
a
rd
-
t
-

and
ular

ot hold
a stor-
s a large,
cies.

e da-
database
nden-

ase de-

s have
etc. [6],
ort the
3]. For
d. There
, to en-

ions of
stan-
tional
gers,
Further
are not

rocess
certain
nsidered

proper
t gain
vendor-
f mod-

uch as-
DBMSs
tlook.

in: Tagungsband 13. Workshop ,Grundlagen von Datenbanken", GI-FG 2.5.1, Magdeburg,
Modularity in ORDBMSs – A new Challenge

Wolfgang Mahnke, Hans-Peter Steiert
Database and Information Systems Group, University of Kaiserslautern

P.O. Box 3049, D-67653 Kaiserslautern

Abstract: “Modularity is the key to achieving the aims of reusability and extensibility“ stat-
ed Bertrand Meyer in 1988. Relational database systems lack proper abilities supporting
modular design. There are only flat schemata and no encapsulation. The SQL:1999 standa
has integrated object-oriented concepts into the relational model leading to so-called OR
DBMSs. User-defined types and routines, server modules etc. introduce a new complexity bu
also embody new possibilities for a modular design. In this paper, we discuss how these con
cepts can facilitate the development of modular, ORDBMS-based applications.

1 Introduction

Modularity is a well known concept in the field of Software Engineering used to increase reusability
extensibility [11]. Design methods like object-oriented analysis and design (OOA&D) favour a mod
design. Nowadays, software is even developed in a component-based way [7].

While component-based design is well accepted in application development, its advantages do n
for the management of persistent data. Typically, the different components utilize a centralized dat
age where all dependencies between them are reflected in the database. Further, the database i
global data structure, which is usually assumed to be evil because it leads to complex dependen

To avoid a mix of terms we undertake some definitions. A component is a modular unit outside th
tabase. Components may need to store data persistently. Inside the database, modules divide the
into different semantic units. Normally, such a module is related to a specific component and depe
cies between components are reflected between their modules. We will focus on modular datab
sign, i.e., only modules and their dependencies are considered.

Today, relational database management systems (RDBMSs) are ubiquitous. Although RDBMS
many powerful and useful properties, such as transactions, recovery, descriptive query language,
they lack proper options for a modular database design. RDBMSs have been introduced to supp
management of simple, structured data whereas they lack a proper support of complex data [1
these reasons, object-relational database management systems (ORDBMSs) have been evolve
main design goals were, on one hand, to keep the advantages of RDBMSs and, on the other hand
rich data management by capabilities to manage complex data. Thus, ORDBMSs are extens
RDBMSs. The ORDBMS standard SQL:1999 [3] is a superset of the purely relational SQL-92 [2]
dard. Hence, all relational features are still available in ORDBMSs. The new, so called object-rela
features of SQL:1999 are primarily user-defined types (UDT), user-defined routines (UDR), trig
server modules, and procedural language extensions called Persistent Stored Modules (PSM).
improvements are recursive queries, some OLAP extensions, savepoints, etc. which, however,
relevant for this paper.

Some vendors have already offered ORDBMSs before the end of the SQL:1999 standardization p
(lasting over 7 years) and have even implemented features which are not part of SQL:1999. To a
extent, some of these features can contribute to a modular database design and are, therefore, co
later on in this paper.

We do not want to discuss whether or not object-oriented database systems (OODBMSs) are a
alternative to ORDBMSs, because they are only used in specific application domains and did no
general acceptance. Instead, we want to examine how the new SQL:1999 features (and some
specific extensions) can be used for a modular database design. We first introduce some criteria o
ularity used in software development and identify aspects of a modular database design. Using s
pects, we examine how database technology supports a modular database design, considering R
in section 3 and ORDBMSs in section 4. Section 5 finishes our paper with a conclusion and an ou

Juni 2001



r in

to

ele-
d that

d be
r mod-

are
one or

e a

tlined

single
urther,
onfine

lled as
stance

dules
ucture
ifferent
dent.
dules
ori-
user

sults
depen-
the ser-

).

by

dency.

data

rver
2 Aspects of Modularity

“Modularity is the key to achieving the aims of reusability and extensibility“ stated Bertrand Meye
[11]. He named five criteria to classify design methods w.r.t. modularity:
1. Modular Decomposability: Modular decomposability means that the design method helps

decompose a problem into several subproblems, which can be solved separately.
2. Modular Composability: The other way around, it should be possible to combine software

ments (e.g., solutions of the subproblems) with each other to develop new systems. A metho
supports this task fulfills the criterion of modular composability.

