Hash-Based Structural Join Algorithms

Christian Mathis and Theo Harder

University of Kaiserslauterri

Abstract. Algorithms for processing Structural Joins embody esakibiiild-
ing blocks for XML query evaluation. Their design is a diffictask, because
they have to satisfy many requirements, e. g., guarantearliworst-case run-
time; generate sorted, duplicate-free output; adapt todigvarying input sizes
and element distributions; enable pipelining; and (pr&yatmore. Therefore, it
is not possible to desigthe structural join algorithm. Rather, the provision of
different specialized operators, from which the query mojer can choose, is
beneficial for query efficiency. We propose new hash-bagedtstal joins that
can process unordered input sequences possibly containplicates. We also
show that these algorithms can substantially reduce théauof sort operations
on intermediate results for (complex) tree structured iggetwigs).

1 Introduction

Because XML data is based on a tree-structured data modeln#tural to use path
and tree patterns for the search of structurally related X®Ndments. Therefore, ex-
pressions specifying those patterns are a common and fidguesed idiom in many
XML query languages and their effective evaluation is of astimportance for every
XML query processor. A particular path pattern—thég—has gained much attention
in recent publications, because it represents a small bgtiéntly used class of queries,
for which effective evaluation algorithms have been fouh®| 7,11, 14, 16].

Basically, a twig, as depicted in Fig. 1, iSa) queries
a small tree, whose nodesrepresent sim- Q1 //book[title:"xML"]//guthor[./lcity:"Rome"]/nam

. Q2)for $b in //book, $ain $b//author

ple predlcate$n on the content (teXt) or the where $b//title="XML" and $a//city="Rome"
structure (elements) of an XML document, "eum (3a, $a/name)
whereas its edges define the relationship bé&.Twig for Q1 and Q2

tween the items to match. In the graphical no- @/booé
tation, we use the double line for the descen- title \aujt‘ﬁo’r;

. . . .] @ ®
dant and the single line for the child relation- sML" G
ship. For twig query matching, the query pro- "ome

cessor has to find all possible embeddings of

the given twig in the queried document, such Fig. 1. Sample Query and Twig
that each node corresponds to an XML item and the definedaesip among the
matched items is fulfilled. The result of a twig is represdrae an orderédsequence

** Database and Information Systems, D-67653 KaiserslguBs=rmmany.
{mathighaerde}@informatik.uni-kl.de
! Here, “ordered” means: sorted in document order from thetmthe leaf items.

2 C. Mathis, T. Harder

of tuples, where the fields of each tuple correspond to mdtitkens. Usually, not all
nodes of a twig generate output, but are mere (path) predicaherefore, we use the
termextraction poin{7] to denote twig nodes that do generate output (the boxddsio
in Fig. 1).

1.1 Related Work

For twig query matching, a large class of effective methadklb on two basic ideas:
thestructural join[1] and theholistic twig join[3]. The first approach decomposes the
twig into a set of binary join operations, each applied tghbbr nodes of the twig (for
an example, see Fig. 2). The result of a single join operagiarsequence of tuples, .+
whose degree (number of fields) is equal to the sum of the degrkits input tuples
from sequences;, 4 and S;, 5. S,.: May serve as an input sequence for further join
operations. In the following, we denote the tuple fields twatespond to the twig nodes
to join as thgoin fields The underlying structural join algorithms are interchaaigje
and subject to current research (see the discussion below).

In [3], the authors argue that, intrinsic for the structyoah approach, intermediate
result sizes may get very large, even if the final result islsimecause the intermediate
result has to be unnested. In the worst case, the size ofamiatliate result sequence is
in the order of the product of the sizes of the input sequeficeemedy this drawback,
twig join algorithms [3, 7] evaluate the twig as a whole, @ing intermediate result
unnesting by encoding the qualifying elements on a set oksta

Of course, holistic twig join algorithms are good candidater physical opera-
tors supporting query evaluation in XDBMSs. However, thalygrovide for a small
fraction of the functionality required by complete XPattdatQuery processors (e.g.,
no processing of axes other thehild and descendantno processing of order-based
queries). Therefore, the development of new structuralgdgorithms is still valuable,
because they can act as complemental operators in casesthieted functionality of
twig joins is too small, or as alternatives if they promisstéa query evaluation.

Existing structural join approaches can roughly be divithed four classes by the
requirements they pose on their input sequencesioXequirement§d, 11, 14]; B)in-
dexed inpuf16], C) sorted inpuf{1, 10, 16]; D)indexed and sorted inp{#]. Especially
for classes C and D, efficient algorithms have been foundgéaérate results in lin-
ear time depending on the size of their input lists. In cattfar class A, there is—to
the best of our knowledge—no such algorithm. All proposegragches either sort at
least one input sequence [11], or create an in-memory datetste (a heap) requiring
O(nlogan) processing steps [14]. By utilizing hash tables that caruiiednd probed in
(nearly) linear time, the algorithms we introduce in thipgacan remedy this problem.
Note, the strategies in [11, 14] elaborate on partitioredgsrocessing schemes, i.e.,
they assume a small amount of main memory and large inpueseqs, requiring their
partition-wise processing. Their core join algorithm, leser, is main-memory—based,
as ours is. Therefore, our new join operators can be—attleasteticallf—combined
with the partitioning schemes proposed in these earlieksvor

