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Abstract. A Web client request traverses four types of Web caches, before 
the Web server as the origin of the requested document is reached. This cli-
ent-to-server path is continued to the backend DB server if timely and trans-
action-consistent data is needed to generate the document. Web caching typ-
ically supports access to single Web objects kept ready somewhere in caches 
up to the server, whereas database caching, applied in the remaining path to 
the DB data, allows declarative query processing in the cache. Optimization 
issues in Web caches concern management of documents decomposed into 
templates and fragments to support dynamic Web documents with reduced 
network bandwidth usage and server interaction. When fragment-enabled 
caching of fine-grained objects can be performed in proxy caches close to the 
client, user-perceived delays may become minimal. On the other hand, data-
base caching uses a full-fledged DBMS as cache manager to adaptively 
maintain sets of records from a remote database and to evaluate queries on 
them. Using so-called cache groups, we introduce the new concept of con-
straint-based database caching. These cache groups are constructed from pa-
rameterized cache constraints, and their use is based on the key concepts of 
value completeness and predicate completeness. We show how cache con-
straints affect the correctness of query evaluations in the cache and which op-
timizations they allow. Cache groups supporting practical applications must 
exhibit controllable load behavior for which we identify necessary condi-
tions. Finally, we comment on future research problems.

1 Motivation

Internet-based information systems and e*-applications are growing with increasing 
pace and their users are placing tremendous workloads with critical response-time re-
strictions on the Internet and the Web servers. For these reasons, scalability, perfor-
mance—in particular, minimization of user-perceived delays—, and availability are 
prime objectives for their system development. Most of all, various forms of caching in 
the Web have proven to be a valuable technique1 towards these design goals. Three as-
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pects make caching attractive in the Web environment, because it effectively reduces 
network bandwidth usage, user-perceived latency, and workload on the origin server.

To improve response time and scalability of the applications as well as to minimize 
communication delays in wide-area networks, a broad spectrum of techniques has 
emerged in recent years to keep static Web objects (like HTML pages, XML fragments, 
or images) in caches in the client-to-server path. These techniques, often summarized 
as Web caching, typically support access by object identifiers and aim at locating and 
possibly assembling user-requested Web objects in caches near the Web client to un-
burden the Web traffic and to achieve minimal response times. In particular for static 
Web objects, it can provide various kinds of performance improvements for e*-appli-
cations [26]—a reason which amplified the setup of Web caches and the optimization 
of their usage by tailored replacement strategies [23] in recent years. Nowadays, how-
ever, more and more dynamically generated content is needed and offered making Web 
applications even more attractive and enabling new forms of business: contents’ per-
sonalization, goal-oriented advertisement, interactive e-commerce, one-to-one market-
ing, and so on. Obviously, the way caching is performed has to respond to these new 
requirements. To effectively serve this trend, caches have to be aware of the internal 
structure of documents (Web pages) to enable selective reuse of static fragments (ob-
jects) and exchange of dynamic parts in order to assemble them to the actual document 
to be delivered in the most cost-effective way. Fragment-enabled caching techniques 
have to be developed which can distinguish and manage templates and fragments of 
Web documents separately.

2 The Client-to-Server Path

Conceptually, a Web request is processed as follows: A Web client (client throughout 
the paper) sends a query containing a URL via HTTP and the Internet to a Web server 
(origin server or server, for short) identified by the URL. The server processes the re-
quest, generates the answer (typically an HTML or XML document), and sends it back 
to the client. To solve the performance and availability problems sketched above, we 
add, again conceptually, a Web proxy server somewhere in the client-to-server path. 
Such a proxy can be used in a number of ways, including

– caching documents and parts thereof
– converting data to HTML/XML format so it is readable by a client browser
– providing Internet access for companies using private networks
– selectively controlling access to the Internet based on the submitted URL 
– permitting and restricting client access to the Internet based on the client IP address

In this contribution, we concentrate on the caching functionality of proxies and discuss 
the client-to-server path how it evolved during the recent past. Caches, in general, store 

1. “The three most important parts of any Internet application are caching, caching, and, 
of course, caching …”—Larry Ellison, Oracle Chairman & CEO.
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frequently accessed content and locally answer successive requests for the same content 
thereby eliminating repetitive transmission of identical content over network links. 
Thus, the complete caching solution comprises a networking component and a cache 
component which work together to localize traffic patterns: A user requests a Web page 
from a browser. The network analyzes the request and, based on certain parameters, 
transparently redirects it to a local cache in the network. If the cache does not contain 
the Web page, it will make its own request to the origin server, which then delivers the 
content to the cache, which, in turn, delivers the content to the client while saving the 
content in its local storage, that is, caching the content. Subsequent requests for the 
same Web page are analyzed by the network and, based on certain parameters, transpar-
ently redirected to the local cache.

