
1

Abstract

TID hash joins are a simple and memory-efficient method for pro-
cessing large join queries. They are based on standard hash join al-
gorithms but only store TID/key pairs in the hash table instead of
entire tuples. This typically reduces memory requirements by more
than an order of magnitude bringing substantial benefits. In particu-
lar, performance for joins on Giga-Byte relations can substantially be
improved by reducing the amount of disk I/O to a large extent. Fur-
thermore, efficient processing of mixed multi-user workloads con-
sisting of both join queries and OLTP transactions is supported. We
present a detailed simulation study to analyze the performance of
TID hash joins. In particular, we identify the conditions under which
TID hash joins are most beneficial. Furthermore, we compare TID
hash join with adaptive hash join algorithms that have been proposed
to deal with mixed workloads.

1 Introduction

Hash Join is a general method for processing equi-joins in relational
databases [ME92]. It is especially efficient if the smaller (inner) re-
lation fits completely into main memory. In this case, join processing
encompasses two phases. In the building phase, the smaller relation
R is scanned and stored in an in-memory hash table by applying a
hash function to the join attribute. During the probing phase, each tu-
ple of the outer relation S is read and probed against the hash table.
This entails applying the hash function to each join attribute value of
S and checking in the corresponding hash class whether there are
matching R tuples. This approach has excellent performance since
building and probing the hash table can typically be performed with
few instructions per tuple. Furthermore, the number of disk I/Os is
low since each relation is read only once. Such a hash join provides
the most efficient implementation for equi-joins (unless indices on
the join attributes exist that can be used for a sort-merge join) [Gr93].

However, if the smaller relation does not fit into memory the perfor-
mance of hash join typically degrades substantially due to a high
amount of additional disk I/O for overflow handling. In this case, the
smaller relation is partitioned into p disjointpartitions by applying a
split function on the join attribute such that each partition fits into

memory. The larger relation is partitioned by applying the same split
function. Join processing then consists of p smaller joins on the cor-
responding partitions of the two relations. While there are several al-
ternatives to perform the partitioning (GRACE, hybrid hash join,
etc.) they all incur extra I/O. In particular, forming the partitions and
storing them on disk may require reading both relations and writing
back their partitions. Subsequently, these partitions are read into
memory to perform the hash join. Hence, the number of disk access-
es may be increased by a factor 3 compared to the case without par-
titioning. Furthermore, most hash join algorithms require a
minimum of + 1 memory pages where b is the number of pages
for the inner relation [ZG90]. For very large relations, this may limit
the applicability of hash joins.

The comparatively poor performance of hash joins in the presence
of a limited amount of memory is a main reason why they are not yet
widely used in commercial DBMS [Ze90]. Despite the increase of
memory sizes, memory-effectiveness is critical for mainly two rea-
sons. First, relation sizes also grow significantly so that in many cas-
es the inner relation cannot be held memory-resident. Second, only
a portion of the available memory can generally be used for join pro-
cessing due to the need to support multi-user processing. Since
OLTP transactions typically have higher priority than concurrently
executing (large) join queries, a small memory consumption for join
processing is very beneficial for supporting mixed workloads.

TID hash joins are a simple and memory-efficient method that aim
at avoiding the I/O delays of standard hash joins for overflow hand-
ling. Instead of storing entire tuples in the hash table, TID hash joins
only store the TID (tuple identifier) together with the join attribute
value (key). The TID (sometimes called RID or row identifier) is the
physical address of a tuple (page number + offset). The typical TID
size is 4 - 8 B allowing much more compact hash tables than with
entire tuples. The exact degree of space reduction largely depends on
the key size (join attribute size). Assuming “typical” key sizes of 4 -
20 B and tuple sizes of 100 - 1000 B, reduction factors of 4 - 100 can
be expected. Hence, for an inner relation of 1 GB (Giga-Byte), a
memory size of 10 - 250 MB may be sufficient for a TID hash join
to avoid partitioning.

TID hash joins can be based on any standard hash join algorithm.
While they try to avoid overflow handling, the reduced space re-
quirements are also beneficial when the compacted hash table cannot
be held in memory (see Section 3). On the other hand, TID hash joins
require an additional materialization phase at the end to construct the
join result. To be effective, the number of I/Os required for this step
must be lower than the number of disk accesses saved for overflow
handling. This can be expected in many cases since only those tuples
need to be materialized that truly contribute to the join result. Fur-
thermore, there are several options to perform these I/O operations

b

TID Hash Joins

To appear in the third International Conference on Informa-
tion and Knowledge Management (CIKM), November 1994,
Gaithersburg, Maryland

Robert Marek
University of Kaiserslautern, GERMANY

marek@informatik.uni-kl.de

Erhard Rahm
University of Leipzig, GERMANY

rahm@informatik.uni-leipzig.de

in: Proc. 3rd Int. Conf. on Information and Knowledge Management (CIKM”94), Gaithersburg, MD, 1994, pp. 42-49.

2

very efficiently (see Section 3). To understand the performance
trade-offs associated with TID hash joins, we have constructed a
detailed simulation model of a database system. This model enables
us to study the behavior of TID hash join algorithms over a wide
range of system resource configurations and to conduct a perfor-
mance comparison with other approaches.

The remainder of this paper is organized as follows. In the next sec-
tion, we briefly discuss some related work. In particular, we de-
scribe an adaptive hash join method that has recently been proposed
for supporting multi-user workloads. This approach will be used in
our performance comparison with TID hash joins. In Section 3, we
provide a more detailed description of the implementation of TID
hash joins, including several optimizations to limit the materializa-
tion overhead. A detailed simulator of a database system that was
implemented for studying the performance of the various join algo-
rithms is described in Section 4. Section 5 presents the results of a
series of simulation experiments showing that, over a wide range of
system and load conditions, TID hash joins outperform standard
hash joins and reduce the need for adaptive hash joins. Finally, the
main findings of this investigation are summarized in Section 6.