2 [14] uses a perfect binary tree (PBiTree) to generate XMhiifiers. In real-world scenarios,
we assume document modifications that can hardly be handtadPBiTrees. Therefore, we

Hash-Based Structural Join Algorithms 3

Answering twig (and more complex queries) using binarycitral join algorithms
imposes three non-trivial problems: selecting the bestgpkst) join orderR1) to
produce a sortedP@) and duplicate-freeR3) output. P1 is tackled in [15], where a
dynamic programming framework is presented that producesygexecutions plans
(QEPSs) based on cost estimations. The authors assume cl@ssl@®) algorithms,
which means that even intermediate results are required to document order on the
two join fields. As a consequence, sort operators have to leeded into a plan to
fulfill this requirement. Consider for example the twig irgFl. Let the circled num-
bers denote the join order selected by an algorithm from [&n, three sort operators
have to be embedded into the QEP fdeig. 2). Sort operators are expensive and should
be avoided whenever possible. With structural join algong not relying on a special
input order—Ilike those presented in this paper—we can giroplit the sort operators
in this plan. However, a final sort may still be necessary meaagases.

Problem P3 was studied in [8]. The authors a/n g
show that duplicate removal is also important for /s?m;tho:ﬁ:name
intermediate results, because otherwise, the com- N

: : . alcpg r“Rome”
plexity of query evaluation depending on the num- ot ety
ber of joins for a query Q can lead to an expo- t/%'« author =
. . . AN
nential worst-case runtime behavior. Therefore,) SOrtie X:“XML”
. a,
for query evaluation using binary structural joins, -~ N author

tuplewise duplicate-free intermediate resulg:bgf}me
sequences have to be assured after each join exe-
cution. Note, due to result unnesting, even a (sin- Fig. 2. Sample Plan

gle) field in the tuple may contain duplicates. This

circumstance is unavoidable and, thus, we have to cope witBecause duplicate
removal—like the sort operator—is an expensive operaitoshould be minimized.
For example in [6], the authors present an automaton thaitesna QEP for Q, thereby
removing unnecessary sort and duplicate removal opegafidreir strategy is based on
plans generated by normalization of XPath expressiongltiegin the XPath core lan-
guage expressions. However, this approach does not takegjoidering into account,
as we do. Our solution to P3 is a class of algorithms that dpraatuce any duplicates
if their input is duplicate free.

1.2 Contribution

We explore the use of hash-based joins for path processpg st XML queries and
identify the selectivity ranges when they are beneficialpamticular, we propose a
class of hash-based binary structural join operators feratkesparent child, ances-
tor, descendantpreceding-siblingandfollowing-siblingthat process unordered input
sequences and produce (unordered) duplicate-free owgguéences. Furthermore, we
show by extensive tests using the XTC (XML Transaction Coitr)—our proto-
type of a native XDBMS—that our approach leads to a bettetimenperformance
than sort-based schemes.

The remainder of this paper is organized as follows: Sedtie?ly describes some
importantinternals of XTC, namely our node labeling schame&an access method for

used SPLIDs (Sect. 2.1) instead. As a consequence, thisHgapo be bridged to support the
proposed partition schemes with our ideas.

% An arrow declares the input node of a join by which the outputridered, where important.
Possible areoot to leaf e. g., between “book” and “title”, anieaf to root e. g., the final join.

4 C. Mathis, T. Harder

element sequences. Sect. 3 introduces new hash-baseithalpoitn Sect. 4 we present
our quantitative results before we conclude in Sect. 5.

2 System Testbed

XTC adheres to the well-known layered hierarchical architee: The concepts of
the storage system and buffer management could be adoptadeftisting relational
DBMSs. The access system, however, required new concemsdament storage, in-
dexing, and modification including locking. The data sysesrailable only in a slim
version is of minor importance for our considerations.

2.1 Path Labels

Our comparison and evaluation of node labeling schemed ire§@mmends node la-
beling schemes which are based on the Dewey Decimal Claggifid5]. The abstract
properties of Dewey order encoding—each label represaptpath from the docu-
ments root to the node and the local order w.r.t. the paretdénio addition, sparse
numbering facilitates node insertions and deletions—aseidbed in [13]. Refining
this idea, similar labeling schemes were proposed whidbrdif some aspects such as
overflow technique for dynamically inserted nodes, attétnode labeling, or encoding
mechanism. Examples of these schemes are ORDPATH [12], ypBwe], or DLN
[2]. Because all of them are adequate and equivalent for maoegsing tasks, we prefer
to use the substitutional narstable path labeling identifieSPLIDs) for them.

Here we only summarize the benefits of the SPLID concept whichides holistic
system support. Existing SPLIDs are immutable, that isy tléow the assignment
of new IDs without the need to reorganize the IDs of nodesgmiesComparison of
two SPLIDs allows ordering of the respective nodes in doauroeder, as well as the
decision of all XPath axis relations. As opposed to comgeithemes, SPLIDs easily
provide the IDs of all ancestors to enable direct paren#stioe identification or access.
This property is very helpful for navigation and for fine-ijied lock management in
the XML documents. Finally, the representation of SPLIDg,. dabel 1.3.7 for a node
at level 3 and also used as an index reference to this nodétatas the application of
hashing in our join algorithms.