This process may substantially reduce network traffic and latency time for the cli-
ent. Based on their use and behavior, we can distinguish four types of caches:

• Browser cache: For all user requests, this cache dedicated to the browser is first 
searched. If the specific content is located in the cache, it is checked to make sure 
that it is “fresh”. Such a private cache is particularly useful if a user scrolls back in 
his request history or clicks a link to a page previously looked at. 

• Proxy cache 
While working on the same principle, but at a much larger scale, such a cache is 
shared, performs demand-driven pull caching, and serves hundreds or thousands of 
users in the same way. It can be set up on the firewall or as a stand-alone device. Un-
less other search paths are specified, a cache miss sends the request to the next proxy 
cache in the client-to-server path. 

• Reverse proxy cache 
This kind of cache is an intermediary also known as “edge cache”, “surrogate cache”, 
or “gateway cache”. While not demand-driven, such caches reverse their role as 
compared to proxy caches, because they are supplied by origin servers with their 
most recent offerings—a kind of push caching. Furthermore, they are not deployed 
by network administrators to save bandwidth and to reduce user-perceived delays 
which are characteristic for proxy caches, but they are typically deployed by Web 
masters themselves, to unburden the origin servers and to make their Web sites more 
scalable, reliable, and better performing.

• Server cache 
It keeps generated content and enables reuse without interaction of the origin server. 
Intermediate results and deliverable Web documents help to reduce the server load 
and improve server scalability. 

With these definitions, we are able to explain how a Web request is processed in detail, 
as illustrated in Fig. 1. Note, we pursue a functional view and focus on the client-request 
paths of a single ISP (Internet service provider) to servers connected to the Internet via 
another ISP. 

Each of the ISPs is able to connect a set of clients and servers to a wide-area net-
work. Ci and Sj represent clients and origin servers, respectively2. BCi refers to the 
browser cache of Ci, whereas PTL (top-level), Pn, Pnm, ... identify proxy caches typically 
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allocated in local-area networks (LANs) and organized as a multi-level hierarchy in the 
domain of an enterprise (Intranet). Usually, a stand-alone firewall device (FW) sepa-
rates the Intranet from its ISP and the Internet; for private clients, the firewall is often 
combined with the browser cache. An ISP plays two roles: it provides access to the In-
ternet for its clients and usually manages the top-most proxy cache for them. On the oth-
er hand, it is a transit provider for routing requests through the Internet. If an ISP offers 
caching services for routing requests, it is sometimes denoted as transparent caching3

which is much less effective, because routing may use multiple communication links to 
the origin server (from ISP1 to ISPk in Fig. 1) and select a different path on each re-re-
quest. Hence, client-side proxy caching is most effective in the invocation paths from 
BC up to the corresponding ISP (also denoted as forward proxy caching). 

In contrast, the caching mechanisms at the server side are primarily directed to-
wards server scalability and overload protection. Requests can be routed to reverse 
proxies by a number of methods; two of them are indicated in Fig. 1, where some form 
of load balancing (LB) is involved. This mechanism makes the reverse proxy caching 
look like the origin server to clients. The incoming requests are either distributed via LB 
to the reverse proxies (RPi) or directly to an RP with built-in LB which, on an RP cache 
miss, forward them to the server cache (SCj) or a specific server processor, when the 
server itself is embodied by a processor complex. 

2. Using port 80, it is always possible to choose a direct communication link from C to S 
if the IP address of the origin server is known.
3. While usually the use of a proxy server must be explicitly disclosed to its clients, that 
of a transparent proxy must not. Hence, caching of such a proxy server remains transpar-
ent to the clients.

Fig. 1 The Client-to-Server Path through the Internet

PTL

P1 Pm

P1kP11

C1 Cn Cj Ct Ci

BC1 BCn BCj BCt BCi

. . .

. . .

FW

LB

RP1 RPp

SC1

S1

. . .

ISP1 ISPk

ISPi

ISPj

. . .

. . .

FW

Internet

reverse
proxy

caching

trans-
parent
caching

forward
proxy
caching

FW

RP/LB

SC2

S2

P: proxy
RP: reverse

proxy
FW: firewall
LB: load 

balancer



Theo Härder 71
Another form of reverse proxy caches or edge caches is used in so-called content 
delivery networks (CDNs) where such caches are distributed throughout the Internet or 
a part of it. Dynamic content is supplied, if possible, in edge servers. Otherwise, when 
data is missing or when stale content does not comply with the clients’ consistency re-
quirements, the requests are forwarded to the Web server. These edge servers are con-
sidered as an extension of the trusted Web server environment, because they are either 
within the server’s administrative domain or within a CDN contracting with the content 
provider. Enterprise software and CDN solutions like EdgeSuite (Akamai) and Web-
Sphere Edge Server (IBM) are offloading to edge servers certain applications compo-
nents (such as servlets, JSPs, Enterprise Beans, and page assembly) which usually run 
at the Web server. For example, Akamai’s CDN currently contains up to 15.000 edge 
servers [1]. A CDN provider sells caching as a service to interested Web sites and guar-
antees availability of contents on all important Internet nodes for their customers. In this 
way, customers such as Amazon or MSNBC reach high availability even under extreme 
load situations without scaling their own Web servers.

