Specifying Customized Versioning Facilities of Software Engineering
Repositories by Using UML-based Design Templates

Jernej Kovse
Department of Computer Science
University of Kaiserslautern
P.O. Box 3049, D-67653 Kaiserslautern
e-mail: kovse@informatik.uni-kl.de

Abstract

Software engineering repositories are often deployed in different environments, which may pose envi-
ronment-specific demands related to repository services. Since most repository products do not support
any significant modification of their services, the possibilities of customizing the repository to the
requirements of an environment are limited. To overcome this problem, our approach assists the soft-
ware engineers in delivering a UML-based specification of the repository product with its services cus-
tomized to the requirements of the environment. On the basis of this specification, a customized
repository to be used in the environment is generated. This paper primarily deals with the specification
phase of the process for the domain of customizing the repository’s version and configuration control
services.

Keywords: Software Engineering Repositories, Versioning, UML Model Enhancement
1 Introduction

Bernstein and Dayal [1] definerapositoryas a shared database of information about engineering arti-
facts. A computer-based cooperative engineering environment may use a repository to support the stor-
age and sharing of artifact information manipulated using the tools integrated by the environment. A
repository managefl] is a database application that provides services for modeling, retrieving, and
managing objects in a repository. It incorporates standard amenities of a database management system
(DBMS) (a data model, queries, views, integrity control, access control and transactions) as well as
additionalvalue-added servicesheckout/checkin, version control, configuration control, notification,
context management, and workflow control [1].

Software engineerin¢SE) repositoriesare used to store and share information related to software
artifacts. SE environments where such repositories are deployed are to a largelissiemtardue to
diverse methodologies and tools used in the environments. Ideally, it should be possible to customize
the services of a repository to these requirements to improve its performance in the environment. How-
ever, the form of the services is usually predefined by the repository vendor, which makes their custom-
ization to the environment impossible in any significant way. Instead, software engineers are forced to
adapt their application of methodologies and tools present in the environment in order to be able to use
the form of repository services as delivered by the vendor. This drawback may lead to a decrease in the
productivity in the environment and thereby to a degradation of the SE process.

Our SERUM (Software Engineering Repositories using UML) project [2] is part of a long-term

research effoftdealing with the development of large systems using generic methods. In this project,

we investigate the process géneratingSE repositories with customized services. The process con-

sists of two consecutive phases:

1. Specification phasélNe assist the software engineers in delivering/ML-based specification
describing the semantics of the customized services the engineers want to use in their environment.

2. Generation phaseOn the basis of the delivered specification, a repository product with custom-
ized services igenerated

1. Sonderforschungsbereich (SFB) 501, funded by the Deutsche Forschungsgemeinschaft (DFG).

This paper focuses primarily on the specification phase of the process for the domain of customizing
version and configuration control services of SE repositories. Our research question consists of two
interrelated parts. First, we want to identify the customizable aspects of version and configuration con-
trol services (Section 2). Second, we are interested in a mechanism that (a) assists the software engi-
neers in customizing the services and (b) is capable of enhancing the UML-based specification of the
repository product so that the descriptions of the customized services become a part of this specifica-
tion. In Section 3SERUM design templatese introduced as an implementation of such a mechanism.
Section 4 briefly discusses the generation phase of the SERUM approach. In Section 5, we make a con-
clusion where we summarize the advantages of our solution and present some ideas for the future
work.

2 Customizing Versioning Facilities of SE Repositories

Katz [3] defines aversionas a semantically meaningful snapshot of a design object at a point in time.
Configurationis defined as a binding between a version of a composite object and a version of each of
its components. This section describes the customizable aspects of version and configuration control
services of SE repositories.

2.1 Simultaneous Versioning of Related Objects

In the course of describing a complex software product, multiple versions of a repository object may be
created in order to reflect the modifications committed to the object. Objects may be versioned individ-
ually meaning that each created version refers to the modifications of a single object. However, this
approach does not always prove convenient, since software engineers may recggougeofobjects

as semantically interrelated for the context of versioning. In such cases, we would like to enable the
creation of a version that refers to the modifications of multiple related objects. For example, suppose
the engineers want to describe a software product by storing objects of appdisation class
attribute, methodandparametelin the repository. A class may contain multiple attributes and methods
(which may receive multiple parameters). An application consists of one or more classes.