2.2 Accessing Ordered Element Sequences

A B*-tree is used as a document store .

.. hook name directot
where the SPLIDs in inner B*-tree nodes Sauthor litle } (B~tree)
serve as fingerposts to the leaf pages. The »~) odoreferen
set of doubly chained leaf pages forms {55 {3 {a7 }i(rédices)

— - — *—trees

the so-called document container where
the XML tree nodes are stored using the
format (SPLID, data) in document order. Fig. 3. Element Index
Important for our discussion, the XDBMS

each sorted in document order

Hash-Based Structural Join Algorithms 5

creates aelement indefor each XML document. This index consists afiame direc-
tory with (potentially) all element names occurring in the XMLadmnent (Fig. 3). For
each specific element name, in turnnede-reference indeis maintained which ad-
dresses the corresponding elements using their SPLID®, Rwotthe document store
and the element index, prefix compression of SPLID keys ig &fective because both
are organized in document order directly reflected by thelBR[9].

The leaf nodes in our QEPs are either element names or v@lyexccessing the
corresponding node reference indexes, we obtain for thelered lists of SPLIDs and,
if required lists of nodes in document order by accessingltfeement store.

3 Hash-Based Structural Join Algorithms

To be able to compete with existing structural join al- a/ngq
H R : ; c/t

gorithms, we had to design our new algorithms with e /\ name

special care. In particular, the use of semi-joins has | /D(\ r“Rome”

several important benefits. The processing algorithmsy, > ity

become simpler and the intermediate result size is rgg; \Ré‘f“mor

duced (because the absolute byte size is smaller and ;. -

we avoid unnesting). Several important design objec-

tives can be pointed out: Fig. 4. Plan for Query 1

e Design single-pass algorithmAs in almost all other structural join proposals, we
have to avoid multiple scans over input sequences.

e Exploit extraction pointsWith knowledge about extraction points, the query op-
timizer can pick semi-join algorithms instead of full joifar the generation of a
QEP. For example, consider the plan in Fig. 4 which embodiesxay to evaluate
the twig for the XPath expression in Fig. 1. After having mihthetitle elements
with the content elements “XML”, the latter ones are not regkdnymore for the
evaluation of the rest of the query; a semi-join suffices.

e Enable join reordering Join reordering is crucial for the query optimizer which
should be able to plan the query evaluation with any join orolexploit given data
distributions. As a consequence, we need operators foretrexge axeancestor
and parent too (e.g., the semi-join operator betweiitte and “XML" in Fig. 4
actually calculates the parent axis).

¢ Avoid duplicate removal and sort operations whenever jpbsdBy using only al-
gorithms that do not generate duplicates and operate omlerex input sequences,
the query optimizer can ignore these problems. Howevemttieizer has to en-
sure the correct output order, requiring a final sort oper&wosome cases, this
operator can be skipped: If we assume that the element st#mes laaf nodes of
the operator tree in Fig. 4 return the queried element semsen document order
(as, for example, our element index assures), then, betaeif&st semi-join oper-
ator is simply a filter for name elements (see Sect. 3.1), tneect output order is
automatically established.

e Design dual algorithms that can hash the smaller input segaerhe construction
of an in-memory hash table is still an expensive operatidrergfore, our set of
algorithms should enable the query optimizer to pick an ajperthat hashes the
smaller of both input sequences and probes the other ordinge¢he same result.

6 C. Mathis, T. Harder

Table 1. Classification of Hash-Join Operators

Output

Hashed ancestor/parent |descendant/child |full join

Class 1: UpStep Class 2: TopFilter Class 3: FullTopJoin
parent /1 a[b] /1alb /lalb, //a]b]

Par HashA Chi | dHashA Chi | dFul | HashA
ancestor /1a[.llb] Ilallb /lallb, Ila./lb]

AncHashA DescHashA DescFul | HashA

Class 4: BottomFilter Class 5: DownStep Class 6: FullBottomJoin
child /1 a[b] /lalb /lalb, I/a[b]

Par HashB Chi | dHashB Chi | dFul | HashB
descendant Ila[.l/b] Ilallb /lallb, /la[./]Db]

AncHashB DescHashB DescFul | HashB

3.1 Classification of Algorithms

We can infer three orthogonal degrees of freedom for strathash-join algorithms:
the axis that has to be evaluategdrenichild/ancestofdescendanf the modeof the
join (semifull); and the choice of which input sequencehtash (A or B)*. The fol-
lowing naming scheme is used for our operatei®xi s> + <nmpde> + <hash>:
{Par | Chi | d| Anc| Desc} {Seni | Ful | } Hash{A| B} (“Semi” is omitted for
brevity). For example, the join operator betwetithe and “XML” in Fig.4 is a
Par HashB operator, because it calculates the parent axis, is a sBméfperator, and
hashes the sequence of possible children.

For an overview of all possible operators refer to Table & @dlumn header defines
the input to be hashed, whereas the row header defines thet.oetp clarification of
the semantics, each operator is additionally describechbXRath expression where
the input sequence to hash is marked in bold face. The nantbg afperator classes
describe the evaluation strategy of the join. They will bscdssed in the following.
Note, class 1-3 algorithms are dual to class 4-6 algorithras, they calculate the
same result as their corresponding algorithms, but hastieaatit input sequence.