3. Modular Understandability: To support the maintenance of software systems, modules shoul
separately understandable by human readers. Ideally, it should not be needed to look at othe
ules, at most to a few neighboring modules.

4. Modular Continuity: To support modular continuity, it is necessary that the effects of changes
isolated as far as possible. A small change of the requirements should lead to a change in only
a few modules and should not affect the relations between the modules.

5. Modular Protection: Modular protection is achieved if abnormal conditions (e.g., failures) insid
module are confined to the corresponding module or affect at most a few close-by modules.

Focusing on modular database design, we have identified five aspects of modularity which are ou
in the following.
Modules: A module groups together several elements, e.g. tables, views, triggers, etc. within a
semantic unit. In particular, a module can contain other modules, i.e., modules can be nested. F
modules provide a namespace for the elements contained and a failure model, which allows to c
the effects of failures. Also, modules are administrative units. They can be installed and deinsta
units. In addition, multiple instances of a module can be installed. This means, the name of each in
has to be user-defined and used as root of the corresponding namespace.
Interfaces: In order to specify which elements of a module are intended to be used by others, mo
offer interfaces. The intention is to guarantee that interfaces are stable even if the internal str
changes. To handle different levels of dependencies between modules, a module can provide d
interfaces, because a strongly dependent module may need more information than a less depen
Visibility: The visibility concept guarantees that only interfaces of a module are used by other mo
and that the internal structure of a module is kept private. Note that visibility is different from auth
zation. While visibility is related to the relationship between modules, authorization is related to
privileges.
Dependencies:Modules need interfaces in order to let other modules utilize their services. This re
in dependencies between the modules. The intention of modularity is to reduce dependencies. All
dencies have in common that there is a server which offers some service and a client which uses
vice. We give a short classification of the different forms of dependencies:

• A reference dependency is given if the client references the server (e.g., a client-side foreign key

• In a reverse reference dependencythe client logically references a server, but this is implemented
the server (e.g., a foreign key in the server of a (n:1)-relation initiated by the client).

• If a client derives something from the server, this is aderivation dependency. For example, if an
assertion in the client is evaluated on elements of the server, we call this a derivation depen
Such dependencies can be further classified depending on the kind of access:

• Query dependencies exist if a query is executed on a server element.

• Call dependencies exist if the client calls a routine of the server.

• Observer dependencies are given if the client listens to server events.

• In astructural dependencythe client uses some structural elements defined by the server, e.g., a
type.

A transitive dependencymay occur, e.g., if a client A depends on server B and server B is client of se
C, a change in C may result in a change in B and, therefore, become visible to A.



ule
pur-

t must
e have

only

, all

se de-

alogs
mas and

tions
atabase

ma pro-
chema.

is no
rface
tside the

alog
d, user
d to
price

l’ vis-

cover
foreign

depen-

la-

ular
applies

nd can
mod-
tinu-
failure

the
Module Relationships:Typically, dependencies occur implicitly and are hidden in the mud of mod
implementations. Hence, we have to treat them from a more administrative point of view. For this
pose, only explicit relationships allow dependencies between modules. The design environmen
prevent dependencies between modules which are not explicitly related to each other. So far, w
identified two kinds of such relationships:

• Import relationships express that a module imports structural elements of another module, i.e.,
structural dependencies are allowed.

• Use relationshipsexpress that a module utilizes functionality provided by another module, i.e.
dependencies mentioned above except structural dependency.

3 Modularity and Relational Database Management Systems

As mentioned in the introduction, RDBMSs generally lack appropriate support for modular databa
sign. Nevertheless, we examined the concepts offered by RDBMSs to support modularity.