2 Related Work

Performing relational operations (scan, join, sort, etc.) on TID/key
pairs is an old idea and in use in several commercial DBMS [Ch91,
Gr93]. For instance, sort/merge joins can be implemented very ef-
ficiently on B-trees containing key/TID entries if there is such an
index on the join attribute for both relations [BE77]. In [Ny93], the
implementation and performance of several high-performance sort
strategies are described and a key/pointer (=TID) sort is found to be
most efficient in many cases. The potential value of TID hash joins
was already observed by DeWitt et al. [De84], however without
presenting an exact description of such algorithms and without
studying their performance.

Recently, several adaptive hash join algorithms have been proposed
to support mixed (multi-user) workloads consisting of both join
queries and OLTP transactions [ZG90, PCL93]. These algorithms
dynamically change the memory allocation for running hash join
queries according to the memory requirements of higher-priority
transactions. In [PCL93] it was shown that in multi-user mode
memory-adaptive hash joins clearly outperform traditional join
methods like GRACE and hybrid hash join. The best performance
was observed for a new approach calledPartially Preemptible
Hash Join (PPHJ). In the remainder of this section, we briefly de-
scribe this scheme since it will be used in our performance compar-
ison with TID hash joins.

The PPHJ algorithm is based on a partitioning of the two relations
R and S. This gives the required flexibility for changing the mem-
ory allocation for join processing by varying the number of memo-
ry-resident partitions. The algorithm chooses a fixed number of
partitions p with p = . In this formula,b is the number of
pages for relation R andF represents the overhead for the hash table
(“fudge factor”). The choice of p constitutes a compromise between
a high number of partitions to obtain a high flexibility for changing
the memory allocation and large partition sizes to achieve high
memory utilization. The PPHJ algorithm is implemented in the fol-
lowing five steps:

(1)Initialization
Choose a hash function h that will split R and S each into
p= partitions, so that each R partition will encompass
approximately p pages. Allocate as many R partitions in main
memory as the available memory allows. For the remaining R
partitions, a single page is allocated as an output buffer. Any
leftover memory pages are used as aspool area for pages that
are being flushed to disk. The spool area is managed by a LRU
policy.

F b×

F b×

(2)Scan and Partitioning of R
Scan the inner (smaller) relation R, hash each tuple using the hash
function h. If the tuple belongs to an in-memory partition, insert
the tuple into the corresponding hash table; otherwise, the tuple
is copied to the corresponding output buffer. If an output buffer
becomes full, flush it. After R has been scanned, flush all output
buffers. They will be needed in the next step to represent S parti-
tions.
In the case that memory has to be taken away from the join, sus-
pend the join if fewer than p pages remain1. Otherwise, one or
more in-memory partitions have to be flushed. For each affected
partition, flush all hash pages and give away all but one of its al-
located pages. The remaining page is then used as an output buff-
er.

(3)Scan and Partitioning of S
Scan the outer relation S. Each tuple is hashed with h. If the tuple
belongs to an in-memory partition of R, check the corresponding
hash table for a match. In case of a match, output the result tuple;
otherwise toss the tuple away. If the corresponding R partition’s
hash table is not allocated in memory, copy the tuple to the S par-
tition’s output buffer. Any output buffer that becomes full is
flushed. After S has been scanned, flush all output buffers.
If the available memory is reduced during this step, either sus-
pend the join or flush as many in-memory partitions of R as nec-
essary to disk (as in step 2). If additional memory becomes avail-
able, bring as many disk-resident R partitions as possible into
memory2. Future S tuples that hash to these partitions can be
joined directly.

In general, the entire inner relation will not fit into main memory.
Some R partitions will have to be stored on disk right from the be-
ginning or during steps (2) or (3). For these partitions the corre-
sponding S partitions will be non-empty. To check their S tuples for
matches, repeat steps (4) and (5) for each non-empty S partition.

(4)If the hash table of the respective R partition is not already in
main memory, read in the R partition and build a hash table for it.

(5)Scan the corresponding S partition, hashing each tuple and prob-
ing the hash table. In case of a match, output the result tuple; oth-
erwise drop the tuple.

During steps (4) and (5), disk I/O is avoided for those pages of R and
S partitions that still reside in the spool area.

3 Implementation of TID Hash Join

In this section, we first sketch how a basic TID hash join can be im-
plemented where the (reduced) hash table for the inner relation fits
into memory. Then we discuss several extensions for improving the
I/O requirements of this scheme. Finally, we outline the implemen-
tation of a memory-adaptive TID hash join algorithm.

3.1 Basic TID Hash Join
An important advantage of TID hash joins is simplicity. If there is
already an implementation of a standard hash join algorithm3 avail-
able, only slight modifications are necessary to obtain a TID version
of this hash join algorithm. The TID version differs from the stan-
dard algorithm in the following ways assuming that no partitioning
is necessary:

Modification of the building phase:
In the building phase, the inner (smaller) relation R is scanned. Each

1. This is the minimum amount of memory needed for the p output buffers
if no R partition can be held in memory.

2. This approach to utilize additional memory was called “expansion” in
[PCL93] and was shown to be more effective than alternative strategies.

3. As opposed toTID hash joins, traditional join methods storing entire
tuples in the in-memory hash-table will be referred to asstandard join
methods.

3

tuple is hashed and - as opposed to standard hash joins - only TID-
key pairs are inserted into the hash table. To obtain reasonable per-
formance this is the minimum amount of information that has to be
stored in the hash table. The key is needed to determine matches in
the probing phase and the TID is used to access the corresponding
tuple in case of a match. Depending on the tuple size in relation to
the TID-key pair size a significant space saving can be achieved.

