
it

s

d
e

n
n
th
r

it

s

r

n

S

e
r
r
n

a
i
r

d
t

m
t

on-
y-
er
an
the
hot
n-
-

B,
[7,
a
-
a-
s)

in
es
n-
e-
o
an

st,
sed

3,
e

tes
he
r-
Fi-
k.

om
s.
se-
d-
ent
er,
on

b
ys-

Shift it to the Server!
- Let the Database Server Update Your Web Sites -

Henrik Loeser

University of Kaiserslautern, Department of Computer Science,
P.O. Box 3049, D-67653 Kaiserslautern, Germany

e-mail: loeser@informatik.uni-kl.de

accepted for WISE 2000, Hongkong, June 2000
Abstract

From the beginnings of the World Wide Web, Web s
administrators have used dynamically generated HTM
pages to provide up-to-date information, e.g., online new
stock quotes, etc. Due to the high resource consumption
dynamic page generation approaches, many sites ha
switched over to periodical updates of frequently visite
pages, e.g., a headline index of an electronic newspap
However, this approach has led to reduced topicality o
information. In this paper, we present iWebDB, a
approach for automatic ORDBMS-controlled docume
updates. It offers up-to-date Web documents and, at
same time, avoids the drawbacks of dynamic page gene
tion approaches. iWebDB is based on the extensibil
infrastructure of object-relational database systems. B
utilizing DB triggers and so-called user-defined function
documents can be automatically generated by the DBM
whenever related DB data has been modified.

1. Introduction
From the beginnings of the World Wide Web (WWW o

Web) and the definition of the Common Gateway Interfac
(CGI), Web site administrators have used dynamically ge
erated HTML pages to provide up-to-date information, e.g
online news, stock quotes, etc. In recent years, DBM
were often used to manage the information to be included
these pages as well as the page templates. Several t
niques for Web-based DB access exist, e.g., CGI, Web se
er extension interfaces, or servlet API [2]. While there a
differences regarding the number of necessary compone
in the runtime environment, all possible solutions consum
time and system resources for page generation leading
enhanced response times and increased hardware dem
for the whole system. This extra overhead is especially cr
ical when these tasks become hot spots in the overall p
cessing chain.

Therefore, many Web sites have switched over to perio
ical updates of frequently visited pages. But this has led
a reduced topicality of accessible information, i.e., data e
bedded in Web pages can be inconsistent compared to
more recent state of the DB. To provide both topicality a
e
L
,
of
ve

r.
f

t
e
a-
y
y
,
S

e
-

.,
s
in
ch-
v-
e
ts

e
to
nds
t-
o-

-
o
-
he
s

well as lower response times and reduced resource c
sumption, a page caching approach is introduced in [1]. D
namically generated documents are cached for furth
requests. In addition, using update notification, pages c
be generated after data updates and directly written into
cache. However, this approach has been designed for a
spot Web site. It is based on a complex runtime enviro
ment which definitely means an overkill for the require
ments of most sites.

In this paper, we present a special extension of iWebD
our DB-based solution for Web document management
8]. We call this extension iWebDB/DG which provides
document generator framework for iWebDB. Both iWeb
DB/DG and iWebDB are based on the extensibility mech
nism of object-relational database systems (ORDBMS
and DBMS features standardized for the first time
SQL:1999 [5]. Using triggers to keep track of data updat
and user-defined functions (UDFs) for dependency ma
agement and document generation, all functionality is int
grated into a standard DBMS. Apart from the ORDBMS n
further components are required. Thus, the DB server c
keep Web pages up-to-date on its own.