Modules: RDBMSs offer two concepts which have properties related to the notion of modules: cat
and schemas. Each catalog (which can be regarded as a database [5]) consists of several sche
each schema hosts several SQL objects. Catalogs and schemas can not be nested.

Of course, a catalog can be used to improve modularity. However, this is only suitable for applica
using components which are independent w.r.t. their persistent data. Since we focus on modular d
design this aspect is outside the scope of this paper.

So, what about schemas? A schema is an administrative unit for the objects contained. Each sche
vides a namespace for SQL objects within a catalog. Further, a unique name is assigned to each s
Unfortunately, schemas can not be nested and do not offer a failure model.

Interfaces: If we would treat a schema as a module, what would be its interface? In SQL-92 there
way to define an interface. Hence, everything is accessible by other modules and the ’implicit’ inte
consists of all schema elements. Because only base tables and views can reasonably be used ou
schema, we only have to consider them in the following.

Visibility: SQL-92 has no concept of private information. Instead of hiding information, each cat
provides an information schema which describes all SQL objects contained. As already mentione
privileges can not substitute visibility markers like ‘private’ or ‘protected’, because they are relate
users and not to modules. This is not the intention of the visibility concept. Nevertheless, paying the
of organizational overhead, user privileges can be abused to simulate information hiding, but ‘rea
ibility is preferable.

Dependencies:If only base tables and views are used by other modules, dependencies can only
those schema elements. Therefore, only reference and reverse reference dependencies (using
keys) and query dependencies (in views or constraints) can occur and may also lead to transitive
dencies.

Module Relationships:Without the notion of modules, interfaces, and visibility, explicit module re
tionships do not make sense.

Lets take a closer look at the five criteria of Bertrand Meyer w.r.t. RDBMS and modularity. Mod
decomposability is rudimentally supported by schemas, but those can not be nested. The same
to modular composability. Because of the simple data model, modular understandability is given a
be improved using comments. Since the implicit interface consists of the whole internal structure,
ifying the internal structure always leads to a modification of the interface. Therefore, modular con
ity is not supported. Furthermore, also modular protection is not supported, because there is no
model in SQL-92 which allows to keep the effects of failures inside a module.

4 Modularity and Object-Relational Database Management Systems

ORDBMSs offer the possibility of extending the database by new functionality. Lets look at how
extensions of SQL:1999 help w.r.t. modularity.



sche-
ming

ding
ction 3

contain
in the
art of a

its own
y other

es [9]
iggers.
DTs and
ma and

pos-

other
How-
update,

in a
d in the
e scope

) not
efined

, i.e.,
dencies
dencies
t module
ed in
ncies

re-

e use
opri-
space
its can
d de-

exten-
to oc-

late the
e have
ures
Modules: Because SQL:1999 is a superset of SQL-92, schemas are still supported. An SQL:1999
ma may also include UDTs, UDRs and triggers. UDRs can be external routines written in a program
language different from SQL (like Java [1]) whereas SQL routines are written using SQL inclu
PSM. PSM are procedural language extensions of SQL. What we have said about schemas in se
does also apply here.

Further, there is a new concept related to modules, called server module [4]. Server modules may
UDRs and temporary tables, but no UDTs, base tables, views or triggers. Only UDRs contained
same server module can access temporary tables assigned to that module. A server module is p
schema [8] and adds its elements to the schema. Hence, a server module does not provide
namespace, i.e., the name of a UDR defined in the server module can conflict with the name of an
UDR defined in the schema.

ORDBMS vendors come along with proprietary mechanisms to manage modules called DataBlad
or Cartridges [12]. Such modules enclose a number of UDRs, UDTs, base tables, views and tr
This combination seems to be more natural than server modules, because it encompasses also U
base tables. But those modules are also only administrative units, which do only extend the sche
do not provide a namespace.

SQL:1999 still does not offer a failure model to keep failures inside modules. Only UDRs have the
sibility to handle errors.