Modification of the probing phase:
In the probing phase, the outer relation S is scanned. Each S tuple
is hashed with the same hash function used in the building phase
and the hash table is checked for a match. In the standard algorithm,
the matching pair of tuples can be output immediately since both
tuples are available in main memory. In the TID version, the match-
ing R tuple will most likely reside on disk and has first to be re-
trieved using the TID. A straight-forward approach would be to
directly read the page containing the matching R tuple and to output
the matching pair. Performing these I/Os synchronously would in-
troduce enormous delays during the probing phase. As a result, the
hash table would have to be kept in main memory for a very long
period of time, so that memory contention may occur in multi-user
mode. A better approach is to retrieve matching R tuples during a
separatematerialization phase (see below). This allows a quicker
processing of the probing phase and the memory occupied by the
hash table can be released much earlier. Furthermore, this separa-
tion provides us with the possibility to apply some optimizations of
the retrieval step (see 3.2).
During the probing phase, matches are recorded in a newresult list
consisting of an (TIDR, TIDS) entry for each result tuple4. This list
is typically very compact so that it can be kept in main memory. For
instance, a single 8 KB page can hold the TID pairs for 1000 result
tuples (4 B per TID).

Additional materialization phase:
During this phase, the original tuples of the result list have to be re-
trieved. In the basic version of TID hash join, the TID pairs are read
sequentially and for each TID the corresponding tuple is retrieved.
While only tuples that occur in the join result are considered, the
delays for performing these random I/Os can be substantial.

3.2 Improving I/O performance for TID hash join
There are several possibilities to improve the performance of the
materialization phase:

- Seek optimization (ordered reads)
Disk seek delays can substantially be reduced by sorting the TIDs
by physical disk location and performing the reads in this order.
This also ensures that a page is read only once even if it contains
multiple result tuples. The seek optimization can be applied to
both relations if all result tuples fit into memory. Otherwise, only
the tuples of one relation can be read in TID order, while random
I/Os remain necessary for reading the matching tuples of the sec-
ond relation.

- Keeping qualifying S tuples in the result list
The use of TIDs can be avoided for the outer relation S by directly
storing qualifying S tuples in the result list. Thus, the result list
contains entries of the form (TIDR, matching S-tuple). The result
list can be stored in a sequential temporary file for which an out-
put buffer of several pages is maintained in main memory. If the
output buffer fills up during the probing phase it is asynchronous-
ly written out to disk. In the best case, however, e.g., for very se-
lective joins, the entire result list can be kept in memory. In this
case, no I/O for the S relation is necessary during the materializa-
tion phase. For the I/Os on the inner relation R, the seek optimi-
zation can be applied as discussed before.

4. Such a result list is similar to a join index [Va87]. However, the join
index is a precomputed index structure while the result list is dynam-
ically computed during join processing.

If the result list was too large to be held in memory, it is read dur-
ing the materialization phase. This is done by sequential, multi-
page read operations that are much more efficient than random
I/Os. Furthermore, if the disk device to which the result list was
written is equipped with a disk cache, the read I/Os may be served
from the disk cache5. At any rate, depending on the amount of
available memory as many pages as possible should be read from
the result list at a time. This is beneficial in order to maximally
support the seek optimization for the TID-based disk reads of the
matching R-tuples.

- Use of pipeline parallelism
Since probing and materialization operate in a producer-consumer
relationship, pipeline parallelism can be exploited between these
two phases. In the extreme form, each qualifying S tuple triggers
materialization of the matching R tuple by an asynchronous disk
read. Ideally, the materialization phase can then largely be per-
formed asynchronously to the probing phase so that materializa-
tion does not significantly increase response times. However, the
random I/Os necessary for the materialization per tuple can largely
reduce the effectiveness of overlapping the two phases, in particu-
lar for large join results. Therefore, it may be better to “bundle”
multiple entries in the result list before starting their materializa-
tion. In this case, several R tuples have to be materialized so that
the seek optimization can be applied. Another advantage com-
pared to a sequential processing of the probing and materialization
phases lies in the reduced memory requirements for the result list
for which no I/Os are necessary anymore.
Of course, overlapping the probing and materialization phases re-
quires that the two relations reside on disjoint sets of disks to avoid
disk contention.

The discussion shows that the materialization overhead introduced
by the use of TIDs can be kept very low. Extra I/Os on the outer re-
lation S can largely be avoided by storing the qualifying S-tuples in
the result list. The I/O delays for materializing qualifying R tuples
can also be kept small by performing these I/Os asynchronously dur-
ing the probing phase. Applying the seek optimization to the R read
operations further helps to improve I/O performance for TID hash
joins.

3.3 Memory-adaptive TID Hash Join Algorithm
The described modifications for obtaining TID Hash Joins can also
be applied if the reduced hash table for the inner relation does not fit
into memory and an overflow handling becomes unavoidable. Sim-
ilarly, it is possible to extend the adaptive hash join method present-
ed in Section 2 to get a memory-adaptive TID hash join (partially
preemptible TID hash join).

Since only TID-key pairs are stored in the hash table, the total space
requirement of the inner relation is reduced to , wherebred
is the number of pages required for storing the TID-key pairs. As-
suming a ratiob/bred of 4-100, the number of partitions as well as the
average partition size will be reduced by a factor 2-10 for the TID
version of the PPHJ algorithm (see above). The lower number of par-
titions also requires fewer output buffers thus further reducing space
requirements. These space savings allow more R partitions to be held
in memory, thereby reducing the number of overhead I/Os for writ-
ing back R and S partitions during steps (2) and (3) and for reading
them in during steps (4) and (5). The result list is constructed during
steps (3) and (5) indicating for which R tuples materialization will
be necessary. The mechanisms of PPHJ for dealing with memory
fluctuations can directly be applied to the TID version of the algo-
rithms. However, due to its lower space requirements it should much
less frequently become necessary to reduce the memory allocation
for join processing compared to the standard version.