Suppose the engineers would like to version a class by simultaneously versioning a class object with
its related parameter, method and attribute objects. Later, versions of classes may be attached to ver-
sions of applications to form application configurations. Fig. 1 illustrates a sample application configu-
ration. For example, the versidlass c1, version Is formed by simultaneously versioning the class
objectcl, the method objeanland the parameter objeqi4 andp2 associated wittm1 Offering the
software engineers the possibility to define which object types are to be versioned in groups and how
the created versions may be combined to form configurations is

one of the key aspects of customizing versioning facilities of SE - .
o Application al, version 1
repositories. - Application al
2.2 Defining Constraints on Versioning Operations |_. Class c1. version 1
- Class c1
There is a basic common set of operations defined by the version- - Method m1
ing facilities. Thecreatesuccessor operation creates a successor to - Parameter p1
a given version in the version history. Theergeoperation unites - Parameter p2
two or more versions. The operatiogst successoyget alterna-
tivesand get ancestoenable the traversal of the version history. Class c2, version 1
The freezeoperation prevents further modifications to a version. - Class c2
The attachanddetachoperations are used to form configurations - Attribute attl
by attaching and detaching component versions. - Attribute att2
Customization of repository’s versioning facilites may be - Method m2
. . . . - Parameter p3
achieved through specifyingpnstraintselated to the execution of

these operations. Software engineers define the constraints in forn&ig_ 1: Sample application

of pre- andpostconditiondor an operation anévariants As an configuration.

example for the usage of preconditions, suppose only frozen versions of component objects are
allowed to be attached to the versions of composite objects. This requirement can be expressed as a
precondition to thattachoperation.

Invariants defined for a version have to be satisfied at any time in the version’s lifecycle. For exam-
ple, an invariant may be used to express a constraint that versions of a given object may have at most
three successors.

2.3 Defining Possible Version States

Repository’s versioning facilities usually recognize two possible version staté®zenand frozen

An important aspect of customizing versioning facilities is allowing the software engineers to define
additional version states. For example, suppose the engineers require each created version to undergo
consecutive testing phases of unit-testing and system testing after being frozen. To support this kind of
versioning functionality, the engineers define the possible substatestedunit-testedand system-

testedof the frozen state and the allowed transitions between these states.

3 Specifying a Repository with Customized Services

This section discusses the specification phase of the SERUM approach. Initially, the UML-based spec-
ification consists of a specigroduct data modeéxpressed as a UML class diagram. In the product
data model, the engineers define types of objects that will be stored and managed by the customized
repository. Fig. 2 illustrates a sample product data model. In the remainder of the specification phase,
the specification is gradually enhanced, so that in its final form it incorporates the engineers’ require-
ments related to the repository product. SERUM supports this specification enhancement process by a
set ofdesign template®A design template is generic modeling componetitat refers to a customiz-

able part of the repository product, for example, to its versioning facilities. The engineers choose the
appropriate design template from the set of available templates according to the repository part they
want to customize. Once a design template is chosen, it is applied in two césjn template config-
uration andspecification enhancement

3.1 Design Template Configuration

A chosen design template initially comes in a generic state. Prior to its application, the template is con-
figured by the engineers by means of setting the template’s configuration parameters. A configured
template involves the customized semantics of the repository services and is capable of integrating this
semantics in the UML-based specification. Nezsiondesign template supports the customization of
versioning facilities. By setting the values of its parameters, software engineers customize the version

— Version Design Template, Name = V_Class
Application

Domain = {Class, Attribute, Method, Parameter};
MaxSuccessors = 3;

1.n¢)
1“n<(mclap pelass FrozenSubstates = {Untested, Unit-tested, System-tested};

Class
SEN Fig. 3a: Design template configuration for class versioning.
inclclassaV \Nnclclassmet
0.n 0.n Version Design Template, Name = V_Application;
Attribute Method
Domain = {Application};
14 VersionAttachments = {{ Name = V_Class,
n ‘ inclmetpar Precondition = frozen]};
Parameter

Fig. 3b: Design template configuration for
Fig. 2: A sample product data model. application versioning.

and configuration control services. Suppose that in the repository storing the objects of types illustrated
in the product data model in Fig. 2, we want to customize the versioning facilities as follows:

Class objects with related attribute, method and parameter objects are to be versioned simulta-
neously Requirement L Each class version may not have more than three successor versions
(Requirement R After being frozen, a version of a class may find itself in one of the following
testing phasesintestedunit-testedandsystem-teste(Requirement B For this purpose, the engi-

neers configure an instance of the Version design template with the parameter values as illustrated
in Fig. 3a.

Application versions version application objects orfRefuirement ¥ Only frozen class versions

may be attached to versions of application objects to form configuratRegujrement b For this
purpose, the engineers configure another instance of the Version design template with the parame-
ter values as illustrated in Fig. 3b.