3 Web Caching

An important practical consideration concerns the validity of Web objects, particularly 
in client-side caches. For this reason, the so-called time-to-live algorithm (TTL) is used 
to determine whether or not a Web object present in a cache can be used to satisfy a cli-
ent request. Hence, only valid objects can be delivered to the client and are, therefore, 
kept in the cache. If it runs out of space anyway, some algorithm has to be used to make 
room for the objects of the current client requests. 

3.1 Replacement Strategies

As compared to DB buffer management, which typically provides fixed-length frames 
and applies LRU- or LRD-based replacement algorithms, Web caching is much more 
complex. Web objects need variable-length frames and are characterized by more fac-
tors that critically influence the replacement decision. To indicate their spectrum, we in-
clude the list of important factors from [18]:

– time of the last reference to the object (recency)
– number of requests to an object while in the cache (frequency)
– size of the Web object (size)
– cost to fetch an object from its origin server (cost)
– time of last modification, time when an objects gets stale (expiration time).

The influence or interdependencies of these factors cannot be discussed in detail. We 
can only summarize the resulting cache replacement strategies which typically exploit 
the first four factors above. A suitable classification of them was given in [16] and sur-
veyed in [23]:
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• Recency-based strategies incorporate recency (and size and/or cost) into the replace-
ment process.

• Frequency-based strategies exploit frequency information (and size and/or cost) in 
the replacement decision.

• Recency/frequency-based strategies consider both recency and frequency under 
fixed or variable cost/size assumptions.

3.2 Validity of Cached Objects

A Web cache must be able to locally determine the validity or freshness of its objects. 
For this reason, the cache is equipped with some checking rules and each object carries 
a number of parameters in its HTTP header. Some simple ground rules together with 
object-related parameters allow rapid checking of the object’s validity.

The Expires HTTP header is the basic means of controlling caches. It tells the cache 
how long the object is fresh for; after that time, the cache will always check back with 
the origin server to see if a document is changed. Most Web servers provide a number 
of ways to set Expires response headers. Commonly, they will allow setting an absolute 
time to expire (e.g., Expires: Mon, 4 April 2005 13:49:31 GMT), a time based on the 
last time that the client saw the object (e.g., Last-Accessed: Fri, 8 April 2005 23:07:18 
GMT), or a time based on the last time the document changed on your server (e.g., Last-
Modified: 8 April 2005 21:27:28 GMT). If no Expires value as the definite time limit is 
set (for so-called ZeroTTL objects), the cache may estimate the freshness via Last-Ac-
cessed or Last-Modified. If these values are also undefined, caching of this object is usu-
ally not possible. 

Although the Expire mechanism is useful, it is still somewhat limited. In quite a 
number of cases, content is cacheable, but the protocol lacks methods to tell the caches 
how to handle such objects. Some experimental studies have shown that a considerable 
portion of uncacheable HTTP content is actually cacheable [28]. To improve this situ-
ation, HTTP 1.1 introduces enhanced and more flexible object control via the Cache-
Control response headers which allow Web masters to define how pages should be han-
dled by caches. They include directives to specify what is cacheable, what may be 
stored, how to modify the expiration mechanism, as well as how to revalidate or reload 
objects. Useful Cache-Control response headers include:

• max-age=[seconds]—specifies the maximum amount of time that an object will be 
considered fresh. Similar to Expires, this directive allows more flexibility. 

• public—marks the response as cacheable, even if it would normally be uncacheable, 
e.g., if the object is authenticated, the public directive makes it cacheable. 

• no-cache—forces caches (both proxy and browser) every time to submit the request 
to the origin server for validation before releasing a cached copy. This is useful to 
assure that authentication is respected (together with public), or to maintain rigid ob-
ject freshness, without sacrificing all of the benefits of caching. 
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• must-revalidate—tells the cache that it must obey any freshness information for the 
object. This header forces the cache to strictly follow the given rules. 

In addition, the checking times of caches, that is, when they control their objects’ valid-
ities, can be configured, e.g., once per session or time unit. Hence, simple cache-related 
rules together with object-related parameters determine the freshness semantics of 
cached objects and guarantee rapid local checking of an object’s validity. 

3.3 Dynamic Content

So far, our discussion primarily considered static Web objects, typically Web pages 
containing static HTML/XML data, whose source code is stored at the Web server. In 
such cases, a page miss in all proxy caches causes the delivery of a fresh page from the 
Web server.

In the current Internet, however, interactive pages of online shops, member logins 
of community pages, etc. play a performance-critical role. All of them contain static 
fragments which have long validity periods and may be shared by many clients access-
ing essentially the same page in some personalized appearance. On the other hand, some 
of their fragments are highly dynamic, can only be shared by a few clients or not at all, 
and must be re-generated almost upon each reference. There are some reasons not dis-
cussed here, why proxy caches are of limited use today when dynamic content is fre-
quently needed. However, there are already useful caching mechanisms available at the 
server side which help to satisfy the requirements and optimize the run-time behavior 
of the “client-server” loop. In principle, these mechanisms can be refined such that they 
are also applicable at the client side in the near future.