5. Commercial disk controllers keep temporary files in volatile disk cach-
es since these files could be reconstructed after a failure [Gr89].

F bred×

4

4 Simulation model

Our simulation system models the hardware and database process-
ing logic of a centralized DBMS architecture6. As shown in Fig. 1,
the simulation model consists of aworkload generation component
and a processing subsystem. We first describe the database and
workload models; in 4.2 workload processing is outlined. The sim-
ulator is written in DeNet [Li89].

4.1 Database and Workload Model
Our database model supports four object granularities: database,
partitions, pages and objects (tuples). The database is modeled as a
set of partitions. A partition may be used to represent a relation, a
relation fragment or an index structure. It consists of a number of
database pages which in turn consist of a specific number of objects
(tuples, index entries). The number of objects per page is deter-
mined by a blocking factor which can be specified on a per-parti-
tion basis. Differentiating between objects and pages is important
in order to study the effect of clustering which aims at reducing the
number of page accesses (disk I/Os) by storing related objects into
the same page. Each relation can have associated clustered or non-
clustered B+-tree indices.

Our simulator allows studying heterogeneous workloads consisting
of several query and transaction types. Queries correspond to trans-
actions with a single database operation (e.g., SQL statement). Cur-
rently, we support the following query types: relation scan,
clustered index scan, non-clustered index scan, two-way join que-
ries, multi-way join queries, and update statements (both with and
without index support). We also support the debit-credit bench-
mark workload (TPC-B) and the use of real-life database traces
[MR91]. The simulation system is an open queuing model and al-
lows definition of an individual arrival rate for each transaction and
query type. The parameter settings of the workload and database
model are summarized with the processing system’s main parame-
ters in Tab. 1 (see Section 5.1).

4.2 Workload Processing
The processing component models the execution of a workload
consisting of transactions and queries. It comprises a detailed mod-
el of the physical resource level and captures the algorithms and
techniques used in a relational DBMS. Internally, a processing
node is represented by a transaction manager, a query processing
system, a buffer manager, a concurrency control component and a
CPU server (Fig. 1). The processing node has access to database
and log files allocated on external storage devices (disks).

The transaction manager controls the execution of transactions and
queries. The maximal number of concurrent transactions is con-
trolled by a multiprogramming level. Newly arriving transactions
must wait in an input queue until they can be served when this max-
imal degree of inter-transaction parallelism is already reached. The
query processing system models the processing of OLTP transac-
tions (stored procedures) and the various relational operators. For
join processing, several implementations exist including sort-
merge and hash join algorithms. For this study, we have imple-

6. Although the simulation system supports parallel query processing
[RM93], we restrict ourselves to the central case in this study.

mented the standard PPHJ algorithm described in Section 2 as well
the memory-adaptive TID version of this approach (Section 3.3).
The TID algorithm uses the basic scheme for materialization de-
scribed in 3.1 enhanced with a TID sorting for one of the relations
(seek optimization). The other optimizations w.r.t. materialization
described in Section 3.2 can be approximated (see Section 5).

The number of CPUs and their capacity (in MIPS) are provided as
simulation parameters. The average number of instructions per
CPU request can be defined separately for every request type. To
accurately model the cost of query processing, CPU service is re-
quested for all major steps, in particular for transaction/query ini-
tialization, object accesses in main memory (value comparisons,
operations on hash tables, etc.), I/O overhead and commit process-
ing. For concurrency control, we employ strict two-phase locking
(long read and write locks). Locks may be requested either at the
page or object level. A deadlock detection scheme is used to resolve
deadlocks.

The database buffer in main memory is managed according to a
global LRU (Least Recently Used) replacement strategy. In addi-
tion, a memory reservation system under the control of the query
processing system allows memory to be reserved in the buffer pool
for a particular operator or transaction. In particular, this memory
reservation mechanism is used for hash joins to prevent hash table
frames from being stolen by other operators. The reservation mech-
anism is priority-based and allows only higher-priority transactions
(e.g., OLTP transactions) to steal frames reserved by a join opera-
tor.

Database partitions can be kept memory-resident (to simulate main
memory databases) or they can be allocated to a number of disks.
Disks and disk controllers have explicitly been modelled as servers
to capture potential I/O bottlenecks. Furthermore, disk controllers
can have a LRU disk cache. The disk controllers also provide a
prefetching mechanism to support sequential access patterns. If
prefetching is selected, a disk cache miss causes multiple succeed-
ing pages to be read from disk and allocated into the disk cache. Se-
quentially reading multiple pages is only slightly slower than
reading a single page, but avoids the disk accesses for the
prefetched pages when they are referenced later on. The number of
pages to be read per prefetch I/O is specified by a simulation pa-
rameter.

5 Performance Analysis

The focus of our experiments is to analyze the performance of TID
hash joins under various system and load conditions and to com-
pare it with a standard hash join scheme (PPHJ). The most impor-
tant parameters to consider include the available memory for join
processing, the size of the relations, tuples and keys, as well as the
join selectivity.
We first provide an overview of the simulation parameter settings
used in the experiments. In 5.2, we analyze the performance of the
join alternatives in single-user mode. Multi-user experiments for
homogeneous and heterogeneous (mixed query/OLTP) workloads
are described in 5.3.

Fig. 1:Gross structure of the simulation system
database disks

buffer
manager

transaction manager

scan

join filter

Query Processing System

workload
generation

(user terminals)
log disk

CPUconcurrency
control

processing node

oltp

5

5.1 Simulation Parameter Settings
Tab. 1 shows the major database, query and configuration parame-
ters with their settings. In this study, the workload is composed of
join queries and OLTP transactions. The join queries used in our
experiments operate on the input relations R and S. TheS relation
contains 1 million tuples, theR relation 250.000 tuples. Filter oper-
ators performed onR andS reduce the size of the input relations ac-
cording to the selection predicate’s selectivity (percentage of input
tuples matching the predicate). In our experiments, we will reduce
the R and S relations to 12.500 (5% selectivity) and 25.000 -
125.000 tuples (2.5 - 12.5%) to be joined, respectively7. Both se-
lections employ clustered indices. In order to study the influence of
different join selectivities, the join result size is varied between 1
and 50% of the inner relation’s size. The result tuples are randomly
selected from the two relations.

