
envi-
upport
the

e soft-
cus-
mized
ation

ontrol

rti-
e stor-
nt. A
and

t system
ell as
n,

are

tomize
. How-
stom-
ced to
to use
in the

rm

ject,
on-

nment.
om-
Specifying Customized Versioning Facilities of Software Engineering
Repositories by Using UML-based Design Templates

Jernej Kovse
Department of Computer Science

University of Kaiserslautern
P.O. Box 3049, D-67653 Kaiserslautern

e-mail: kovse@informatik.uni-kl.de

Abstract

Software engineering repositories are often deployed in different environments, which may pose
ronment-specific demands related to repository services. Since most repository products do not s
any significant modification of their services, the possibilities of customizing the repository to
requirements of an environment are limited. To overcome this problem, our approach assists th
ware engineers in delivering a UML-based specification of the repository product with its services
tomized to the requirements of the environment. On the basis of this specification, a custo
repository to be used in the environment is generated. This paper primarily deals with the specific
phase of the process for the domain of customizing the repository’s version and configuration c
services.

Keywords: Software Engineering Repositories, Versioning, UML Model Enhancement

1 Introduction

Bernstein and Dayal [1] define arepositoryas a shared database of information about engineering a
facts. A computer-based cooperative engineering environment may use a repository to support th
age and sharing of artifact information manipulated using the tools integrated by the environme
repository manager[1] is a database application that provides services for modeling, retrieving,
managing objects in a repository. It incorporates standard amenities of a database managemen
(DBMS) (a data model, queries, views, integrity control, access control and transactions) as w
additionalvalue-added services: checkout/checkin, version control, configuration control, notificatio
context management, and workflow control [1].

Software engineering(SE) repositoriesare used to store and share information related to softw
artifacts. SE environments where such repositories are deployed are to a large extentdissimilardue to
diverse methodologies and tools used in the environments. Ideally, it should be possible to cus
the services of a repository to these requirements to improve its performance in the environment
ever, the form of the services is usually predefined by the repository vendor, which makes their cu
ization to the environment impossible in any significant way. Instead, software engineers are for
adapt their application of methodologies and tools present in the environment in order to be able
the form of repository services as delivered by the vendor. This drawback may lead to a decrease
productivity in the environment and thereby to a degradation of the SE process.

Our SERUM (Software Engineering Repositories using UML) project [2] is part of a long-te

research effort1 dealing with the development of large systems using generic methods. In this pro
we investigate the process ofgeneratingSE repositories with customized services. The process c
sists of two consecutive phases:
1. Specification phase: We assist the software engineers in delivering aUML-based specification

describing the semantics of the customized services the engineers want to use in their enviro
2. Generation phase: On the basis of the delivered specification, a repository product with cust

ized services isgenerated.

1. Sonderforschungsbereich (SFB) 501, funded by the Deutsche Forschungsgemeinschaft (DFG).

izing
of two
n con-
re engi-
of the
cifica-

sm.
a con-
future

ime.
ch of
control

ay be
divid-
r, this

le the
ppose

ds

ct with
to ver-
figu-
s

d how
This paper focuses primarily on the specification phase of the process for the domain of custom
version and configuration control services of SE repositories. Our research question consists
interrelated parts. First, we want to identify the customizable aspects of version and configuratio
trol services (Section 2). Second, we are interested in a mechanism that (a) assists the softwa
neers in customizing the services and (b) is capable of enhancing the UML-based specification
repository product so that the descriptions of the customized services become a part of this spe
tion. In Section 3,SERUM design templatesare introduced as an implementation of such a mechani
Section 4 briefly discusses the generation phase of the SERUM approach. In Section 5, we make
clusion where we summarize the advantages of our solution and present some ideas for the
work.

2 Customizing Versioning Facilities of SE Repositories

Katz [3] defines aversionas a semantically meaningful snapshot of a design object at a point in t
Configurationis defined as a binding between a version of a composite object and a version of ea
its components. This section describes the customizable aspects of version and configuration
services of SE repositories.

2.1 Simultaneous Versioning of Related Objects

In the course of describing a complex software product, multiple versions of a repository object m
created in order to reflect the modifications committed to the object. Objects may be versioned in
ually meaning that each created version refers to the modifications of a single object. Howeve
approach does not always prove convenient, since software engineers may recognize agroupof objects
as semantically interrelated for the context of versioning. In such cases, we would like to enab
creation of a version that refers to the modifications of multiple related objects. For example, su
the engineers want to describe a software product by storing objects of typesapplication, class,
attribute, methodandparameterin the repository. A class may contain multiple attributes and metho
(which may receive multiple parameters). An application consists of one or more classes.

Suppose the engineers would like to version a class by simultaneously versioning a class obje
its related parameter, method and attribute objects. Later, versions of classes may be attached
sions of applications to form application configurations. Fig. 1 illustrates a sample application con
ration. For example, the versionClass c1, version 1is formed by simultaneously versioning the clas
objectc1, the method objectm1and the parameter objectsp1 andp2 associated withm1. Offering the
software engineers the possibility to define which object types are to be versioned in groups an
the created versions may be combined to form configurations is
one of the key aspects of customizing versioning facilities of SE
repositories.