In cases where a few and small content fragments exhibit high update frequencies, 
the concept of edge-side includes (ESI) is particularly helpful. Dynamic Web pages are 
not handled as units anymore, instead fragment-enabled caching allows the manage-
ment of such pages at a finer level of granularity. Dynamic pages (documents) are de-
composed into a template and several fragments for which separate TTL values and 
URLs can be specified. The template describes the layout of the Web page and specifies 
the location of each content fragment belonging to it. 

For this purpose, the ESI concept—proposed by W3C in summer 2001 and current-
ly the de facto standard for templates in fragment-based documents [27]—offers XML-
based language constructs which enable the composition of dynamic Web pages and a 
fragmentation of their content. Actually, the markup format specifies content fragments 
for inclusion and assembly in a base template. ESI also includes a complete framework 
for conditional fetching of fragments, cookie support, and error control. As a conse-
quence, separation of content generation and content provision becomes possible which 
greatly increases Web server scalability. 

As illustrated in Fig. 2, such a fragmentation assigns separate TTL values to the 
fragments of template-based page, all of them identified by separate URIs. Hence, these 
fragments can be selectively exchanged (if expired) or flexibly composed to new pages 
(shared use). If a cache is equipped with the assembly and exchange logic of such tem-
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plate- and fragment-based pages, much of the extra burden of dynamic page manage-
ment can be assigned to the caches in the client-to-server path.

Today, ESI is primarily used at the server side, in particular by the edge caches of 
CDNs. In addition to Web server scalability, its use will gain more and more benefits 
also at the client side when it conquers the proxy caches or even the browser caches 
thereby reducing user-perceived delays and network bandwidth usage. 

3.4 Future Fragment-Enabled Caching

As sketched above, ESI concepts help to distinguish and manage templates and frag-
ments of Web documents separately. The resulting fragment-enabled caching tech-
niques have to be refined to maximize flexibility of dynamic document assembly and 
minimize its underlying overhead. Therefore, fine-grained fragment identification is 
desirable independently of their location on the template, which makes various kinds of 
fragment behavior possible, for example, fragment movement in a newly assembled 
document.

Fragment-based documents need efficient and fine-granular update methods, even 
if the fragment locations change or if some fragments serve personalization purposes. 
Fragment movements frequently occur, as illustrated in Fig. 3a and b, when in a Web 
document containing news, actual stories added on the top are pushing the older ones 
down in the document. A similar situation occurs if personalized pages use the same 
template, but differ in a few fragments which carry, for example, the salutatory address 
or some items preferred by the client. Technically, each esi:include tag references a spe-
cific URI with a TTL, which is stored in the template file. Hence, all the information 
related to the template and its fragments is actually present in the template itself. Frag-
ment movement in the current ESI concept can be performed as follows: One option is 
to update all fragments where the object moved to where it moved from, which seems 
expensive. Alternatively, the template can be updated such that it contains the URLs of 
the new locations pointing to the correct fragments [25]. 

There is no effective and efficient way to solve these problems in the current ESI 
infrastructure. Neither invalidation of many objects that are actually valid nor invalida-

Fig. 2 Fragmentation of a Dynamic Web Document using ESI
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tion of the template which typically needs very little data modification seem appropri-
ate. A new solution is proposed by the DyCA (dynamic content adaptor) approach de-
scribed in [7]. The essential idea is to extract the objects from the original content there-
by achieving the needed separation between template, objects, and object location. 
DyCA uses a mapping table which introduces some kind of reference indirection and, 
in turn, does not require the template and the objects to be invalidated for spatial chang-
es. Even personalization seems possible with dedicated mapping tables by reusing the 
original template and all common fragments (Fig. 3c). 

The cache holds the mapping table together with the template. When a dynamic 
document is assembled in the cache, the identifiers of its fragments are looked up in the 
mapping table. If a fragment is located in the cache and satisfies the TTL or other va-
lidity constraints, it is directly integrated into the document; otherwise, a fresh version 
is fetched from the appropriate URL. Hence, object movement only requires an update 
of the small-sized mapping table and personalization of documents can be handled by 
using dedicated mapping tables. 

In a recent empirical exploration [7], the update costs of dynamic documents were 
evaluated in detail. Tab. 1 copies some indicative numbers gained from this experiment 
referring to large existing Web sites. The update problem caused by object movement 
(e.g., by a news ticker) was quantified by simulating four different approaches:

– no fragment caching
– static template, fragment updates due to data and spatial changes
– template updates, static objects (fragment updates only to due data changes) 
– use of a mapping table.

The evaluation provides interesting empirical data for the “total data transfer between 
server and cache” and “user-perceived latency”. In general, both “template updates, 
static objects” and “mapping table” clearly outperform the other approaches. 