The remainder of the paper is organized as follows. Fir
we discuss approaches for the maintenance of DB-ba
Web pages and their common problems. Then, in Section
we introduce iWebDB and its components. In Section 4, w
discuss the iWebDB approach which automatically upda
Web pages by using the DB server. Section 5 outlines t
iWebDB implementation and briefly discusses first perfo
mance tests. In Section 6, we discuss the related work.
nally, we conclude and give an outlook on our future wor

2. Common Problems
Today, most large Web sites have been transformed fr

a collection of static HTML documents to DB-based site
Documents are created from templates based on input
lected from one or more DBs. Document creation is perio
ically performed after updates of templates resp. docum
components, or after updates of related DBs. Moreov
documents can be generated on-the-fly, possibly based
form input or tailored to a specific user. Therefore, We
sites not only consist of a Web server accessing the file s



o

o
e

p

u
g

k

L
a

c
x
o

a

c

n
n
g
lu

s

e
e
n
h

a

e
o

a
e

e

the
-

r-
eb
d. In
up-

age
ro-
-

ur
a

D
y

x
n,
c-
or

n-
,
er-
g-
e

s
ls,

u-
e
te-
tem and delivering HTML pages to the Web client, but als
of many additional components, e.g., DBMSs, applicatio
servers, etc. In addition, macro files, document comp
nents, and static HTML pages are often managed by a W
Content Management System (WCMS) and stored in a s
cial document repository before being published on th
Web server.

As already mentioned, many approaches and techniq
exist to deliver topical documents to the user, all havin
specific merits. For the maintenance of a Web page with
news ticker, at present, two general approaches exist. O
technique is to dynamically generate such a page on user
quest, i.e., each time a user tries to access this news tic
page a CGI script or something similar is invoked to retriev
all actual headlines out of a DB and to compose an HTM
document based on this search result. The second appro
is to place a static page in the Web server file system and
update this document periodically. However, frequently a
cessed pages, such as documents containing a site inde
overview pages, are often neither created dynamically n
generated script-based by the administrator. Instead, th
are edited manually and, as a consequence, are norm
outdated.

2.1. Dynamic Page Creation
Depending on the expected access rates of a Web do

ment, several techniques for dynamic page creation can
employed. They can be divided into solutions utilizing a
application server, and programs or modules incorporati
all needed functionality and accessing the DB directly, e.
CGI programs, server extension modules, etc. While so
tions based on an application server scale better because
load can be balanced over multiple computers, the other
lutions only utilize resources when getting invoked.

However, whatever solution is employed, each has to a
cess macro files and DBs resp. at runtime, to process th
files, and to generate the document. Therefore, user requ
to the Web server are answered with delay. Moreover, ma
resources are needed to provide a scalable system. Furt
more, runtime access to DBMSs and application serve
may potentially threaten security which requires addition
efforts to secure the systems.

2.2. Periodic Updates
Another approach for DB-based Web pages is to gen

ate the documents periodically, e.g., once each hour c
trolled by a timed service, or manually by a Web
administrator. After being invoked, the generator applic
tion reads and processes the templates and publishes th
sulting documents on the Web server. All programs an
components run isolated from the Web server in an own e
vironment. Thus, neither programs nor modules on the W
server are required. Furthermore, direct connections fro
n
-
b

e-
e

es

a
ne
re-
er

e

ch
to
-
or
r

ey
lly

u-
be

g
.,
-
the
o-

c-
se
sts
y
er-
rs
l

r-
n-

-
re-

d
n-
b
m

the Web server to a DBMS are avoided. Write access to
Web server file system is sufficient to publish the docu
ments.

However, concerning the news ticker example, impo
tant information updates may not be reflected in the W
page because the page generation has not been invoke
contrast, page creation may be superfluous because DB
dates have not occurred in the maintenance interval.

Both approaches presented as well as manual Web p
control have drawbacks. What is needed is an approach p
viding both up-to-date documents combined with low re
source requirements. Later on, we will show that o
document generator, iWebDB/DG, is the solution for
large spectrum of situations.

3. iWebDB - An Overview
In the following, we give an overview of iWebDB,

where we briefly describe each component. iWebDB/E
and iWebDB/MP, the components iWebDB/DG is directl
based on, are presented in more detail.

As depicted in Fig. 1, iWebDB currently consists of si
modules, four of them being DBMS extensions. In additio
a client application, SM, exists. The module MP is a fun
tion library that can be used for client-side as well as f
server-side applications.
• iWebDB/Docprovides all base types and tables for Web Co

tent Management (WCM), e.g., types for storing XML, HTML
Postscript, and other text documents as well as images of diff
ent formats. Moreover, corresponding functionality for mana
ing and querying the content is offered. iWebDB/Doc is th
base component of iWebDB.

