include or

import a schema package. When instantiating a schema component C1, the schema

elements of the included P1 are instantiated within the namespace of C1, whereas

the schema elements of the imported P2 use the namespace of P2 within the name-

space of C1. A schema component C1 can complete a schema framework F1. This

relationship type is parameterized. A private completion means that F1 is exclusive-

ly completed by C1 and the schema elements of F1 are included into the namespace

of C1. In the case of a public completion, F1 can be completed by many schema

components. Therefore, F1 uses its own namespace outside the namespace of C1.

Finally, C1 may integrate or utilize another schema component C2. Integrating

means that C2 is a private component of C1 and only accessible via C1, whereas uti-

lizing means that C2 is an independent schema component that can be accessed us-

ing its own namespace.

Lets take a more concrete look at schema modules. Unlike current SQL-DDL

statements, where each statement execution leads to an immediate instantiation of

a schema element, schema modules first have to be defined and can be instantiated

later on. This is necessary because some schema modules (schema packages and

schema frameworks) can not be instantiated by themselves and schema modules

may be instantiated several times in different namespaces. Therefore, a schema

module definition itself should only hold definitions of schema elements.

4.2 Schema components
The definition of a schema component consists of three parts: the schema element

definitions belonging to the schema component, the interfaces implemented by the

schema component and the interfaces needed by the schema component. In the fol-

lowing, we will take a closer look at these parts.

4.2.1 Schema element definitions
The main part of a schema component definition consists of the schema element

definitions that belong to the schema component. In Fig. 3, the schema element

definitions are illustrated in the internal structure as polygons and possible apply
modes as triangles on the polygons. An apply mode describes how a schema ele-

ment can be used. For example, a table has apply modes for selecting, inserting,

defining foreign keys on it, etc. Inside the component definition each schema ele-

ment can use the other schema elements in any possible way (lines between the

schema element definitions). Furthermore, the metadata of the schema element

definitions are part of the internal structure. These are stored in an enhanced infor-

mation schema corresponding to the information schema of a database schema.



4.2.2 Interfaces of a schema component
An interface of a schema module can be used for different purposes. One kind of

interface defines how other schema modules can interact with the schema module.

Such an interface is called connector. Another kind of interface defines how the ap-

plications outside the database may access the schema module, which is called API
(application programming interface). Using these interfaces (connectors and APIs)

we can encapsulate the internal structures and implementation details of schema

modules. The schema modules can only be accessed via the interfaces and schema

modules implementing the same interfaces can be exchanged independently of their

internal structure.

An interface in the context of a database schema consists of more than just the

signatures of UDRs. An API may include all schema elements accessible from out-

side the database like tables and UDRs. A connector can hold all schema elements

to be used by other schema elements. This excludes assertions, triggers, etc., which

can not be used by other schema elements (but nevertheless may themselves use

other schema elements), but includes tables, UDTs, etc. The apply modes of the

schema element definitions in APIs and connectors differ. It does not make sense to

allow a foreign key definition on a table in an API. In a connector, however, this is

a suitable choice. An interface does not contain the whole definition of a schema

element, e.g., a UDR just needs to offer its signature. Each interface offers the meta-

data of its content. The metadata schema corresponds to the enhanced information

schema including information about the apply modes.

Defining an interface may lead to an incorrect interface. Assume an interface I1

that holds the definition of a table T1 having an attribute of a UDT U1. If the apply

mode of T1 includes a SELECT and U1 is not part of I1, then there is an inconsis-

tency in the interface. Therefore, we distinguish two kinds of interfaces, an explicit

and an implicit one. An explicit interface only holds the definitions that are explic-

Metadata
Internal Structure

Metadata
Connector

Metadata
Connector

Metadata
API

Metadata
API

Metadata
Connector

Metadata
Connector

Figure 3. Illustration of a Schema Component Definition

Descriptor

schema object definition dependencyapply mode



itly specified. This can lead to the inconsistencies mentioned above and would raise

an error when defining the interface. Using an implicit interface, dependencies like

the one mentioned above are resolved by putting all needed elements implicitly into

the interface. In summary, an explicit interface may lead to errors, but the developer

keeps control over each element definition inside the interface. An implicit interface

avoids errors, but may lead to an interface that was not intended. To support the

preferences of different designers, both kinds of interfaces should be offered.

Note that there are definitions and instances of schema elements and schema

modules, but only interfaces. This is because interfaces can not be instantiated and

therefore are only defined.

Using other schema modules
A schema component may need some other schema modules. For example, the

schema component Experience Management needs a type html. In the definition

of the schema component we do not want to fix which schema module is used for

this purpose. Doing this would lead to the situation that we can not exchange the

schema module that offers the html type. Instead we define a connector that is

needed by the schema component and any schema module that implements the con-

nector can be used when instantiating the schema component. Fig. 3 illustrates that

two connectors are used (the connectors at the right hand side). The schema element

definitions in these connectors have restricted apply modes. All accessible apply

modes can be used inside the schema component definition (see the lines in Fig. 3).