2.2 Defining Constraints on Versioning Operations

There is a basic common set of operations defined by the version-
ing facilities. Thecreatesuccessor operation creates a successor to
a given version in the version history. Themergeoperation unites
two or more versions. The operationsget successors, get alterna-
tivesandget ancestorenable the traversal of the version history.
The freezeoperation prevents further modifications to a version.
Theattachanddetachoperations are used to form configurations
by attaching and detaching component versions.

Customization of repository’s versioning facilities may be
achieved through specifyingconstraintsrelated to the execution of
these operations. Software engineers define the constraints in form
of pre- andpostconditionsfor an operation andinvariants. As an

Fig. 1: Sample application
configuration.

Class c1, version 1
- Class c1
- Method m1

- Parameter p1
- Parameter p2

Class c2, version 1
- Class c2
- Attribute att1
- Attribute att2
- Method m2

- Parameter p3

Application a1, version 1
- Application a1

ts are
ed as a

xam-
t most

efine
undergo
kind of

spec-
ct

omized
phase,
quire-
ss by a

e the
rt they

s con-
gured
ng this
of
ersion
example for the usage of preconditions, suppose only frozen versions of component objec
allowed to be attached to the versions of composite objects. This requirement can be express
precondition to theattach operation.

Invariants defined for a version have to be satisfied at any time in the version’s lifecycle. For e
ple, an invariant may be used to express a constraint that versions of a given object may have a
three successors.

2.3 Defining Possible Version States

Repository’s versioning facilities usually recognize two possible version states:unfrozenand frozen.
An important aspect of customizing versioning facilities is allowing the software engineers to d
additional version states. For example, suppose the engineers require each created version to
consecutive testing phases of unit-testing and system testing after being frozen. To support this
versioning functionality, the engineers define the possible substatesuntested, unit-testedandsystem-
tested of the frozen state and the allowed transitions between these states.

3 Specifying a Repository with Customized Services

This section discusses the specification phase of the SERUM approach. Initially, the UML-based
ification consists of a specialproduct data modelexpressed as a UML class diagram. In the produ
data model, the engineers define types of objects that will be stored and managed by the cust
repository. Fig. 2 illustrates a sample product data model. In the remainder of the specification
the specification is gradually enhanced, so that in its final form it incorporates the engineers’ re
ments related to the repository product. SERUM supports this specification enhancement proce
set ofdesign templates. A design template is ageneric modeling componentthat refers to a customiz-
able part of the repository product, for example, to its versioning facilities. The engineers choos
appropriate design template from the set of available templates according to the repository pa
want to customize. Once a design template is chosen, it is applied in two steps,design template config-
uration andspecification enhancement.

3.1 Design Template Configuration

A chosen design template initially comes in a generic state. Prior to its application, the template i
figured by the engineers by means of setting the template’s configuration parameters. A confi
template involves the customized semantics of the repository services and is capable of integrati
semantics in the UML-based specification. TheVersiondesign template supports the customization
versioning facilities. By setting the values of its parameters, software engineers customize the v

Fig. 2: A sample product data model.

Parameter

Application

Attribute Method

0..n

1

0..n

1
inclmetpar

Class

1..n

1..n

1..n

1..n
inclappclass

0..n

1

0..n

1
inclclassatt

0..n

1

0..n

1
inclclassmet

Version Design Template, Name = V_Class
...
Domain = {Class, Attribute, Method, Parameter};
MaxSuccessors = 3;
FrozenSubstates = {Untested, Unit-tested, System-tested};
...

Fig. 3a: Design template configuration for class versioning.

Version Design Template, Name = V_Application;
...
Domain = {Application};
VersionAttachments = {[Name = V_Class,

Precondition = frozen]};
...

Fig. 3b: Design template configuration for
application versioning.

trated

imulta-
sions
ng

strated

arame-

sitory
nfigured
use the
l spec-
ents,
and configuration control services. Suppose that in the repository storing the objects of types illus
in the product data model in Fig. 2, we want to customize the versioning facilities as follows:
• Class objects with related attribute, method and parameter objects are to be versioned s

neously (Requirement 1). Each class version may not have more than three successor ver
(Requirement 2). After being frozen, a version of a class may find itself in one of the followi
testing phases:untested, unit-testedandsystem-tested(Requirement 3). For this purpose, the engi-
neers configure an instance of the Version design template with the parameter values as illu
in Fig. 3a.

• Application versions version application objects only (Requirement 4). Only frozen class versions
may be attached to versions of application objects to form configurations (Requirement 5). For this
purpose, the engineers configure another instance of the Version design template with the p
ter values as illustrated in Fig. 3b.

3.2 Specification Enhancement

In this step, a configured template is used to enhance the UML-based specification of the repo
product. Thereby, the customized semantics expressed through the parameter values of the co
templates becomes a part of the specification. As an example of specification enhancement, we
two instances of design templates configured as illustrated in Fig. 3a and 3b to enhance the initia
ification, consisting of the product data model illustrated in Fig. 2. As a result of both enhancem
the resulting specification contains:

Fig. 4: Enhanced product data model.