For all sequential I/Os, in particular relation scans, clustered index
scans and scans on temporary files (partitions), prefetching is uti-
lized by the disk controllers. The disk access time for prefetching
consists of a base access time per I/O (15 ms) plus an additional de-
lay per page (1 ms). For a prefetching of 4 pages, the average disk
access time is 19 ms. Additional I/O delays are incurred at the disk
controller and for page transfer.

To capture the behavior of OLTP-style transactions, we provide a
workload similar to the debit-credit benchmark. Each OLTP trans-
action performs four non-clustered index selects on arbitrary input
relations (e.g., to branch, teller, account and history records) and
updates the corresponding tuples.

5.2 Single-user Experiments
In this section, we compare single-user performance of TID hash
join with standard hash join. Memory adaptiveness is not an issue
for single-user mode so that we can assume a fixed amount of mem-
ory during join execution. We first present a base experiment to an-
alyze the impact of different memory sizes, tuple sizes and join
selectivities. Further experiments consider different relation sizes
and potential improvements by an optimized materialization phase.

7. A main reason for assuming such comparatively small relations (as
well as small memory sizes) was to keep simulation costs within an ac-
ceptable range. However, this is not a significant limitation as the rel-
ative performance is mainly dependent on the memory size relative to
the relations’ sizes rather than the absolute sizes.

Base experiment
For the base experiment, we assumed that the outer relation is ten
times as large as the inner relation (125.000 vs. 12.500 tuples after
employing the filtering by the index scan). The buffer size is varied
between 50 and 1600 page frames (0.4 and 12.8 MB, respectively).
While we used constant TID and key sizes of 4 B and 8 B, respec-
tively, two tuple sizes are considered to study the impact of differ-
ent reduction factors for the TID algorithm. For a tuple size of 400
B (800 B), the TID algorithm reduces the space requirements for
the hash table by a factor 33 (66) compared to the standard hash
join. The materialization phase of TID hash join performs the R ac-
cesses in TID order, but requires random reads for matching S tu-
ples. This turned out to be more effective than ordering the disk
accesses w.r.t. S TIDs because there are (10 times) more R result
tuples per page than S result tuples.

Fig. 2 shows the resulting join response times for the TID and the
standard hash join algorithm and the two tuples sizes. For the TID
version, the number of matching tuples is varied between 1 and
50% of the size of the inner relation. Since the standard version’s
performance is not affected by the number of matching tuples, in
this case the join selectivity is kept constant (10%). Note that the x-
axes specify a relative buffer size which is related to the hash table
size for the inner relation in the standard algorithm. Thus a relative
buffer size of 100% is sufficient for the standard hash join to keep
the inner relation in a memory-resident hash table. For our param-
eters (page size 8 KB, fudge factor 1.05), this is possible for a mem-
ory size of 642 pages (1283 pages) in the case of 400 B (800 B)
tuples.

We observe that the standard hash join’s performance is very de-
pendent on the available memory, while the TID hash join is more
influenced by the join selectivity. For a relative buffer size of at
least 100%, the standard version is optimal since there is no need
for overflow handling. In this range, TID hash join is always infe-
rior due its need for materializing the join result. However, the per-
formance of standard hash join quickly deteriorates when the
amount of available memory is reduced while TID hash join shows
almost no performance degradations. This is because, for the stan-
dard hash join, reducing the available memory means that fewer R
partitions can be held in memory thus leading to increased I/O de-
lays for overflow handling. Furthermore, the standard version is not
applicable for less than 51 pages in the case of 400B tuples and less
than 75 pages in the case of 800B tuples! The TID version, on the
other hand, merely requires 20 pages to store all 12.500 TID/key

Configuration settings Database/Queries settings

no. of CPUs
CPU speed
avg. no. of instructions:
initiate a query
terminate a query
I/O
read a tuple from memory page
hash a tuple
insert a tuple into hash table
write a tuple into output buffer
probe hash table
buffer manager:
page size
buffer size
disk devices:
number of disk servers
controller service time
transmission time per page
avg. disk access time
prefetching delay per page
disk cache
prefetching size

1
20 MIPS

25000
25000
3000
500
500
100
100
200

8 KB
50 -1600 pages (0.4 -12.8 MB)

10
1 ms (per page)
0.4 ms
15 ms
1 ms
20 pages
4 pages

relation R:
#tuples
tuple size
key size
TID size
blocking factor
index type
storage allocation
relation S:
#tuples
tuple size
key size
TID size
blocking factor
index type
storage allocation
join queries:
access method
scan selectivity
no. of result tuples
fudge factor hash table:
arrival rate

(100, 200 MB)
250.000
400, 800 bytes
8 bytes
4 bytes
20, 10
clustered B+-tree
disk
(400, 800 MB)
1.000.000
400, 800 bytes
8 bytes
4 bytes
20, 10
clustered B+-tree
disk

via clustered index
varied
1-50 % of the inner relation R
1.05
single-user, multi-user (varied)

Tab. 1:System configuration, database, and query profile

pairs in main memory. Therefore, no overflow I/O occurs when
there are at least 20 pages available. (Note that the TID version still
operates with a minimum of 9 pages!). Thus for smaller buffer sizes,
TID hash join clearly outperforms standard hash join even for large
join selectivities. These observations hold for both tuple sizes, al-
though I/O savings of the TID version are more pronounced for large
tuples (800 B).