The metadata of the connectors are part of the metadata of the internal structure –

possibly using its own namespace. This depends on the kind of relationship to the

connector.

Providing interfaces
A schema component can offer one or many connectors describing in which way

the component can be used by other components. Furthermore, it can provide one

or more APIs describing in which way it can be used from applications outside the

database. Both kinds of interfaces hold an excerpt of the schema element defini-

tions, this can include parts of the connectors used. The apply mode can be limited

(see Fig. 3, connectors at the left side and APIs on top of the schema component).

For example, an API can hold a table definition, but only allow SELECT statements

on the table. INSERTs are not allowed directly and encapsulated in a UDR. Both

kinds of interfaces hold metadata describing how they can be used. So, all interfaces

of a schema component together can be seen as the descriptor of the component.

4.2.3 Instantiating a schema component
To instantiate a schema component, a name for the schema component has to be

provided. This name is used as the namespace for the component elements in the

schema and has to be unique inside the schema. If the schema component definition

contains connectors which are used by the schema component, it has to be specified

which schema modules are used for that purpose. Depending on the kind of relation-

ship to the connector, an already existing schema module has to be identified (e.g.,

if another schema component is utilized) or the name of the schema module defini-

tion has to be specified (e.g., if a schema component is integrated it has to be newly

created).



4.3 Relationships between schema components and application components
Our Reuse Repository uses an approach integrating almost everything into the OR-

DBMS (the extreme extending approach (X2) [9]), but nevertheless we have imple-

mented some components working outside the ORDBMS. In the following, we

extend our example to point out how the interplay between the schema components

and the components outside the ORDBMS looks like.

The Reuse Repository

has a web-based interface

and therefore offers a web

form to enter the data of a

new CV. In addition, we

have implemented a way to

hand over new CVs as

XML documents. The cor-

responding Java-based ap-

plication runs outside the

ORDBMS (see Fig. 4). If

an XML document is hand-

ed to the application (1), we

use the JAXP parser provid-

ed by Sun [18] to parse the

document and validate it

against an XML-schema

document. This XML-sche-

ma document is provided

by the component

XML2CV inside our appli-

cation, more exactly by the

subcomponent XMLSchemaProvider. The XMLSchemaProvider has a counterpart

in the Reuse Repository, a schema component called XMLSchemaStorage, which

is used to store the XML-schema documents (3). For this scenario, it is important to

know that there are different CV types in a type hierarchy, which are not shown in

Fig. 1. The attributes of the CVs may change and the hierarchy may be extended.

Hence, we have a single XML-schema document for each CV type and the XML-

schema documents can become invalid if the CV types change. Therefore, the

XMLSchemaProvider has to check if its document is still valid by calling a function

of the component CVAccess (4). If the XML-schema document is still valid, it can

be delivered to the Validator (5). Otherwise, a new one has to be generated. In that

case, XMLSchemaProvider calls a UDR of XMLSchemaStorage. The UDR gets in-

formation from the Experience Management (a) and another schema component

called MapCV2XML (b), holding information about how to map the attributes of

the CV to the XML elements and attributes. The generated XML-schema document

is stored in XMLSchemaStorage and delivered to the Validator via XMLSche-

maProvider (5). If the XML document is valid w.r.t. the given XML-schema docu-

ment, it is transformed into a DOM representation (6). The DOM representation is

used as input for CVAccess (7). Together with the information of MapCV2XML

(8) and information about the CV type provided by Experience Management (9), it

Experience Management

Figure 4. Applications and the Reuse Repository

XML
document

DOM

MapCV2XML

XML-schema
document

InsertCV
JAXP

XML Parser
incl. Validator

CVAccess
XML2CV

XMLSchemaStorage

3

1

2 7

8

6

4

5

a

b

9

10

XMLSchemaProvider



generates an SQL query to insert the CV (10).

Analyzing this scenario reveals that the two schema components MapCV2XML

and XMLSchemaStorage belong to the application. More exactly they belong to the

application component XML2CV. If we divide the component into subcomponents,

we can attach the component XMLSchemaProvider at the application layer to the

schema component XMLSchemaStorage at the database layer. Hence, supporting

schema components does not only mean to permit a vertical composition of compo-

nents, but also a horizontal composition of components. The composed component

offers interfaces at the application layer and interfaces at the database layer. CVAc-

cess and MapCV2XML build a new composed component and its interfaces are

used at the application layer and at the schema layer. In our example, we only con-

sidered vertical access between the composed components, but horizontal access is

possible, too. For example, XMLSchemaProvider may access MapCV2XML di-

rectly and MapCV2XML may call a function of the XMLSchemaProvider to gen-

erate a new XML-schema document, if the mapping has changed.

5 Conclusions and Outlook
The example of the Reuse Repository schema has shown some weaknesses of an

object-relational schema design and motivated the need for a modular, object-rela-

tional schema design. Different kinds of schema modules where introduced: schema

packages, schema frameworks, and schema components. The latter has been dis-

cussed in detail, in particular the different interfaces of schema components. After-

wards the relationships between application components and schema components

have been viewed on the basis of an extended example of the Reuse Repository.