Interfaces: In SQL:1999 there is still no interface concept. Hence, everything is accessible by
modules, including UDRs and UDTs. Triggers defined in the server can not be used by a client.
ever, a client can define a trigger in order to subscribe to database events on base tables (insert,
delete) in the server.

Visibility: SQL:1999 offers no concept for visibility. However, information hiding has been added
few places. First, temporary tables inside a server module can only be accessed by UDRs define
same server module. Second, routines, which are called by external routines, can reside outside th
of the database and are, therefore, hidden.

Another way of hiding information is given by so-called opaque types [10] which are (unfortunately
part of the SQL:1999 standard. The ORDBMS manages values of such types only through a pred
interface. The internal structure is hidden to the ORDBMS.

Dependencies:UDTs of a server can be used in base tables, views, UDTs, and UDRs of the client
structural dependencies can occur. As in SQL-92, reference, reverse reference, and query depen
can occur, too. Using the reference data type introduced by SQL:1999, reverse reference depen
can be avoided. This is a great advantage, because a server does not need to be changed if a clien
tries to refer it in a (n:1)-relationship. Call dependencies occur, if a UDR of another module is call
constraints, views, triggers, and UDRs of the client. Therefore, both kinds of derivation depende
can happen. In addition, client-side triggers can lead to observer dependencies.

Module Relationships:Again there is no notion of modules, interfaces, and visibility, i.e., module
lationships do not make sense.

So, do ORDBMSs offer a better modularity support than RDBMSs? To answer this question w
again the five criteria of Bertrand Meyer. ORDBMSs offer server modules to collect UDRs resp. pr
etary mechanisms to collect UDRs, UDTs, etc. However, both concepts do not offer an own name
so that only the administration gets slightly simpler. Because of the missing namespace, these un
not be combined freely due to name conflicts. Therefore we think that modular composability an
composability are slightly better supported.

The modular understandability depends on how the system is modularized. The object-relational
sions increase the risks to impair the modular understandability but this does not necessarily have
cur. The modular continuity is improved, because UDRs can be used as interface and encapsu
data. However, remember that there is still no interface concept in SQL:1999 and consequently, w
to abuse the user privileges to realize visibility. Modular protection in ORDBMSs mainly covers fail
in UDRs.



MSs
hould

environ-
ersistent
of the

ires a

on to
artic-

dule
urther-
s of dif-

e encap-
rs can

ructure

need-

r data-
design.
design

mer-

992.

tion).

dules

ing,

ysis

of the

99.

gan
Recapitulating, it can be said that modularity is better supported in ORDBMSs compared to RDB
but ORDBMSs are still weak w.r.t. a modular database design. We are convinced that ORDBMSs s
do a much better job in this concern.

5 Conclusions and Outlook

A modular database design is needed, because in a component-based application development
ment dependencies between components may also relate their persistent data. Therefore, the p
data of a component is put into a module and different modules have to reflect the dependencies
components. Furthermore, the increasing complexity of the upcoming ORDBMSs urgently requ
modular database design.
Using the object-relational extensions of ORDBMSs, modularity can be enhanced in comparis
RDBMSs. But proper concepts for a modular database design are still missing in ORDBMSs. In p
ular, the interface and visibility concepts are essential defects.
In addition to an interface concept and a visibility concept, ORDBMSs should provide a better mo
concept. A module has to be able to host UDRs, UDTs, base tables, views, and other modules. F
more, host modules should span their own namespace so that name conflicts between element
ferent modules are avoided.
Another obstacle is that some dependencies have to occur on base tables. Base tables should b
sulated by views. But foreign keys and references can only be defined on base tables. Also trigge
only listen to events on the base tables. So, some base tables and with it (parts of) the internal st
has to be offered in an interface, even if we would have an interface concept.
To manage the implicit dependencies between different modules, a module relationship concept is
ed so that only dependencies are allowed if they are made visible by module relationships.
Because of the problems mentioned, we plan to develop an environment that supports a modula
base design in ORDBMSs. We first have to refine the concepts needed for a modular database
Then, we want to develop suitable design methods and guidelines supporting a modular database
in ORDBMSs. Based on these methods, we plan to develop a module management language.