3.2 Implementation

To abstract from operator scheduling and dataflow contreletvall operators act in the
same operating system thread and use the well-known itdsas®edopen-next-close
protocol as a basis for the evaluation. Each algorithm vesdiwo input sequences of
tuples, where, due to intermediate result unnesting, datgs on the join fields have to
be expected.

All proposed algorithms in this paper consist of two phaseghase one, a hash
tableht is constructed using the join field of the tuples of one inmguence (either
sequence A or B). In phase 2, the join field of the other inpatieace is probed against
ht . Depending on how a result tuple is constructed, the operatm be assigned to
one of the six classe&ull*Join operators return a sequence of joined result tuples just
as earlier proposals for structural join algorithms (e[H)), Note, the qualifiers “Top”
and “Bottom” denote which input sequence is hashed. Theiréngaclasses contain

4 Note, in the following,A denotes the sequence of possible ancestors or parentsiditepen
the context), whereaB denotes descendants or children.

Hash-Based Structural Join Algorithms 7

I nput: TupSeq A B, Axis aixs, bool hashA 22 else if (axis == ‘Desc’ or ‘Anc’)

Qut put: TupSeq results, Local : HashTabl e ht 23 Li st level Gcc = getLevel sByProb(A);
24 foreach (level in level Ccc)

1 /1 phase 1: build hash table 25 if (t.jField().anc(level) in ht)

2 if (hashA) 26 result;.add(t);

3 foreach (Tuple a in A) 27 break inner | oop;

4 hash a.jField() in ht; 28 .

s elseif (axis is ‘Par’ or ‘Child) 20 function hashEnqueue

6 foreach (Tuple b in B) 30 (SPLID s, Tuple t, HT ht)

7 hash b.jField().parent() in ht; 31 Queue g = ht.get(s);

s elseif (axis is “Anc’) 32 g.enqueue(t);

9 List level cc = getLevel s(A); 33 hash (s, q) in ht;

10 foreach (Tuple b in B) 34 .

11 foreach (level in |evel Ccc) 35 function hashDelete (SPLID s, HT ht)

12 hash b.jField().anc(level) in ht; 3 Queue g = ht.get(s);

13 37 foreach (Tuple t in q)

14 [/ phase 2: probe 38 resul ts. add(t);

15 foreach (Tuple t in ((hashA) 2 B: A 39 ht. del ete(s);

16 if (! hashA and 40)

17 t.jField() in ht) results.add(t); 4t function hashFull

18 elseif (axis == ‘Child or ‘Par’) % (SPLID s, Tuple current, HT ht)

19 if (t.jField().parent() in ht) 43 Queue g = ht.get(s);

20 results.add(t); 44 foreach (Tuple t in q)

21 45 resul ts. add(new Tupl e(t, current));

Fig. 5. *Filter Operator and Auxiliary Functions for *Step and Fulbin

semi-join algorithms*Filter operators use the hash table, constructed for one input
sequence to filter the other one, i. e., tuples are only retliftom the probed sequence.
*Stepoperators work the other way around, i. e., they construetdisult tuples from

the hashed input sequence.

*Filter Operators (see Fig. 5): In phase one, f@hi | dHashA andDescHashA,
the algorithm simply hashes the SPLID of the elements of dre fields (accessed
via method Fi el d()) intoht (line 4). Then, in phase two, the algorithm checks for
each tupld in B, whether the parent SPLID (line 19 féhi | dHashA) or any ancestor
SPLID (line 25 forDescHashA) of the join field is contained iht . If so,t is a match
and is appended to the result. Actually, for the descendaerador, we had to check all
possible ancestor SPLIDs which could be very costly. Toavadown the search, we
use the meta-information, at which levels and by which pbdlig an element of the
joinfield of A occurs (line 23). This information can be dexi/dynamically, e. g., when
the corresponding elements are accessed via an elemexsicalg or kept statically in
the document catalog.

The strategy foPar HashB andAncHashB is similar, with the difference, that in
the hash phase the algorithm uses the join fields of input Beogbculate SPLIDs that
might occur in A (lines 7 and 12). Again for the descendantaiue, we use the level
information (line 9), but this time the probability distrtion does not matter. In the
probing phase it only has to be checked, whether the cumanfigld value is inht .

Obviously, the output order of the result tuples is equah®drder of the probed
input sequence. Furthermore, if the probed input sequentgliewise duplicate free,
the algorithm does not produce any duplicates. idghednput sequence may contain
duplicates. However, these are automatically skippedr@asecollisions are internally
resolved by the hash table implementation.

8 C. Mathis, T. Harder

*Step Operatorgonceptually work in the same way as their corresponthilter
operators. However, they do not return tuples from the ppbet from the hashed in-
put sequence. Accordingly, tuples that have duplicatehiekaythey use for hashing
(e.g., TupSeq A of Fig. 7a) may not be skipped (as above) e ttabe memorized
for later output. The new algorithms work as follows: In thesh phase, the function
hashEnqueue() (Fig.5 line 29) is called instead of the simple hash statasign
lines 4, 7, and 12). The first argument is the SPIdDf the join field (or itspar-
entancestorSPLID). Function hashEnqueue() checksdarhether or not an entry is
found in hash tablét (line 31). If so, the corresponding value, a queyés returned
to which the current tuple is appended (line 32). Finallis written back into the hash
table (line 33).