Fig. 3 Personalization and Movement of Fragments
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So far, we have discussed fragment-enabled Web caching which allows spatial 
movement of objects in and personalization of dynamic documents thereby supporting 
all caching objectives sketched in the introductory section. If the content is delivered as 
textual sources by information providers, for example, via news tickers, it is edited and 
formatted as XML or HTML fragments by the origin server and distributed to the cli-
ents (either by pull or push mechanisms). If, however, the dynamic content has to be 
queried and fetched by the Web server from continuously changing data in a possibly 
remote database, transactional programs (application logic) have to be provided to the 
server to evaluate the DB queries and to deliver transaction-consistent query results. 
This kind of content provision and its consistency requirements may introduce another 
bottleneck into the now prolongated client-to-server path which leads to the point where 
DB caching comes into play.

4 The User-to-Data Path

As transactional Web applications (TWAs) must deliver more and more dynamic con-
tent and often updated information, Web caching should be complemented by tech-
niques that are aware of the consistency and completeness requirements of cached data 
(whose source is dynamically changed in backend databases) and that, at the same time, 
adaptively respond to changing workloads. Because the provision of transaction-con-
sistent and timely data is now a major concern, optimization of Web applications has to 
consider the entire user-to-data path. Because the essential caching issues in the path up 
to the Web server are already addressed in sufficient detail, we target at specific prob-
lems on the remaining path towards DB-managed data.

Several different solutions, summarized as database caching, have been proposed 
in recent years [2, 3, 5]. Fig. 4 focuses on the realm of DB caching and complements 
the Big Picture of Web caching shown in Fig. 1. For this relatively new problem, cur-
rently many DB vendors are developing prototype systems or are just extending their 
current products [e.g., 14, 15, 19] to respond to the recently uncovered bottleneck for 
Web information systems or e*-applications. 

Tab. 1 Comparison of Template and Object Sizes

NY Times India Times Slashdot

Template Size 17 KB 15 KB 1.7 KB

Avg. Object Size 3.6 KB 4.8 KB 0.6 KB

Mapping Table Size 1.0 KB 0.8 KB 2.2 KB
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4.1 Challenges of the Data Bottleneck

What is the technical challenge of all these approaches? When user requests require re-
sponses to be assembled from static and dynamic contents somewhere in a Web cache, 
the dynamic portion is often generated by a remote application server, which in turn 
asks the backend DB server (backend DB) for up-to-date information, thus causing sub-
stantial latency. An obvious reaction to this performance problem is the migration of 
application servers to data centers closer to the users: Fig. 4 illustrates that clients select 
one of the replicated Web servers “close” to them in order to minimize communication 
time. This optimization is amplified if the associated application servers can instantly 
provide the expected data—frequently indicated by geographical contexts. But the dis-
placement of application servers to the edge of the Web alone is not sufficient; con-
versely it would dramatically degrade the efficiency of DB support because of the fre-
quent round trips to the then remote backend DB, e.g., by open/next/close loops of cur-
sor-based processing via SQL application programming interfaces (APIs). As a 
consequence, frequently used data should be kept close to the application servers in so-
called DB caches. Note, the backend DB cannot be moved to the edge of the Web as 
well, because it has to serve several application servers distributed in wide-area net-
works. On the other hand, replication of the entire database at each application server is 
too expensive, because DB updates can be performed via each of them. A flexible so-
lution should not only support DB caching at mid-tier nodes of central enterprise infra-
structures [6], but also at edge servers of content delivery networks or remote data cen-
ters.

Another important aspect of practical solutions is to achieve full cache transparen-
cy for applications, that is, modifications of the API are not tolerated. This application 
transparency, which also is a prime aspect to distinguish caching from replication, is a 
key requirement of DB caching. It gives the cache manager the choice at run time to 
process a query locally or to send it to the backend DB to comply with strict consistency 
requirements, for instance. Cache transparency requires that each DB object is repre-

Fig. 4 DB Caching for Web Applications
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sented only once in a cache and that it exhibits the same properties (name, type, etc.) as 
in the backend DB. 

The ultimate goal of DB caching is to process frequently requested DB operations 
close to the application. Therefore, the complexity of these operations and, in turn, of 
the underlying data model essentially determines the required mechanisms. The use of 
SQL implies a considerable challenge because of its declarative and set-oriented nature. 
This means that, to be useful, the cache manager has to guarantee that queries can be 
processed in the DB cache, that is, the sets of records (of various types) satisfying the 
corresponding predicates—denoted as predicate extensions—must be completely in the 
cache. This completeness condition, the so-called predicate completeness, ensures that 
the query evaluation semantics is equivalent to the one provided by the backend.

4.2 Technical Solutions for the Cache Manager

A full-fledged DB server used as cache manager offers great advantages. A substantial 
portion of the query processing logic (parsing, optimization, and execution) has to be 
made available anyway. By providing the full functionality, additional DB objects such 
as triggers, constraints, stored procedures, or access paths can be exploited in the cache 
thereby simulating DB semantics locally and enhancing application performance due to 
increased locality. Furthermore, transactional updates seem to be conceivable in the 
cache (some time in the future) and, as a consequence, continued service for TWAs 
when backend databases become unavailable. 