• iWebDB/ED (external data)helps to simplify Web site admin-
istration by allowing the integration of externally stored file
into iWebDB. File system data accessible via Web protoco
such as “file:”, “ftp:”, and “http:”, can be made available in
relational tables via abstract tables [6], the file content in doc
ment formats provided by iWebDB/Doc. Available data can b
queried using SQL. Thus, external data can seamlessly be in
grated into the system.

Fig. 1: Architecture ofiWebDB

DB Server

SM

HTML

DG

Extension Bus

ED

eXtract

Web
Documents

Production
Data

....

MP

CGI Program or
Web Server

JD
B

C

Web Server

(W
eb

 S
er

ve
r)

 F
ile

 S
ys

te
m

re
ad

/w
rit

e

HTML Documents
and Templates

Application/Applet

 Extension

MP



b
-
e

e
a

e

r

o
n
-

o
n

c
n

o
-

k
n
r
t
e
iz
t

d
o
s
a
a
.
s
e
is
n

e

to-
on-
nt.
.

of
e
le

op-
pt

r
.
es

ly
ed,

ore,
can

les
ec-
ate,
od-
le

ai-
an

-
to

s,
o-
e
dy-
ide
as
d

ate
I

cro
for
ro-
es-
or

its
le
si-
n

., a
re-
• iWebDB/eXtractoffers additional functions for analyzing doc-
uments to enhance the search capabilities provided
iWebDB/Doc. Furthermore, functionality is provided for stor
ing extracted data in a special index structure being exploit
by a search engine.

• iWebDB/SM (site manager)is the iWebDB tool for site man-
agement provided to all so-called information providers. Bas
on a graphical user interface (GUI), all administration tasks c
easily be performed.

• iWebDB/MP (macro processor)is a function library and
designed to be the foundation for building gateway program
for Web-based DB access. It offers an extensible macro proc
sor. Macros can be embedded tags into Web documents. T
library can be used to realize a fully functional client- or serve
side Web database gateway (see Fig. 1). In addition, it serves
a basis for iWebDB/DG.
To complete the overview,iWebDB/DGis theDocument

Generator(DG) itself and is based on the iWebDB/MP li-
brary.

4. iWebDB Approach
Having outlined the common problems and solutions f

providing actual documents in WISs (Web Informatio
Systems), in the following, we introduce the iWebDB ap
proach for automatically refreshed Web pages. First, w
present the basic concepts and discuss their pros and c
Then, we develop extensions to optimize the solutions a
to allow adaptations to different requirements and, as a co
sequence, different environments. Finally, we discuss te
niques for the error handling in DBMS-internal generatio
processes.

4.1. Basic Concepts
The iWebDB approach is based on the extensibility

ORDBMS, in part standardized in SQL:1999 [5]. In con
trast to other solutions, all components are integrated in
the ORDBMS. Using SQL triggers, iWebDB can keep trac
of data modifications. If an update, insert, or delete eve
occurs, the document generator is being invoked. As a fi
step, the set of configuration files affected by the da
changes is computed. iWebDB does not use direct dep
dencies between tables and document templates, but util
special configuration files to set up the environment and
determine the templates to be expanded.

After the set of configuration files has been calculate
each of them is evaluated by the macro processor. In a c
figuration file, environment variables for template proces
ing can be set, conditions can be checked, and templ
processing can be switched on or off. After the configur
tion file has been processed, this switch is being checked
it is turned on, the template is being loaded and the proce
ing environment set. Then, the macro processor is invok
again, now for the template. Finally, the document writer
called to store the resulting document at its destinatio
When all components are integrated into the DB serv
y

d

d
n

s
s-
he
-
as

r

e
ns.
d
n-
h-

f

to

t
st
a
n-
es
o

,
n-
-
te
-
If
s-
d

.
r,

only two system components are needed to provide up-
date documents: the Web server in the deployment envir
ment and the DB server in the development environme
Thus, both environments are kept as simple as possible

4.2. Dependency Management
As briefly mentioned in the previous section, instead

directly calling the generator for a specific document, th
document generator is called by the trigger with the tab
name as an argument. Thus, only one trigger for a table/
eration pair is required and the number of triggers is ke
low. However, SQL:1999 offers two different trigge
modes: FOR EACH STATEMENT and FOR EACH ROW
Examining Web applications, one can see that both mod
can be useful. While a list of workshop participants on
needs to be updated after all changes have been perform
a homepage should be created for each new user. Theref
supporting both modes by the dependency management
reduce the number of document updates.