In the probing phase, we substitute the hash table lookupemudt generation (lines
17, 19-20, 25-26) with thhashDel et e() method (Fig.5 line 35). For the given
SPLID s to probe, this method looks up the correspondingtgpkue in the hash table
and adds each contained tupl® the result. Finally, the entry farand its queue are
removed from the hash table, because the result tuples diéeereturned exactly once
to avoid duplicates. The sort order of these algorithmsdésatitd by the sort order of
the input sequence used for probing. If the hashed inputesegudid not contain any
duplicates, the result is also duplicate free.

The technique to memorize tuples with the same hash key winrdgor the step
operatordPar HashA, Par HashB, andAncHashA. For DescHashB, however, the
following problem occurs: In phase 1, the algorithm has ttcgrate for each node
b in tuple sequence B, on which level the ancestor nodes inuihle sequence A can
possibly reside. Then—following the technique above—it twainsert into all queues
of possible ancestors. As an example, consider the docwshenin in Fig. 6a and the
element with the SPLID 1.3.3.5. In phase 1, the algorithreritss1.3.3.5 in the queue
for the possible ancestor elements 1.3.3 and 1 (1.3 doestwidto any input). This
is not only unfavorable because of the redundant storagéeafest 1.3.3.5 and the
implied higher memory consumption, but it may also lead tplidates in the final
result: in the probing phase, the algorithmchecksfor eacha in input sequence A, if
there is a corresponding tuple queue in the hash tablep2¢ndsall elements in the
queue to the result sequence, ande&hoveghe matched entry from the hash table.
In the example, if the algorithm processes the possiblesiocé.3.3, it would return
the result tuple containing 1.3.3.5 and remove this entry1f8.3 from the hash table.
If later on, possible ancestor 1 is probed, 1.3.3.5 is agaturmed. Thus, a duplicate
would be generated.

To remedy these problems, a distinguished algorithm fobeéec Has hB operator
is designed (see Fig. 6¢). In the first phase, the operatlatsbtwo hash tables, named
ht Bandht A, instead of only one. Hash tali¢ B has the same function as in the other
step operators: it keeps track of mappings from possiblesioc elements to queues
of possible descendants. To avoid redundant storage, gsiy® descendant element
b is only stored in the queue for the anticipatedest ancestor elemefitne 4 to 6),
which corresponds to the SPLID with the highest level that sl be an ancestor
of b. For example, the tuple corresponding to 1.3.3.5 is onlyestan the queue for
1.3.3, because 1.3.3 is the anticipated lowest ancestersfidrage of 1.3.3.5 in the

Hash-Based Structural Join Algorithms 9

I nput: TupSeq A B
Qutput: TupSeq results
Local : HashTable htB, ht A

/1 phase 1: build hash table
Li st | evel Ccc = getlLevel s(A);
foreach (Tuple b in B)

SPLI D | owest Anc =

1
2
3

Sample Document 2

5 b.jField().lowestAnc(level Ccc);

6

7

8

9

! hashEnqueue(| owest Anc, b, htB);

Poss. Anc: SPLI D hi ghest Anc =
13 15 b.j Field().highestAnc
(level Ccc, ht A);
133 135 . i
11 foreach (level in Ievel Ccc between
12 hi ghest Anc. | evel () and
1333 1.335 13 | onest Anc. | evel () descendi ng)
14 SPLI D ancAnc =
15 b.jField().anc(level);
Poss. Desc 16 SPLID anc =
17 b.jField().anc(level +1);
13333 13335 18 Queue ancQ = ht A get (ancAnc);
19 ancQ enqueue(anc);
Hash Tables 20 ancQ = ht A get (anc);
htB 21 ancQ enqueue(nul I');
22
[1.33.3] —=[1.3.333] [1.3.33.5] 23 [/ phase 2: probe
[13.3] —=[1335] 24 foreach (Tuple a in A)
[1] — [1.5] 25 hashDel ete(a, htB);
26 Queue g = new Queue();
Key Value (Queue) 27 q.addAll (htA get(a.jField());
hA 28 ht A renove(a.jField());
29 while (!qg.isEmty())
[1] —=[1.3.3] 30 SPLID id = g.renoveFirst();
[1.3.3] —=[1.3.3.3] 31 hashDel ete(id, htB);
[1.3.3.3] —= null 32 g. addAl I (ht A get (id));
Key Value (Queue) 33 ht B. renove(i d);

Fig. 6.a) Sample Document, b) Hash Tables, c) DescHashB Operator

gueue of element 1 is thus omitted). Then, another hash tabla) is built which
keeps track of ancestor/descendant relationships amermptsible ancestor elements.
In essenceht A stores a forest of trees. In the example, when elerbeht3.3.5 is
processed, the key-value pairs (1, 1.3.3) and (1.3.3, atdl)nserted intdit A. Later
on, when for examplé=1.3.3.3.3 is processed, only the pair (1.3.3, 1.3.3.3)thas
be inserted intdt A, because the relationship of their ancestors is alreadtated

in ht A. This functionality is implemented in lines 7 to 21. Firsethighest possible
ancestor SPLID, whose relationship is not yet containdtt iA is computed. This can
easily be done by comparing the keys already containéd /& In the above example,
when (1, 1.3.3) and (1.3.3, null) are presenhinA, the highest possible ancestor for
b=1.3.3.3.3is 1.3.3. Afterwards the structural relatiapstidown to the lowest possible
ancestor are inserted inta A (lines 11 to 21).