Note, a cache usually contains only subsets of records pertaining to a small fraction 
of backend tables. Its primary task is to support query processing for TWAs, which typ-
ically contain up to 3 or 4 joins [2]. Often the number of cache tables—featuring a high 
degree of reference locality—is in the order of 10 or less, even if the backend DB con-
sists of hundreds of tables. 

A federated query facility as offered in [14, 20] allows cooperative predicate eval-
uation by multiple DB servers. This property is very important for cache use, because 
local evaluation of some (partial) predicate can be complemented by the work of the 
backend DB on other (partial) predicates whose extensions are not in the cache. Hence, 
in the following we refer to predicates meaning their portions to be evaluated in the 
cache. 

4.3 Database Caching—Conventional Solutions

Static approaches to DB caching where the cache contents have to be prespecified and 
possibly loaded in advance are of little interest in Internet applications. Such approach-
es are sometimes called declarative caching and do not comply with challenging de-
mands such as self-administration and adaptivity. Hence, what are the characteristics of 
a promising solution when the backend DB is (frequently) updated and cache contents 
must be adjusted dynamically? 
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The conceptually simplest approach—full-table caching, which replicates the entire 
content of selected backend  tables—attracted various DB cache products [22]. It seems 
infeasible, however, for large tables even under moderate update dynamics, because 
replication and maintenance costs may outweigh the potential savings on query pro-
cessing. 

So far, most approaches to DB caching were primarily based on materialized views 
and their variants [4, 5, 8, 9, 17, 21]. A materialized view consists of a single table 
whose columns correspond to the set  of output attributes and 
whose contents are the query result V of the related view-defining query  with 
predicate P. Materialized views can be loaded into the DB cache in advance or can be 
made available on demand, for example, when a given query is processed the nth time 
( ). In this way, some kind of built-in locality and adaptivity (together with a re-
placement scheme) can be achieved. When materialized views are used for DB caching, 
essentially independent tables, each representing a query result  of , are separate-
ly cached in the frontend DB. In general, query processing for an actual query  is 
limited to a single cache table. The result of  is contained in , if  is logically 
implied by  (subsumption) and if  is contained in  (i.e., the output of the new 
query is restricted by the attributes contained in a query result that is used). Only in spe-
cial cases a union of cached query results, e.g., , can be exploited. 
DBProxy [3] has proposed some optimizations at the storage level. To reduce the num-
ber of cache tables, a common-schema storage-table policy is used, which tries to store 
query results  with strongly overlapping output attributes in common tables. On the 
one hand, a superset of the attributes  may potentially enhance caching benefits of 

, but, on the other hand, it may increase storage and maintenance costs. 
A new class of caching techniques [2, 24] follows the idea that the desired cache 

contents are specified by so-called parameterized cache constraints. As soon as a ref-
erence to a parameter causes a cache miss, all records satisfying the specified cache con-
straint for this parameter value are loaded into the cache. As a consequence, the com-
pleteness condition is accomplished for query predicates that match the satisfied cache 
constraints or are subsumed by them. Hence, cache maintenance guarantees that the 
corresponding predicate extensions can correctly be exploited for future queries. 

5 Constraint-Based Database Caching

Constraint-based DB caching promises a new quality for the placement of data close to 
their application. The key idea is to accomplish for some given types of query 
predicates P the so-called predicate completeness in the cache such that all queries eli-
gible for P can be evaluated correctly [11]. All records (of various types) in the backend 
DB that are needed to evaluate predicate P are called the predicate extension of P. Be-
cause predicates form an intrinsic part of a data model, the various kinds of eligible 
predicate extensions are data-model dependent, that is, they always support only spe-
cific operations of a data model under consideration. Cache constraints enable cache 
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loading in a constructive way and guarantee the presence of their predicate extensions 
in the cache. 

The technique does not rely on static predicates: Parameterized constraints make 
the specification adaptive; it is completed when the parameters are instantiated by spe-
cific values: An “instantiated constraint” then corresponds to a predicate and, when the 
constraint is satisfied (i.e., all related records have been loaded) it delivers correct an-
swers to eligible queries. Note, the set of all existing predicate extensions flexibly al-
lows evaluation of their predicates, e.g.,  or  or 
subsets/combinations thereof, in the cache.

A cache contains a collection of cache tables that can be isolated or related to each 
other in some way. For simplicity, let the names of tables and columns be identical in 
the cache and in the backend DB: Considering a cache table S, we denote by SB its cor-
responding backend table, by S.c a column c of S. 

Assume cache tables C, O, and P where C.cnr, O.cnr, and P.pnr are unique (U) col-
umns and the remaining columns are non-unique (NU), as illustrated in Fig. 5. In a com-
mon real-world situation, C, O, and P could correspond to backend DB tables Custom-
er, Order, and Product. Hence, both arrows would typically characterize PK/FK rela-
tionships that can be used for join processing in the cache. 