InclAppClass

V_InclAppClass

1..n

0..1

1..n

0..1
inclappclass

Application

InclClassAtt

Class

1..n1..n 1..n1..n

inclappclass

V_Application

1

0..1

1

0..1

application

0..n

1

successor

InclClassMet

Method

0..n1 0..n1
inclclassmet

InclMetPar

Parameter

0..n1 0..n1
inclmetpar

Attribute

0..n 10..n 1
inclclassatt

V_Class

0..n

0..1

0..n

0..1

inclclassatt

1

0..1

1

0..1

class

0..n0..n 0..n0..n v_inclappclass

0..n

0..1

0..n

0..1

inclclassmet

0..n

0..1

0..n

0..1

methods
0..n

0..1

0..n

0..1

inclmetpam

0..n

0..1

0..n

0..1

parameters

0..n

0..1

0..n

0..1

attributes

0..n

1

successor

1

0..n 0..n

1

Fig. 5: A statechart diagram for class versioning.

Unfrozen

Frozen

Untested

Unit-tested

System-tested

freeze
unitTestCompleted

systemTestCompleted

Class versioning
context V_Class

inv: self.successor->size < 4
...

Fig. 6: Restricting the number of
successors to a class version.

context V_Application::attach(c : V_Class)
pre: c.oclInState(Frozen)
...

Fig. 7: Restricting the attach operation of
application versions.

ifferent

and

reposi-
speci-

ository
ations

ic Cre-
ts can
ioning
rations,
of the

itions
ality to

ents in

ion of a
ository
eers to
ects in
-

er per-
cess.

menta-

tes;
ries;
lemen-
tware

ery
ann,

pos-
ys-

om-

000.
• an enhanced product data model (Fig. 4) enriched with the classesV_ClassandV_Applicationthat
support the required creation of versions and configurations (meeting theRequirements 1 and 4);

• a statechart diagram (Fig. 5) defining possible states of class versions that correspond to d
testing phases (meeting theRequirement 3);

• two Object Constraint Language (OCL [4]) constraints (Fig. 6 and 7) related to the version
configuration control operations (meeting theRequirements 2 and 5).

4 Generating the Repository

This section briefly discusses the generation phase of the SERUM approach. In this phase, the
tory product is generated on the basis of the UML-based specification delivered in the preceding
fication phase. As a result of the generation phase, the following components are produced:
• A repository database schema contains definitions of database tables used to store rep

objects. It is generated on the basis of the definition of repository object types and associ
between them as present in the enhanced specification.

• A repository manager exposes customized repository services to repository clients. The bas
ate-Read-Update-Delete (CRUD) operations enabling the manipulation of repository objec
be automatically generated. In the case of customized versioning facilities, the basic vers
operations described in Section 2.2 are generated and the constraints related to these ope
such as those illustrated in Fig. 6 and 7 are taken into account in this process. On the basis
definitions of possible version states in the specification, the operations allowing the trans
between the states are generated. In case the software engineers require additional function
be included in the generated repository, they have to supply the corresponding code segm
the course of the generation phase.

5 Conclusion

SERUM design templates used in our approach and discussed in this paper are an implementat
generic modeling mechanism enabling the semi-automatic enhancement of a UML-based rep
specification. The discussion has illustrated that design templates may be used by the engin
specify the customized form of repository services and integrate the resulting customization asp
the repository specification byspecification enhancement. In this way, SERUM design templates suc
cessfully support customization of SE repositories on the level of UML-based specification.

Repositories customized according to the requirements of a specific SE environment offer bett
formance in an environment and thereby play a significant role in the improvement of the SE pro
For this reason, we intend to continue with our research on the proposed approach to pre-imple
tion customization of SE repositories. In our future work, we intend to:
• develop and evaluate a set of interactive tools enabling efficient application of design templa
• further explore the possibilities of using the UML for the specification of customized reposito
• compare the performance and usage of customized repositories generated using diverse imp

tation technologies, such as different DBMS used to store repository objects and different sof
component models used to expose repository services.

References

[1] Bernstein, P.A., Dayal, U.: An overview of Repository Technology, in: Proc. of the 20th Int. Conf. on V
Large Data Bases (VLDB’94), Bocca, J.B. et al. (Eds.), Santiago de Chile, Sept. 1994, Morgan Kaufm
pp. 705-713.

[2] Härder, T., Mahnke, W., Ritter, N., Steiert, H.-P.: Generating Versioning Facilities for a Design Data Re
itory Supporting Cooperative Applications, in: Int. Journal of Intelligent & Cooperative Information S
tems 9:1-2, 2000, pp. 117-146.

[3] Katz, R.H.: Towards a Unified Framework for Version Modeling in Engineering Databases, in: ACM C
puting Surveys 22:4, 1990, pp. 375-408.

[4] OMG, Unified Modeling Language Specification, Version 1.3, OMG Document ad/00-03-01, March 2