In the probing phase, the algorithm callashDel et e() (line 25). I. e., it probes
each element of the ancestor sequence A agaihstB. If there is a queue for the
key a, the found tuples are written to the result and the matchgevkkue pair is re-
moved fromht B. For example, the lookup af=1.3.3 immediately returns the tuple

10 C. Mathis, T. Harder

corresponding to 1.3.3.5 and the pair (1.3.3, 1.3.3.5)risoreed fromht B. Because
the algorithm has to returall descendants, it follows the tree storechinA rooted at

a and callshashDel et e() for all possible ancestors found (lines 26 to 33). In the
example, the algorithm looks up=1.3.3 inht A, finds2=1.3.3.3, and calls hashDelete
for z, which returns the descendants 1.3.3.3.3 and 1.3.3.3.®udhed entries are re-
moved fromht A. Note, the operator fulfills our requirements: it does naidarce any
duplicates and can operate on unsorted input sequences.

Full*Join Operatorsresemble théStepoperators. The only difference is the re-
sult generation. Whilé¢Step algorithms are semi-join operators that do not produce
a joined result tuplefull*Join operators append the current result tuple with all tu-
ples matched (as depicted in metHuakshFul | (), Fig. 5 line 41). Note, opposed to
hashDel et e(),inhashFul | () no matched entries froft /ht A/ht Bare deleted.
For a brieffull join example see Fig.7a: input sequence A for@hé | dFul | HashA
operator is hashed on join field 1, thereby memorizing tuplis duplicates in the
related queues. Then, the tuples from sequence B are prgfagusathe hash table.
For each match, each tuple in the queue is joined with theentituple from B and
appended to the result.

Space and Time Complexity. The space complexity (number of tuples stored) and
time complexity (number of hashes computed) of the opesatepend on the axis to

be evaluated. Let = |A| andm = |B| be the sizes of the input sequences. Foipidre
entchild axis, the space and time complexityi$n +m). For theancestofdescendant

axis, the height: of the document also plays a role. Here the space complexity f
classes 1-3 is als@(n + m), whereas the time complexity 3(n + h * m) (for each

tuple in sequence B up to hashes have to be computed). For classes 4-6, both space
and time complexity ar®(n + h+m), except for thédescHashB operator, where the

time complexity iSO (h * (n + m)).

Beyond Twig Functionality: Calculation of Sibling Axes. With hash-based schemes
and a labeling mechanism enabling the parent identificati@preceding-siblingand
thefollowing-siblingaxes are—in contrast to holistic twig join algorithms—cartable,
too. Due to space restrictions, we can only show filtering@dlgms, corresponding to
the *Filter classes above: In phase 1 operater£Si bl HashA andFol | Si bl -
HashA (see Fig. 7b) create a hash talie to store key-value pairs gfarentchild
SPLIDs. For each element in A, pargntis calculated. Then the following-sibling
(preceding-sibling) axis is evaluated as follows: For epatent SPLIDp, the small-
est (largest) child SPLIR in A is stored inht . This hash table instance is calculated
by successive calls to ththeck AndHash() method (lines 14 to 21). While probing
a tupleb of input B, the algorithm checks whether the SPLID on the faifd of bis a
following-sibling (preceding-sibling) o, that has the same parent (lines 6 to 12). If so,
the currenb tuple is added to the result. Clearly, these algorithmsalehe same char-
acteristics as their corresponditfglter algorithms: They do not produce any tuplewise
duplicates and preserve the order of input sequence B.

Hash-Based Structural Join Algorithms 11

JoinField Input: TupSeq A, B, Axis aixs
; s—* Qutput: TupSeq results, Local:HashTable ht
[1.3,1.3.5] [1.3.3]
[1.3,1.3.7]) |[1.7.9] 1 // phase 1: build hash table
[1.5,155] |- 2 foreach (Tuple a in A
[1.5,1.5.7] 3 checkAndHash(a.jFiel d(), axis)
[1.7,1.7.3] .
5 // phase 2: probe
TupSeq A TupSeq B 6 foreach (Tuple b in B)
. 7 SPLID s = ht.get(b.parent());
phase 1: has \ s if((axis == ‘PreSibl’ and
9 b.jField().isPreSibl(s)) or
[1.3] —= [1.3,1.3.5],[1.3,1.3.7] 10 (axis == ‘Fol I Sibl’ and
[1.5] —»=| [L5, 1.5.5], [L.5, 1.5.7] 11 b.jField().isFollSibl(s)))
[1.7] 4»77[177177”3] 777777777 12 resul ts. add(b);
. 7,17, 13
HashKeys HashValue! 14 function checkAndHash(SPLID a, Axis axis)
15 SPLID s = ht.get(a.parent());
16 if((s is NULL) or
[1.3,1.3.5,1.3.3] 17 (axi s == ‘PreSibl’ and
[13. 137 133]| / Phase2:prot g not s.isPreSibl(a)) or
[1.7,1.7.3,1.7.5] 19 (axis == 'Fol | Sibl’ and
) 20 not s.isFollSibl(a)))
21 ht. put (a.parent(), a);