Since query response times largely depend on the I/O overhead, it is
useful to analyze the I/O behavior in more detail. For this purpose,
we have summarized the number of overhead I/Os for the different
algorithms and configurations in Tab. 2. Overhead I/Os are all disk
accesses in addition to those needed for the initial scans of the inner
and outer relations that are needed in any case.8 For standard hash
join, overhead I/Os are needed for temporarily storing partitions of
the inner and outer relations on disk due to insufficient memory. For
TID hash join, the overhead I/Os are necessary for materialization of
the join result. Each entry in Tab. 2 contains three numbers: the num-
ber of overhead I/Os on R, on S and the total number of overhead
I/Os. We have specified the absolute buffer sizes since the relative
buffer size changes with the tuple size.

The table reveals the extreme I/O overhead of standard hash join for
small buffer sizes (for buffer size 50, no join execution was possi-
ble). For a buffer size of 100, the number of overhead I/Os of stan-
dard hash join is almost twice the number for reading the two
relations. This is because almost all partitions had to be written to
disk during the partitioning steps and read in later for join process-
ing. For TID hash join, the I/O frequency is primarily determined by
the join selectivity which determines the materialization overhead. It
turns out that almost all pages of the inner relation have to be read
again for materialization except for very selective joins (1%) since
there are 10-20 R tuples per page. However, the materialization
overhead for TID hash join was more dominated by the I/Os on S.
Since we did not apply any optimizations for materializing the S tu-
ples here, the number of overhead I/Os on this relation directly in-
creased with the join selectivity. Furthermore, these I/Os constituted
random I/Os. The table shows that increasing the buffer size permits
a slight reduction in the number of S I/Os due to buffer hits during
the materialization phase.

Despite of the high number of S I/Os with the unoptimized TID hash
join, for moderate join selectivities the number of overhead I/Os typ-

8. Not counting index accesses, there are 625 (1250) I/Os on R and 6250
(12500) I/Os on S for a tuple size of 400 B (800 B).

re
sp

on
se

 ti
m

e
[s

] 400 B

0 20 40 60 80 100 120
0

50

100

150

200

250

800 B

0 20 40 60 80 100 120
0

100

200

300

400

500

re
sp

on
se

 ti
m

e
[s

]

Fig. 2: Influence of buffer size and join selectivity
(12.500 vs. 125.000 tuples)

 STANDARD
 TID 50% rel. R matches
 TID 10% rel. R matches
TID 1% rel. R matches

relative buffer size
[% of inner relation]

relative buffer size
[% of inner relation]

ically does not exceed the number of I/Os required for the initial scans
on R and S. This is always guaranteed for the R relation if we perform
the R reads in TID order so that each page is read at most once. The
number of S I/Os may only exceed the number of S pages in the case
of poor join selectivities so that the number of join result tuples ex-
ceeds the number of S pages. The standard hash join, on the other hand,
may triple the number of I/Os for small buffer sizes; for a relative buff-
er size of 50%, it still doubles the number of I/Os compared to the best
case. Hence, even the straight-forward implementation of TID hash
join outperforms standard hash join for moderate join selectivities as
long as the relative buffer size is below 50%. This is also confirmed by
Fig. 2.

Impact of relation size
The previous experiment already involved two different relation sizes
since we varied the tuple size for a fixed number of tuples. We have
seen that TID hash join is the more favorable the larger the relations
are due to the increased savings for overflow handling. While doubling
the tuple/relation size caused a significant I/O increase for standard
hash joins, TID hash join experienced only a modest increase in over-
head I/Os. The latter was because the larger tuple size only required
more I/Os for materializing the smaller R relation, while the number of
S I/Os did not increase since the join selectivity remained unchanged.

We now study the effect when we change the relative size of the two
relations to be joined. For this purpose, we left the size of the inner re-
lation unchanged, but decreased the number of S tuples by a factor 5
(12.500 R tuples vs. 25.000 S tuples). The resulting response times for
the two tuple sizes are shown in Fig. 3. The main difference to the pre-
vious experiment is that standard hash join gains most from the re-
duced join size. Furthermore, it clearly outperforms TID hash join
when 50% of the R tuples qualify, even for small memory sizes. How-
ever, this was also due to the fact that the number of join result tuples
remained unchanged while the number of S tuples was reduced by a
factor of 5. Hence when 50% of the R tuples qualify, 25% of the S tu-
ples had to be materialized as opposed to 5% in the base experiment.
Since there are 10 to 20 S tuples per page and the I/Os on S occur at
random, each S page had to be read multiple times during materializa-
tion explaining the poor performance of TID hash join in this case.
However, this problem can largely be avoided by an optimized mate-
rialization of S tuples.

Optimized materialization phase
The discussion in Section 3.2 showed that the random I/Os for the ma-
terialization of S tuples can be avoided by keeping qualifying S tuples

re
sp

on
se

 ti
m

e
[s

]

400 B

0 20 40 60 80 100 120
0

50

100

150

200
 STANDARD
 TID 50% rel. R matches
 TID 10% rel. R matches
 TID 1% rel. R matches

800 B

0 20 40 60 80 100 1200

50

100

150

200

re
sp

on
se

 ti
m

e
[s

]

Fig. 3: Influence of buffer size and join selectivity
(12.500 x 25.000)

relative buffer size
[% of inner relation]

relative buffer size
[% of inner relation]

directly in the result list. Furthermore, even I/O delays for the materi-
alization of R tuples may be avoided if these disk accesses are over-
lapped with the probing phase by utilizing pipeline parallelism. Thus,
in the best case, materialization may not cause any response-time in-
crease, especially in single-user mode!