While for small Web sites dependencies between tab
and documents resp. configuration files can be easily sp
ified and a simple dependency management is adequ
huge Web sites need a more sophisticated dependency m
el [10]. To support both environments and to be adjustab
to new requirements, iWebDB can be configured to use t
lored dependency checkers. Therefore, for each Web site
adequate dependency manager can be employed

4.3. Macro Processors
The document generator utilizes iWebDB/MP to evalu

ate the configuration files and to expand the templates
HTML pages. While iWebDB/MP provides basic feature
e.g., SQL statements, flow control, etc., it lacks more s
phisticated functionality which may be required for som
Web sites. Furthermore, Web pages that up to now are
namically generated are based on other tools. To prov
employment of more powerful macro processors as well
to support migration from so far dynamically generate
pages to ORDBMS-based page creation without templ
modifications, iWebDB/DG offers a special generator AP
and advanced dependency information. That is, other ma
processors can be registered with iWebDB and used
document generation. For each document, the required p
cessor can be specified, such that different macro proc
sors can be utilized during a document generat
invocation.

4.4. Document Output
After a document has been generated, it is written to

destination. However, this can be the (locally) accessib
file system of the Web server, a remote file system acces
ble via FTP or HTTP. Furthermore, a content provider ca
be responsible for pages on multiple Web servers, e.g
service to provide an event calendar to both a local and a



it
d

le

l

p

ts

e
c

ia
-
l
h

h
u
”

t

o

n

a

ail
n,

en-

ro-
ced
p-
an
ld
e is
he
be
or
u-
loy-
ing
be-
an

to
e
ic
ac-

nt
s-
en-
sed
or-
f
ta-
t-

ary
a
h-
B/
e

ve
th

in
lt,
on
m-
e
to
ed
e
eb
gional portal. As one can see, different techniques for wr
ing the generator output to a document are require
Additionally, this set of techniques is required in a sing
generator run.

Analogously to the macro processor API, iWebDB/DG
offers its so-called document writer API to support differen
implementations resp. techniques. To achieve this flexibi
ty, a support module has to be registered with iWebDB/DG
Then the document destination can be selected, e.g., the
gional event calendar can be published using FTP and s
cial access rights.

4.5. Document Index
In addition to the generation of up-to-date documen

content-based search in the documents is an important
quirement. Using iWebDB/ED, a document index over th
Web server file system can be created. Whenever a do
ment maintained by iWebDB is published or a Web pag
generated by iWebDB/DG is written to the Web server v
iWebDB/ED, e.g., by inserting in or updating a table “web
docs”, the document index is being updated automatica
by the ORDBMS. Using this index, up-to-date and searc
able documents can be provided to the WIS users.

However, the “webdocs” table can be used to trigger t
document generator as well. For instance, if a new doc
ment is being published to the Web server via “webdocs
the new document can be included into the site map tha
automatically being updated by iWebDB/DG.

4.6. Error Handling
Using iWebDB/DG, all components are integrated int

the ORDBMS, pages are automatically refreshed by the D
server. However, if a Web site is updated automatically a
if several internal and external modules resp. services ha
to interact, various types of errors may occur:
• Syntax errors during macro processing: Macros embedded in a

template may be wrong and processing may be aborted.

• SQL resp. DBMS exceptions: The syntax of SQL statements
may be wrong, or problems during the query processing m
occur, e.g., the DB server may fail.

Web Server 2Web Server 1

iWebDB Server

FTPremote update

network
file system

dependencies,
configurations,

templates, and data

Fig. 2: iWebDB-controlled document generation

data modifications
-
.

t
i-
.
re-
e-

,
re-

u-
e

ly
-

e
-
,
is

B
d
ve

y

• Network/file system errors: Access to templates stored in a file
system or publishing of the generated document may f
caused by, e.g., a full file system, a broken network connectio
or changed and therefore wrong permissions.