Using the introduced framework for a modular, object-relational schema design

leads to a clearer, better manageable schema design and admits the reuse of schema

modules. In addition, schema components enable the possibility to build new com-

ponents by composing schema and application components and thereby simplifying

the composition of application components w.r.t. their persistent data.

As further work, we will refine the specification of the different schema mod-

ules, interfaces and relationships between the schema modules. We will use a meta-

modelling approach to specify the different module classes and the relationships to

the schema elements, interfaces, etc. based on the UML. This approach seems to be

suitable w.r.t. the complexity of the problem. With the semi-formal specification,

we want to propose a language extension of SQL:1999 supporting the needed mod-

ular schema design. Furthermore, we want to develop a system based on an existing

ORDBMS accepting the proposed SQL:1999 extension for a modular schema de-

sign.

Other open issues in the context of our work are:

• What operations on schema modules are needed and how do they work?

• Can we use the „design by contract“ approach of Bertrand Meyer [13] for

UDRs in the interfaces? This would lead to a better understanding of the inter-

face and more stable code in the database.

• What happens to persistent data when exchanging a schema component after it

is instantiated? Changing schema components may lead to an easier way to han-

dle schema evolution.



• Are there measures for a good modular schema design? Can those measures be

calculated and help the designer to provide a good modular schema design?

• Do we need parameterized modules (like C++ templates)?

Our experience in different projects [6,9,10] using object-relational technology

has shown that without a modular schema design handling ORDBMSs is extremely

hard, in particular if application logic is integrated into the ORDBMS.

Literature
[1] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,

Muthig, D., Peach, B., Wust, J., Zettel, J.: Component-Based Product Line Engineer-

ing with UML. Addison Wesley, 2002.

[2] ANSI/ISO/IEC 9075-2-1999: Database Languages - SQL - Part 2: Foundation (SQL/

Foundation). American National Standard Institute, Inc., 1999.

[3] Basili, V. R., Caldiera, G., Rombach, H. D.: Experience Factory. In J. J. Marciniak

(ed), Encyclopedia of Software Engineering, Volume 1, John Wiley & Sons, 1994,

pp. 469-476.

[4] Brown, N., Kindel, C.: Distributed Component Object Model Protocol - DCOM/1.0.

Microsoft Corp., 1998.

[5] D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML - The

Catalysis Approach. Addison Wesley, 1998.

[6] Feldmann, R.L., Geppert, B., Mahnke, W., Ritter, N., Rößler, F.: An ORDBMS-based

Reuse Repository Supporting the Quality Improvement Paradigm - Exemplified by the

SDL-Pattern Approach. TOOLS USA 2000, Santa Barbara, CA, July, 2000, pp. 125-

136.

[7] IBM: IBM Informix DataBlade Module Development Overview, Version 4.0. IBM

Corporation. August, 2001.

[8] IBM: IBM Informix Web DataBlade Module - Application Developer‘s Guide, Ver-

sion 4.13. IBM Corporation. December, 2001.

[9] Mahnke, W., Ritter, N.: The ORDB-based SFB-501-Reuse Repository. VIII. Interna-

tional Conference on Extending Database Technology (EDBT 2002), Demo Presenta-

tion Session, Prague, 2002, pp. 745-748.

[10] Mahnke, W., Ritter, N., Steiert, H.-P.: Towards Generating Object-Relational Soft-

ware Engineering Repositories. 8. GI-Fachtagung „Datenbanken in Büro, Technik und

Wissenschaft“ (BTW’99), Freiburg, March 1999, pp. 251-270.

[11] Mahnke, W., Steiert, H.-P.: It is time to apply the principles of component-based soft-

ware engineering to the design of object-relational databases! (in German) GI/OCG-

Jahrestagung Informatik 2001, Wien, September 2001, pp. 823-828.

[12] Mahnke, W., Steiert, H.-P.: Modularity in ORDBMSs - A new Challenge.

13. Workshop „Grundlagen von Datenbanken“, GI-FG 2.5.1, Magdeburg, June 2001,

pp. 83-87.

[13] Meyer, B.: Object-oriented Software Construction. Prentice Hall, 1988.

[14] Oracle: Oracle 9i Data Cartridge Development’s Guide. Oracle Cooperation, June,

2001.

[15] Oracle: Oracle 9i Supplied PL/SQL Packages and Types Reference. Oracle Corpora-

tion, June, 2001.

[16] Stonebraker, M., Brown, M.: Object-Relational DBMSs - Tracking the Next Great

Wave. Morgan Kaufmann, 1999.

[17] Sun Microsystems: Enterprise JavaBeans Specification, Version 2.0, Sun Microsys-

tems, Inc., April 2001.

[18] Sun Microsystems: Java API for XML Processing, Version 1.1, Sun Microsystems,

Inc., February 2001.