Because all columns of the corresponding backend  tables are kept in the cache, all 
project operations possible in the backend DB can also be performed. Other operations 
like selection and join depend on specific completeness conditions enforced by cache 
constraints. Given suitable cache constraints, there are no or only simple decidability 
problems whether predicates can be evaluated. Only a simple probe query is required at 
run time to determine the availability of eligible predicate extensions. An important 
goal for cache processing is to support local evaluation of queries that typically contain 
simple projection (P) and selection (S) operations and equi-joins (J). 

Assume for the moment, the cache enables PSJ queries, for example, with predicate 
Q1 = (C.type = ‘gold’ and C.cnr = O.cnr and O.pnr = P.pnr) on COP. Then, all evalu-
able predicates can be refined by “and-ing” additional selection terms (referring to 
cache table columns) to it; e.g., (and C.name like ‘Smi%’ and O.pnr > 17 and ...). Be-
cause full DB functionality is available, the results of these queries can further be re-
fined by selection predicates such as Exists, Null, etc. as well as processing options like 
Distinct, Group-by, Having (restricted to predicates evaluable on the predicate exten-
sion), or Order-by. 

P1 P2 ... Pn∪ ∪ ∪ P1 P2 ... Pn∩ ∩ ∩

Fig. 5 Cache Table Collection COP
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5.1 Equality Predicates

Let us begin with single cache tables. If we want to be able to evaluate a given predicate 
in the cache, we must keep a collection of records in the cache tables such that the com-
pleteness condition for the predicate is satisfied. For simple equality predicates like S.c 
= v, this completeness condition takes the shape of value completeness: A value v is 
said to be value complete (or complete for short) in a column S.c if and only if all 
records of σc=vSB are in S. If we know that a value v is complete in a column S.c, we 
can correctly evaluate S.c = v, because all rows from table SB carrying that value are in 
the cache. But how do we know that v is complete? A straightforward way is to provide 
the cache manager with a list of candidate values of those columns we want to use in 
equality predicate queries. Possible candidate values for a column S.c belong to the do-
main of SB.c. A list of candidate values can be specified as a complete list (all domain 
values), an enumeration, a range, or other predicates; candidate values can be expressed 
positively (recommendations) or negatively (stop-words). 

Whenever a candidate value x occurs in an equality predicate of a query, the cache 
manager probes the respective cache table to see whether this value is present: A suc-
cessful probe query (the value is found) implies that the predicate extension for the giv-
en equality query is in the cache and that this query can be evaluated locally. Otherwise, 
the query is sent to the backend for further processing.

How do records get into a cache table? As a consequence of a cache miss attributed 
to x, the cache manager satisfies the value completeness for x by fetching all required 
records from the backend and loading them into the respective cache table. Hence, the 
cache is ready to answer the corresponding equality query locally from then on.

Apparently, a reference to a candidate value x serves as a kind of indicator that, in 
the immediate future, locality of reference is expected on the predicate extension deter-
mined by x. Candidate values therefore carry information about the future workload and 
sensitively influence caching performance. As a consequence, they must carefully be 
selected. In an advanced scheme, the cache manager takes care that only those candidate 
values with high re-reference probability are in the cache. By monitoring the query load, 
the cache manager itself can dynamically optimize the list of candidate values, for 
which completeness is guaranteed whenever they appear in the cache. In a straightfor-
ward case, the database administrator (DBA) specifies this list of values.

Flexible adjustment of the (dynamic) list of candidate values that are present in the 
cache is key to cache adaptivity. Because a probe query always precedes the actual que-
ry evaluation, completeness for a value v can be abolished at any time by removing all 
records with value v from the cache table. Again, in the simplest case, there may be no 
removal at all, and thus a value, once made complete, is left in the cache forever. Alter-
natively, complex replacement algorithms could be applied to unload all records carry-
ing a complete value if its re-reference probability sinks. Note, besides the factors mem-
ory and storage space, there is always a cost trade-off between the savings for query 
evaluation and the penalties for keeping the records consistent with their state in the 
backend.
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5.2 Equi-join Predicates

How do we obtain the predicate extensions of PSJ queries? The key idea is to use ref-
erential cache constraints (RCCs) to specify all records needed to satisfy specific equi-
join predicates. An RCC is defined between two cache table columns: a source 
column S.a and a target column T.b where the tables S and T need not be different. RCC 

 is satisfied if and only if all values v in S.a are value complete in T.b. It en-
sures that, whenever we find a record s in S, all join partners of s with respect to 
S.a = T.b are in T. Note, the RCC alone does not allow us to correctly perform this join 
in the cache: Many rows of SB that have join partners in TB may be missing from S. But 
using an equality predicate on a complete value of column S.c as an “anchor”, we can 
restrict this join to records that are present in the cache: The RCC  expands 
the predicate extension of (S.c = x) to the predicate extension of (S.c = x and S.a = T.b). 
In this way, a complete value can serve as an entry point for a query.