• Several other situations can cause errors during document g
eration, e.g., a server crash.
Using a dynamical page creation approach, macro p

cessing could be interrupted, an error message be produ
and presented to the WIS user. However, in the iWebDB a
proach, the document generator is being invoked during
updating transactions. Interrupting the generator wou
cause the transaction to be aborted. If an error messag
being produced and written instead of the document, t
content of the outdated but accessible document would
overwritten; the document would have no useful content f
the WIS user. Therefore, iWebDB/DG interrupts the doc
ment generation and catches the exception. Then, emp
ing an UDF, an e-mail containing the error message is be
sent to the administrators and the generator invocation is
ing terminated normally. Thus, the updating transaction c
continue and is able to commit.

Employing UDFs for e-mail notification and trying to
give a detailed error report, the WIS administrator is able
track the problem down and, then, to manually trigger th
document generator. Meanwhile, in contrast to dynam
page generation approaches, the outdated document is
cessible by the WIS user.

5. Implementation and Performance Aspects
The macro processor iWebDB/MP and the docume

generator itself, iWebDB/DG, have been implemented u
ing Java. The macro processor as well as the document g
erator have been realized as user-defined functions (ba
on SQLJ Part 1 [11]) and have been integrated into an Inf
mix Dynamic Server 2000 [3]. To facilitate installation o
both modules, they have been packaged to so-called Da
Blades, i.e., all UDFs, UDTs, and auxiliary tables are crea
ed resp. dropped as a whole package. However, our prim
implementation goal was to build a running system in
short time frame. Therefore, optimizations and embellis
ing features have been left out. However, besides iWebD
MP the Informix Web DataBlade [4] can be used for pag
generation as well.

To get a feeling for page generation duration, we ha
tested different configuration files, templates, and bo
macro processors. Having SQL statements embedded
both the configuration file and the template, as a first resu
we detected that the page size only has a small impact
page generation times. Reading configuration files and te
plates over the NFS (network file system) and writing th
generated documents to the local file system took up
1 sec. per generated document on a small, non-optimiz
DB server using iWebDB/MP. Most time was spent for th
macro processor and its Java routines. Employing the W



r

v

r
io
e

r
t
n

e
s

t
s

h

e
h
l

c
o
r
l

re
r

d
o
th
g
n
s

c
e
d
b
e

sted
e-
re-

b-
-
ed

es
me
on
hot
-
m
d
n

ai-

/

-

l

is

se
d
,

r
es

es

e,
DataBlade, times decreased to 0.2 sec. However, based
this number, some thousand page updates per day can be
complished by a small installation which is sufficient fo
medium-sized WISs.

6. Related Work
iWebDB uses an event-based pre-generation techniq

to refresh Web pages after modifications to DB data ha
been performed. In the approach presented in [1], a cac
for dynamically generated documents is used to shorten
sponse times and to reduce runtime resource consumpt
Based on a central trigger table, comparable with an ev
queue, pages are generated before they are requested
written to the cache. The system has been designed for a
hot spot WIS (Olympic Winter Games) with very frequen
updates, and all components are in the run-time enviro
ment. Due to the complex system architecture, it is an ov
kill for small and medium-sized WISs. iWebDB only need
the ORDBMS itself to accomplish all document updates.

The TIScover approach described in [9] uses a pre-ge
eration technique as well. In contrast to iWebDB, all com
ponents are realized as OS processes. Thus, administra
have to maintain a pool of continuously running service
While iWebDB/DG updates a document immediately afte
a related modification has occurred, TIScover checks t
event queue on a periodical basis. Thus, delays betwe
data and page updates are possible.

Due to the on-the-fly generation of Web pages, most r
lated applications try to reduce page delivery times by cac
ing DB connections or by maintaining a DB session poo
Thus, the costs and delays of establishing connections
be avoided. A further technique is to cache page comp
nents or whole pages, Moreover, 3-tier system architectu
with an application server pool are introduced for load ba
ancing reasons. However, despite substantial efforts
shorten page delivery times, fetching a document which
sides in the file system is much faster, and, therefore p
generation approaches like iWebDB/DG, too.