6 Literature

[1] ANSI X3H2-99-284: SQLJ Part 1: SQL Routines using the Java Programming Language. A
ican National Standard Institute, Inc., 1999.

[2] ANSI X3.135-1992: Database Language SQL. American National Standard Institute, Inc., 1
Also available as ISO Document ISO/IEC 9075:1992.

[3] ANSI/ISO/IEC 9075-2-1999: Database Languages - SQL - Part 2: Foundation (SQL/Founda
American National Standard Institute, Inc., 1999

[4] ANSI/ISO/IEC 9075-4-1999: Database Languages - SQL - Part 4: Persistent Stored Mo
(SQL/PSM). American National Standard Institute, Inc., 1999

[5] Date, C.J., Darwen, H.: A Guide to the SQL Standard, 3rd edition, Addison-Wesley Publish
1993

[6] Date, C.J.: An introduction to database systems, Addison-Wesley Publishing, 2000
[7] D’Souza, D.F., Wills, A.C.:Objects, Components, and Frameworks with UML - The Catal

Approach, Addison-Wesley Publishing, 1999.
[8] Gulutzan, P.,Pelzer, T.: SQL-99 Complete, Really - An Example-Based Reference Manuel

New Standard. R&D Books, 1999.
[9] Informix DataBlade Module Development Overview. Informix Software, Inc, September 19
[10] Informix DataBlade API Developer‘s Guide. Informix Software, Inc, September 1999.
[11] Meyer, B.: Object-oriented Software Construction. Prentice Hall, 1988.
[12] Oracle 8i Data Cardridge Developer´s Guide. Oracle Cooperation, December 1999.
[13] Stonebraker, M., Brown, M.: Object-Relational DBMSs - Tracking the Next Great Wave. Mor

Kaufman, 1999.


	Modularity in ORDBMSs – A new Challenge
	Wolfgang Mahnke, Hans-Peter Steiert Database and Information Systems Group, University of Kaisers...
	1 Introduction
	2 Aspects of Modularity
	1. Modular Decomposability: Modular decomposability means that the design method helps to decompo...
	2. Modular Composability: The other way around, it should be possible to combine software element...
	3. Modular Understandability: To support the maintenance of software systems, modules should be s...
	4. Modular Continuity: To support modular continuity, it is necessary that the effects of changes...
	5. Modular Protection: Modular protection is achieved if abnormal conditions (e.g., failures) ins...

	3 Modularity and Relational Database Management Systems
	4 Modularity and Object-Relational Database Management Systems
	5 Conclusions and Outlook
	6 Literature
	[1] ANSI X3H2-99-284: SQLJ Part 1: SQL Routines using the Java Programming Language. American Nat...
	[2] ANSI X3.135-1992: Database Language SQL. American National Standard Institute, Inc., 1992. Al...
	[3] ANSI/ISO/IEC 9075-2-1999: Database Languages - SQL - Part 2: Foundation (SQL/Foundation). Ame...
	[4] ANSI/ISO/IEC 9075-4-1999: Database Languages - SQL - Part 4: Persistent Stored Modules (SQL/P...
	[5] Date, C.J., Darwen, H.: A Guide to the SQL Standard, 3rd edition, Addison-Wesley Publishing, ...
	[6] Date, C.J.: An introduction to database systems, Addison-Wesley Publishing, 2000
	[7] D’Souza, D.F., Wills, A.C.:Objects, Components, and Frameworks with UML - The Catalysis Appro...
	[8] Gulutzan, P.,Pelzer, T.: SQL-99 Complete, Really - An Example-Based Reference Manuel of the N...
	[9] Informix DataBlade Module Development Overview. Informix Software, Inc, September 1999.
	[10] Informix DataBlade API Developer‘s Guide. Informix Software, Inc, September 1999.
	[11] Meyer,�B.: Object-oriented Software Construction. Prentice Hall, 1988.
	[12] Oracle 8i Data Cardridge Developer´s Guide. Oracle Cooperation, December 1999.
	[13] Stonebraker,�M., Brown,�M.: Object-Relational DBMSs - Tracking the Next Great Wave. Morgan K...