3.2 Specification Enhancement

In this step, a configured template is used to enhance the UML-based specification of the repository
product. Thereby, the customized semantics expressed through the parameter values of the configured
templates becomes a part of the specification. As an example of specification enhancement, we use the
two instances of design templates configured as illustrated in Fig. 3a and 3b to enhance the initial spec-
ification, consisting of the product data model illustrated in Fig. 2. As a result of both enhancements,
the resulting specification contains:

successor successor

0..n 0..n
V_Application |0:-N v_inclappclass 0.n| v _Class 1
1 0.1 0.1
0.1 < 0.1
V_InclAppClass] 0.1 l
attributes parameters
0.1 inclcl, inclclassmet \ inclmetpam
application inclaApclass class methods
1..n ‘0..n 0..n
InclAppClass ‘ InclClassAtt InclClassMet InclMetPar ‘
1 |0.m “ 1 0.m “ \0..n
Application \ Attribute \ Class Method | .| Parameter
\ on 1 1 0.n 1 O.r
inclclassatt inclclassmet inclmetpar
1l.n] \ Ll.n
L
inclappclass
Fig. 4: Enhanced product data model.
Class versionin
/ 9 \ context V_Class
/ Frozen \ inv: self.successor->size < 4
UnitTestCompleted Fig. 6: Restnc?ng thle numbgr of
SuUCCessOrs 1o a class version.

-

systemTestCompleted

System-tested

Fig. 5: A statechart diagram for class versioning.

context V_Application::attach(c : V_Class)
pre: c.oclinState(Frozen)

Fig. 7: Restricting the attach operation of
application versions.

* anenhanced product data model (Fig. 4) enriched with the cl¥ss@sssandV_Applicationthat
support the required creation of versions and configurations (meetiRgdogements 1 and;4

» a statechart diagram (Fig. 5) defining possible states of class versions that correspond to different
testing phases (meeting tRequirement 3

» two Object Constraint Language (OCL [4]) constraints (Fig. 6 and 7) related to the version and
configuration control operations (meeting Requirements 2 and.5

N

Generating the Repository

This section briefly discusses the generation phase of the SERUM approach. In this phase, the reposi-
tory product is generated on the basis of the UML-based specification delivered in the preceding speci-
fication phase. As a result of the generation phase, the following components are produced:

* A repository database schema contains definitions of database tables used to store repository
objects. It is generated on the basis of the definition of repository object types and associations
between them as present in the enhanced specification.

« Arepository manager exposes customized repository services to repository clients. The basic Cre-
ate-Read-Update-Delete (CRUD) operations enabling the manipulation of repository objects can
be automatically generated. In the case of customized versioning facilities, the basic versioning
operations described in Section 2.2 are generated and the constraints related to these operations,
such as those illustrated in Fig. 6 and 7 are taken into account in this process. On the basis of the
definitions of possible version states in the specification, the operations allowing the transitions
between the states are generated. In case the software engineers require additional functionality to
be included in the generated repository, they have to supply the corresponding code segments in
the course of the generation phase.

5 Conclusion

SERUM design templates used in our approach and discussed in this paper are an implementation of a

generic modeling mechanism enabling the semi-automatic enhancement of a UML-based repository

specification. The discussion has illustrated that design templates may be used by the engineers to

specify the customized form of repository services and integrate the resulting customization aspects in

the repository specification lgpecification enhancemenmt this way, SERUM design templates suc-

cessfully support customization of SE repositories on the level of UML-based specification.

Repositories customized according to the requirements of a specific SE environment offer better per-

formance in an environment and thereby play a significant role in the improvement of the SE process.

For this reason, we intend to continue with our research on the proposed approach to pre-implementa-

tion customization of SE repositories. In our future work, we intend to:

» develop and evaluate a set of interactive tools enabling efficient application of design templates;

» further explore the possibilities of using the UML for the specification of customized repositories;

» compare the performance and usage of customized repositories generated using diverse implemen-
tation technologies, such as different DBMS used to store repository objects and different software
component models used to expose repository services.

References

[1] Bernstein, P.A., Dayal, U.: An overview of Repository Technology, in: Proc. of the 20th Int. Conf. on Very
Large Data Bases (VLDB’94), Bocca, J.B. et al. (Eds.), Santiago de Chile, Sept. 1994, Morgan Kaufmann,
pp. 705-713.

[2] Harder, T., Mahnke, W., Ritter, N., Steiert, H.-P.: Generating Versioning Facilities for a Design Data Repos-
itory Supporting Cooperative Applications, in: Int. Journal of Intelligent & Cooperative Information Sys-
tems 9:1-2, 2000, pp. 117-146.

[3] Katz, R.H.: Towards a Unified Framework for Version Modeling in Engineering Databases, in: ACM Com-
puting Surveys 22:4, 1990, pp. 375-408.

[4] OMG, Unified Modeling Language Specification, Version 1.3, OMG Document ad/00-03-01, March 2000.