In [10], a powerful algorithm for the management an
detection of update dependencies is being presented. B
page generation and the removal are being supported. In
paper, we have concentrated on ORDBMS-controlled pa
updates and the system architecture; a specific depende
model has not been discussed. However, by employing a
phisticated dependency model, iWebDB is also capable
removing outdated documents from a WIS.

7. Conclusions
In this paper, we have presented the iWebDB approa

for automatically refreshing Web pages. In contrast to oth
systems, all necessary components have been integrate
an ORDBMS. The ORDBMS automatically updates We
pages whenever data modifications occur. Using a pre-g
on
ac-

ue
e
he
e-
n.

nt
and
eal

-
r-

n-
-
ors
.
r
e
en

-
-

.
an
-

es
-
to
-

e-

th
is
e
cy
o-
of

h
r
in

n-

eration approach, response times for documents reque
by a WIS user can be kept low while at the same time r
source consumption on the Web server machine can be
duced. While iWebDB exploits the extensibility
infrastructure of ORDBMS, the document generator iWe
DB/DG itself runs on all major ORDBMS and most stan
dard platforms. Only support for triggers and Java-bas
user-defined functions is required.

iWebDB was designed to refresh DB-based Web pag
when related DB data has been modified and, at the sa
time, to avoid the drawbacks of dynamic page generati
approaches. Therefore, it should not be compared with
spot solutions like [1]. However, a small iWebDB/DG in
stallation is able to not only manage a small or mediu
WIS, but also to update documents for a pool of relate
WIS. Due to its open system architecture, iWebDB/DG ca
be adapted to different requirements, e.g., by employing t
lored communication protocols, or macro processors.

More information about iWebDB as well as an iWebDB
DG demonstration are available online athttp://www.or-
dbms.de/iWebDB/. You have the chance to join the iWeb
DB/DG-generated guestbook...

References
[1] Challenger, J., Iyengar, A., Dantzig, P.:A Scalable System for

Consistently Caching Dynamic Web, Proc. of the IEEE
Infocom’99 Conference, New York, March 1999.

[2] Florescu, D., Levy, A., Mendelzon, A.:Database Techniques
for the World Wide Web: A Survey, ACM SIGMOD Record,
Vol. 27, No. 3, September 1998.

[3] Getting Started with Informix Dynamic Server with Universa
Data Option, Version 9.20, Informix, Inc., 1999.

[4] Informix Web DataBlade Module, User’s Guide, Informix
Software Inc., http://www.informix.com/answers/, 1999.

[5] ISO/IEC FDIS 9075-1:Information Technology - Database
Language SQL - Part 1: Framework, ISO, 1999.

[6] ISO/IEC JTC1/SC32:Information Technology - Database
Language SQL - Part 9: Management of External Data, ISO,
1999.

[7] Loeser, H.:iWebDB - An integrated Web Database on bas
of object-relational database technology,(in German), in:
Proc. of BTW’99, Freiburg, Germany, March 1999.

[8] Loeser, H., Ritter, N.:iWebDB - Integrated Web Content
Management based on Object-Relational Databa
Technology, in: Proc. Int. Database Engineering an
Applications Symposium (IDEAS’99), Montreal, Canada
August 1999

[9] Pröll, B., Retschitzegger, W., Sighart, H., Starck, H.:Ready
for Prime Time - Pre-Generation of Web Pages in TIScove,
Proc. of the Workshop on the Web and Databas
(WebDB’99), 1999.

[10] Sindoni, G.:Incremental Maintenance of Hypertext Views,
Proc. of the Workshop on the Web and Databas
(WebDB’98), 1998.

[11] SQLJ: SQL Routines using the Java Programming Languag
http://www.sqlj.org, June 18, 1999.


	1. Introduction
	2. Common Problems
	2.1. Dynamic Page Creation
	2.2. Periodic Updates

	3. iWebDB - An Overview
	4. iWebDB Approach
	4.1. Basic Concepts
	4.2. Dependency Management
	4.3. Macro Processors
	4.4. Document Output
	4.5. Document Index
	4.6. Error Handling

	5. Implementation and Performance Aspects
	6. Related Work
	7. Conclusions
	References