Results

Fig. 7.a) Full*Join Example and b) Sibling Operator

4 Quantitative Results

To substantiate our findings, we compared the differentrétgas by one-to-one opera-
tor comparison on a single-user system. All tests were ruemomtel XEON computer
(four 1.5 GHz CPUs, 2 GB main memory, 300 GB external memaya BSun JDK
1.5.0) as the XDBMS server machine and a PC (1.4 GHz Pentiu@RY, 512 MB
main memory, JDK 1.5.0) as the client, connected via 100 Miernet to the server.
To test the dependency between runtime performance any sgiectivity, we gen-
erated a collection of synthetic XML documents, whose s$tmégcis sketched in Fig. 8.
Each document has a size of 200 MB and contains bibliograpfiomation. Because
we were mainly interested in structural join operators fenent sequences, the gen-
erated documents do not contain much text content. The stlyeaph is a directed
acyclic graph (and not a tree), because an author elemenbméye child of either
a book or an article element. We generated the documentsimaway, that we ob-
tained the following selectivity values for the executidswuctural joins between input
nodes: 1%, 5%, 10%, 50%, and 100%. For example, for the qudmpok[titl e],
selectivity 1% means that 1% of ditle elements have bookelement as their parent
(all others have tharticle element as parent). Additionally, we created 10% noise on
each input node, e. g., 10% of albokelements have the chiluboktitleinstead oftitle.

4.1 Join Selectivity Dependency of Hash-Based Operators

In a first experiment, we want to explore the influence of the gelectivities of the
input sequences and, in case of varying input sequence $imss sensitivity on the

12 C. Mathis, T. Harder

bib _ _
. *Filter Queries:
book+ JOll{aH' a) //book[title] or//book/title
\ . .
{booktitle|title} article+ journalname b //j‘ournal > //.tltle] or
) //journal//title
authort {arttitle|title}
|
name organization *Step and Full*Join Queries:
| a) //author[tuvalu] or
address) //author/tt 'f'u
| \ autho 5 al
city {usalfrancelandorraltuvalul...} b) //c nization[.//andorra] or
| //organization//andorra
{london|seattle|ordino|funafutil...}

Fig. 8. Document Schema and Sample Queries

hash operator performance. All operators presented ireThiokvealed the same per-
formance characteristics as a function of the join selégtitdence, it is sufficient to
present an indicative example for which we have chose#se Ful | Hash* oper-
ators. For the querk/ j ournal / /titl e, the size of the input sequence containing
journal elements varies from around 2,000 to 200,000 elements gabdhe size of the
title sequence remains stable (roughly 200,000 elements).&ijuStrates the runtime
performance of th®escFullHashAoperator and th®escFullHashBoperator for the
same query. For selectivities smaller than 10%, the runtifreach operator remains
quite the same, because in these cases external memorg aosts for the node ref-
erence indexes (column sockets) dominate the executi@ timereas the time for the
hash table creation and probing remains roughly the samegetr for selectivities
10%, the runtime increases due to higher CPU costs for hgsimd probing of larger
input sequences. The gap betweenBescFul | HashA and theDescFul | HashB
operator results from hashing the wrong—i. e., the largapti sequencdifle) instead
of the smaller one (in operat@escFul | HashB). Therefore, it is important that the
query optimizer chooses the right operator for an antieghaiata distribution.

4.2 Hash-Based vs. Sort-Based Schemes

In the next test, we want to identify the performance diffees of our hash-based
schemes as compared to sort-based schemes. For this pungsaplemented the
StackTrealgorithm [1] and the structural join strategy from [14]lealAxisSort*in the
following. Both operators work in two phases: In phase 1utrgequences are sorted
using theQuickSortalgorithm. While StackTreeneeds to sort both input sequences,
AxisSort*only needs to sort the smaller one. In phas&@ckTreeaccomplishes its
ordinary join strategy, whil&xisSort*performs a binary search on the sorted input for
each element of the other input sequence. To compare ouatopewith minimal-cost
sort-based schemes, we introduce hypothetical operatoichvalso sort the smaller
input sequence, but omit the probing phase. Thus, so-cafakle operators do not
produce any output tuples. The result comparison is predantFig. 9b. Having the
same join selectivity dependency, our hash-based opsraterapproximately twice as
fast as the sort-based operators (with result constructidre figures for th&tackTree
algorithm impressively demonstrate that sort operatioristermediate results in query

Hash-Based Structural Join Algorithms 13

plans should really be avoided if possible. Finally, thehhbased operators—with their
“handicap” to produce a result—match the sort-based fakeatprs.