To illustrate the resulting response time improvements, Fig. 4 shows
the performance of TID hash join for three different materialization
alternatives. The curves refer to the base experiment (Fig. 2) with a
tuple size of 800 B and join selectivity of 50% of the R tuples. In ad-
dition to the TID version discussed so far (materialization of R tuples
in TID order), the performance of a worst-case and a best-case TID
scheme is shown. The worst-case approach refers to the basic TID
scheme of section 2.1 with random I/Os on both relations. The best-
case assumes keeping the qualifying S tuples in the result list as well
as a complete overlapping of probing and materialization phases. Fig.
4 shows that the best-case TID scheme achieves response times equal
to those of the standard version without overflow I/Os (100% relative
buffer size). This also means that the impact of the join selectivity is
largely reduced, greatly expanding the applicability of TID hash join.
From the various optimizations, the improved materialization of S tu-
ples is most significant. Interestingly, the worst-case TID scheme still
outperforms standard hash join for small memory sizes.

5.3 Multi-user Experiments
To model a base load in multi-user mode, two different workload
types are considered in this study: OLTP transactions as well as join
queries. Typical OLTP transactions perform a few index selects and
update one or more records. Therefore, OLTP transactions tend to-
wards a rather even consumption of the DBMS’ physical resources
(i.e. disks, main memory and processors). However, since transac-
tions typically require only few main memory pages, disks and pro-
cessors will more likely become overloaded than main memory. On
the other hand, join queries pose relatively high memory requirements
when executed using (standard) hash join algorithms. Therefore, run-
ning multiple join queries concurrently easily introduces a main
memory bottleneck, which in turn may introduce a high number of
disk I/Os to cope with memory overflow.

Fig. 4:Impact of different materialization schemes
 (tuple size 800B; join selectivity 50%)

TID:

STANDARD

TID:

worst case

best case

0 20 40 60 80 100 120

50
100
150
200
250
300
350
400
450
500

re
sp

on
se

 ti
m

e
[s

]

TID:
ordered R reads

(no optimization)

relative buffer size
[% of inner relation]

We study the performance of PPHJ and its TID version for hetero-
geneous and homogeneous workloads. In the former case, we as-
sume a single join query at a time that is concurrently executed with
OLTP transactions. The homogeneous workload consists of several
concurrently executing join queries. We assume that the memory re-
quirements for OLTP and hash joins are served from the same fixed-
size buffer area. Memory requests for OLTP have priority over hash
join queries, so that memory may be taken away from running join
queries. We assume that each OLTP transaction requests the mini-
mum of one page frame. Furthermore, we assume a join selectivity
of 50%, 800B tuples and a large outer relation (125.000 tuples).

We first examine the multi-user results for the heterogeneous work-
load (Fig. 5). Arrival rates for OLTP are varied between 50 and 150
TPS to obtain different levels of resource contention. Increasing the
OLTP arrival rates causes a response time deterioration for both
standard and TID hash join due to increased CPU and disk conten-
tion. However, for small relative memory sizes the standard PPHJ
scheme suffered more under the OLTP load than the TID scheme
due to the transactions’ memory requirements. While each transac-
tion reserved only a single buffer page, the aggregate memory re-
quirements for OLTP significantly reduced memory availability for
join processing in the case of small buffer pools. While there was no
need to suspend running queries due to these memory reductions for
join processing, the number of overhead I/O increased and thus re-
sponse times. The TID version, on the other hand, was less sensitive
against the transactions’ memory requirements. Even in the case of
small main memories, concurrent transactions did not increase the
joins’ I/O overhead significantly. This was because the TID scheme
could keep the entire (reduced) hash table of 20 pages in memory.

The small memory requirements of TID joins are even more advan-
tageous in the context of concurrent join queries (homogeneous
workload). Fig. 6 shows the join response times for this case and dif-
ferent query arrival rates (the mean time between query arrival is

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

re
sp

on
se

 ti
m

e
[s

]
 STANDARD 150 TPS
 STANDARD 100 TPS
 STANDARD 50 TPS
 STANDARD single-user

 TID 150 TPS
 TID 100 TPS
 TID 50 TPS
 TID single-user

Fig. 5:TID and standard hash join performance in multi-user
mode (concurrent OLTP transactions)

algorithm/ transaction arrival rate [TPS]:

relative buffer size
[% of inner relation]

join size: 12.500 X 125.000

tuple size: 400 800

algorithm/ result size: STD TID 50% TID 10% TID 1% STD TID 50% TID 10% TID 1%

buffer 50 not
applicable

625 / 6212
6837

625 / 1244
1869

125 / 125
250

not
applicable

1250 / 6228
7478

1250 / 1248
2498

125 / 125
250

size 100 1248/11544
12792

625 / 6155
6780

625 / 1240
1865

125 / 125
250

2738/24331
27069

1250 / 6207
7457

1250, / 247
2497

125 / 125
250

[pages]: 400 619 / 5768
6387

625 / 5857
6482

625 / 1186
1811

125 / 115
240

2072/18446
20518

1250 / 6069
7319

1250 / 1231
2481

125 / 119
244

1600 0 / 0
0

625 / 4747
5372

625 / 963
1588

125 / 93
218

0 / 0
0

1250 / 5540
6790

1250 / 1133
2383

125 / 103
228

Tab. 2:Average number of overhead disk IOs per join query (on relations R, S and total)

8

varied between 1 and 4 minutes). With growing arrival rates, we
observe a considerable response time increase for standard hash
joins. This is because main memory became bottlenecked very
soon. Since already running queries occupied a large fraction of the
main memory, only few pages remained for newly arriving queries
so that they experienced a high number of overhead I/Os. In cases
with fewer page frames left than the minimum of 75 pages, new
queries had to wait until running queries complete and free memory
pages. With higher arrival rates and smaller memory size, most of
the queries had to be queued and processed sequentially. Since only
few queries could be executed in parallel in these cases, disk and
CPU utilization were very low. Therefore, the steep response time
increase with growing arrival rates is mainly due to the increased
number of overhead I/Os and waits for main memory pages.
Using the TID version, on the other hand, increasing arrival rates
affected response times only marginally. Again, this is because of
the TID version’s low memory requirements. Multiple queries can
be processed in parallel without causing resource contention. Con-
current queries neither perform significantly more I/Os, nor force
newly arriving queries to wait for memory pages. As a result, re-
sponse times do not deteriorate, even in the case of high arrival
rates.