4.3 Memory Consumption

Finally, we measured the memory consumption of hash-basddsart-based oper-
ators. On the generated document collection, we issued ukeyq/ or gani za-
tion[.//andorra], where the number of andorra elements varied from 2000 to
200.000, whereas organization elements remained stalptrigehly 200.000). For com-
parison, we used thBescFul | HashB® and theDescFul | Sor t B operator. In all
selectivity ranges, the internal hash table of the hask&aperator consumed three to
four times more memory than the plain array of the sort-based To reduce this gap,
a space optimization for hash-based operators is pos&hieh key contained in the
hash-table (as depicted in Fig. 7a) is repeated (as a prefikgijoin field value of the
tuples contained in the key’s queue. This redundant infioma&an safely be disposed
for a more compact hash table.

In a last experiment, we compabescFul | HashB with AncHashB. Here, the
semi-join alternative required around three times fewemony than the full join vari-
ant on all selectivities. This circumstance is also a strargyment for our proposal,
that the query optimizer should pick semi-join operatorgmgver possible.

5 Conclusions

In this paper, we have considered the improvement of twitepatjueries—a key re-
qguirement for XML query evaluation. For this purpose, weédaubstantially extended
the work on structural join algorithms thereby focussingh@shing support. While
processing twig patterns, our algorithms, supported by@pgate document store and

5 Note, regarding the space complexibgscFul | HashB s one of the more expensive repre-
sentative among the hash-based operators (see 3.2).

5000 4 20000
DescFullHashA (@ ChildFulHashB
4500 1|0 DescFullHashB I 18000 -1l m DescFulHashB
4000 16000 - 2 ChildFullSortBFake
DescFullSortBFake
=300 14000 7 childFuliSortB
@ 3000 4 — @ 12000 || O DescFullSortB
E. .§. ChildFullSortStackTree
o 2500 o 10000 /g DescFullSortStackTree
E 2000 1 E s000
[=
1500 - 6000
1000 - 4000
500 2000
0 o LA A
1% 5% 10% 50% 100% 1% 5% 10% 50% 100%
Selectivity Selectivity

Fig. 9. a) DescFullHash* Characteristics, b) Operator Comparison

14 C. Mathis, T. Harder

index structures, primarily rely on SPLIDs which flexiblyae and improve path pro-
cessing steps by introducing several new degrees of fre@dwen designing physical
operators for path processing steps.

Performance measurements approved our expectationstamhibased operators.
They are, in the selectivity range 1%—-100%, twice as fasbasbased schemes and
not slower than théFake operators. As another beneficial aspect, intermediats sort
in QEPs can be drastically reduced. Such hash-based ofsesatould be provided—
possibly with other kinds of index-based join operators-a-inol box for the cost-based
query optimizer to provide for the best QEP generation isitllations.

References

1. S. Al-Khalifa et al.: Structural Joins: A Primitive for fitfient XML Query Pattern Matching.
Proc. ICDE: 141-152 (2002)

2. T. Bdhme, E. Rahm: Supporting Efficient Streaming anetisn of XML Data in RDBMS.
Proc. 3rd DIWeb Workshop: 70-81 (2004)

3. N.Bruno, N. Koudas, D. Srivastava: Holistic twig joingtional XML pattern matching. Proc.
SIGMOD: 310-321 (2002)

4. S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C. ZaniBlfficient Structural Joins on
Indexed XML Documents. Proc. VLDB: 263-274 (2002)

5. M. Dewey: Dewey Decimal Classification System. http:/iwmtsu.edu/ vvesper/dewey.html

6. M. Fernandez, J. Hidders, P. Michiels, J. Simeon, R. Viaman: Optimizing Sorting and
Duplicate Elimination. Proc DEXA: 554-563 (2005).

7. M. Fontoura, V. Josifovski, E. Shekita, B. Yang: OptimgiCursor Movement in Holistic
Twig Joins, Proc. 14th CIKM: 784-791 (2005)

8. G. Gottlob, C. Koch, R. Pichler: Efficient algorithms faropessing XPath queries. ACM
Trans. Database Syst. 30(2): 444-491 (2005)

9. T. Harder, M. Haustein, C. Mathis, M. Wagner: Node Latglschemes for Dynamic XML
Documents Reconsidered, accepted for Data & Knowledgerérging (2006)

10. Q. Li, B. Moon: Indexing and Querying XML Data for Regulgath Expressions. Proc.
VLDB: 361-370 (2001)

11. Q. Li, B. Moon: Partition Based Path Join Algorithms fdviK Data. Proc. DEXA: 160-170
(2003)

12. P. E. O'Neil, E. J. O'Neil, S. Pal, I. Cseri, G. Schaller, \Nestbury: ORDPATHSs: Insert-
Friendly XML Node Labels. Proc. SIGMOD: 903-908 (2004)

13. |. Tatarinov et al.: Storing and Querying Ordered XML tidsa Relational Database System.
Proc. SIGMOD: 204-215 (2002)

14. Z. Vagena, M. M. Moro, V. J. Tsotras: Efficient ProcessmigkML Containment Queries
using Partition-Based Schemes. Proc. IDEAS: 161-170 (2004

15. Y. Wu, J. M. Patel, H. V. Jagadish: Structural Join Ordele&ion for XML Query Opti-
mization. Proc. ICDE: 443-454 (2003).

16. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohmann, Oppduting Containment
Queries in Relational Database Management Systems. R@RIAD: 425-436 (2001)