6 Conclusions

In this paper, we have introduced a simple and memory-efficient
method for processing large join queries, namely TID hash joins.
TID hash joins are based on standard hash join algorithms but only
store TID/key pairs in the hash table instead of entire tuples. Only
few modifications are necessary to obtain a TID version from an
existing standard algorithm. We presented a detailed simulation
study to compare the performance of TID hash join with a memory-
adaptive standard hash join scheme (PPHJ). The analysis consid-
ered single-user as well as homogeneous and heterogeneous multi-
user workloads and identified the conditions under which TID hash
joins are most beneficial.

Standard hash joins primarily suffer from the following drawback.
If the inner relation does not fit into memory the performance of
hash join typically degrades substantially due to a high amount of
additional disk I/O for overflow handling. Typically, the number of
disk accesses may be increased by up to a factor of 3 compared to
the case without overflow. TID hash joins, on the other hand, sig-
nificantly reduce the memory requirement (typically by more than
an order of magnitude). Hence, memory overflow can be avoided
in most cases thereby providing significant I/O savings during the
building and probing phases. However, they incur extra I/Os for
materializing the join results which can be expensive for large join
selectivities. To reduce the impact of the join selectivity on the TID

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

re
sp

on
se

 ti
m

e
[s

]
 STANDARD 1 min
 STANDARD 2 min
 STANDARD 4 min
 STANDARD single-user

 TID 1 min
 TID 2 min
 TID 4 min
 TID single-user

Fig. 6:TID and standard hash join performance in multi-user mode
(homogeneous workload consisting of join queries only)

algorithm/query arrival rate
[mean time between query arrival]:

relative buffer size
[% of inner relation]

hash join’s performance, we proposed several materialization alter-
natives. Most important is avoiding random I/Os for materializing
the outer relation’s result tuples. This can be achieved by keeping
qualifying tuples directly in the result list. Synchronous I/O delays
for materializing tuples from the inner relation can also be avoided
to a large extent by utilizing pipeline parallelism (overlapping of
probing and materialization). Performing tuple accesses in TID or-
der further reduces materialization cost.

Our performance study showed that TID hash join is most benefi-
cial when the inner relation cannot be held memory-resident, in par-
ticular if the relative memory size is below 50% of the inner
relation’s size. It is particularly advantageous in multi-user mode
when memory is more restricted due to memory consumption of
concurrent transactions and queries. We have seen that TID hash
join clearly outperforms memory-adaptive hash join schemes in
most multi-user configurations. If multiple join queries are to be ex-
ecuted concurrently, standard hash joins experience very high re-
sponse times due to a high number of overhead I/Os as well as of
frequent query suspension due to insufficient memory. The latter is
because standard hash joins require a minimum of+ 1 memory
pages where b is the number of pages for the inner relation.

To sum up, TID hash joins are intended to complement rather than
substitute standard hash join schemes. In this way, the optimal per-
formance of standard hash join in the presence of sufficiently large
memories can be used as well as the superior performance of the
TID version for smaller relative memory sizes (e.g., for very large
relations) and multi-user workloads. We believe that TID hash join
substantially increases the applicability of hash joins and strongly
recommend its inclusion in any industrial-strength hash join imple-
mentation.

7 References
BE77 Blasgen, M.W., Eswaran, K.P.: Storage and Access in Re-

lational Databases. IBM Syst. Journal 16 (4), 363-377, 1977
Ch91 Chen, J. et al.: An Efficient Hybrid Join Algorithm: A DB2

Prototype. Proc. 6th IEEE Data Engineering Conf. 171-180,
1991

De84 DeWitt, D.J. et al.: Implementation Techniques for Main
Memory Database Systems. Proc. ACM SIGMOD, 1-8,
1984

Gr89 Grossmann, C.P.: Evolution of the DASD Storage Control.
IBM Systems Journal 28 (2), 196-226, 1989

Gr93 Graefe, G.: Query Evaluation Techniques for Large Data-
bases. ACM Comput. Surveys 25 (2), 73-170, 1993

Li89 Livny, M.: DeNet Users’s Guide, Version 1.5. Computer
Science Department, University of Wisconsin, Madison,
1989

ME92 Mishra, P., Eich, M.: Join Processing in Relational Databas-
es. ACM Comput. Surveys 24(1), 63-113, 1992

MR91 Marek, R., Rahm, E.:Performance Evaluation of Paral-
lel Transaction Processing in Shared Nothing Data-
base Systems, Proc. 4th Int. PARLE Conf. (Parallel
Architectures and Languages Europe), Springer-Verlag,
Lecture Notes in ComputerScience 605, 295-310, 1992

Ny93 Nyberg, C. et al.: AlphaSort: A RISC Machine Sort. DEC
Internal Report, June 1993

PCL93Pang, H., Carey, M.J., Livny, M.: Partially Preemptible
Hash Joins. Proc. ACM SIGMOD, 59-68, 1993

RM93 Rahm, E., Marek, R.:Analysis of Dynamic Load Bal-
ancing Strategies for Parallel Shared Nothing Data-
base Systems. Proc 19th VLDB Conf., 182-193, 1993

Va87 Valduriez, P.: Join Indices. ACM Trans. on Database Sys-
tems 12 (2), 218-246, 1987

Ze90 Zeller, H.: Parallel Query Execution in NonStop SQL. Proc.
IEEE CompCon, 484-487, 1990

ZG90 Zeller, H., Gray, J.: An Adaptive Hash Join Algorithm for
Multiuser Environments. Proc. 16th VLDB Conf., 186-197,
1990

b