Depending on the types of the source and target columns (unique: U, non-unique: 
NU) on which an RCC is defined, we classify RCCs as (1:1), (1:n), and (n:m), and de-
note them as follows: 

•  or : member constraint (MC)
• : owner constraint (OC)

• : cross constraint (XC).

Note, using RCCs we implicitly introduce something like a value-based table model in-
tended to support queries. Despite similarities to the relational model, MCs and OCs are 
not identical to the PK/FK (primary key / foreign key) relationships contained in the 
backend tables. A PK/FK relationship can be processed symmetrically, whereas our 
RCCs can be used for join processing only in the specified direction. Other important 
differences are that XCs have no counterparts in the backend DB and that a column may 
be the source of n and the target of m RCCs. In contrast, a column in the role of PK may 
be the starting point of k, but in the role of FK the ending point of only one (meaningful) 
PK/FK relationship. Because a very high fraction (probably > 99 %) of all SQL join 
queries refers exclusively to PK/FK relationships (they represent real-world relation-
ships explicitly captured by DB design), almost all RCCs specified between cache ta-
bles are expected to be of type MC or OC. As a corollary, XCs and multiple RCCs end-
ing on a specific NU column seem to be very infrequent. 

Assume in our COP example of Fig. 5 that  and  are 
RCCs which, as usual, characterize PK/FK relationships that guarantee regular join se-
mantics when processed in the cache. The specification of additional RCCs 

 or even  and  is conceivable (as-
sume join-compatible domains); such RCCs, however, have no counterparts in the 
backend DB schema and, when used for a join of O and C or a cross join of O and P or 
P and O, it completely remains the user's responsibility to assign a meaning.

S.a T.b→

S.a T.b→

U U→ U NU→
NU U→

NU NU→

C.cnr O.cnr→ O.pnr P.pnr→

O.id C.type→ O.cnr P.weight→ P.weight O.cnr→
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5.3 Loading of Predicate Extensions

To evaluate predicate Q in the cache, the cache manager has to guarantee for Q predi-
cate completeness. A collection of tables is said to be predicate complete with respect 
to Q if it contains all records needed to evaluate Q, i.e., its predicate extension.

An example of Q1’s predicate extension is illustrated in Fig. 6, where records are 
represented by bullets and value-based relationships by lines. To establish complete-
ness for value gold of column C.type, the cache manager loads all records of 
σtype = goldSC in a first step. For each of these records, RCC  has to be 
fulfilled (PK/FK relationships, solid lines), that is, all values of source column C.cnr
(1, 2, 3 in the example) have to be made complete in the target column O.cnr. Finally, 
for all values present in O.pnr (y, z), RCC  makes their counterparts 
complete in P.pnr (FK/PK relationships, dashed lines).

In this way, the cache manager can construct predicate extensions using only simple 
load steps based on equality of values. Accordingly, it can correctly evaluate the corre-
sponding queries locally. To generalize this example, we make the important observa-
tion that for the local processing of each PSJ predicate we need an entry point satisfying 
an equality predicate. Then we can proceed with the processing of equi-joins via reach-
able RCCs. Hence, each complete value is eligible for deriving a predicate to be evalu-
ated locally.

Note, each cache-resident value of a U column is complete by definition. Further-
more, if only complete values enter a column, all values of this column are complete. 
This is true for O.c in our example. We can generalize this case to domain completeness
greatly simplifying cache probing: A column S.c is said to be domain complete (DC) if 
and only if all values v in S.c are value complete.

Given a domain-complete column S.c, if a probe query confirms that value v is 
in S.c (a single record suffices), we can be sure that v is complete and thus evaluate 
S.c = v locally. Unique columns of a cache table (defined by SQL constraints “unique” 
or “primary key” in the backend DB schema) are DC per se (implicit domain complete-
ness). Non-unique columns in contrast need extra enforcement of DC.

C.cnr O.cnr→

O.pnr P.pnr→

C.type gold goldgold
1 2 3C.cnr

O.cnr 1 1 32 3 3

P.pnr y z

O.pnr - - y y y z

Fig. 6 Construction of a Predicate Extension for COP
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5.4 Cache Groups

So far, we have introduced the general idea of supporting cache-based query evaluation 
using the COP example for a single complete value. Now we will generalize our ap-
proach and specify the predicate types to be processed in the cache together with the 
kind of constraints to load their predicate extensions. Our mechanism supports PSJ que-
ries that are characterized by (valid SQL) predicate types of the form

((EP1 or ... or EPn) and EJ1 and ... and EJm) 
where EPi, , is an equality predicate on a specific cache table called root table 
and the EJj, , correspond to RCCs that (transitively) connect the root table 
with the collection of the remaining cache tables involved. 

For equi-join predicates, we have already introduced their specification mecha-
nism: RCC. To establish a parameterized loading mechanism together with an entry op-
tion for cache tables, a second type of cache constraint specified on a root table and 
called filling column is needed: A column S.k with an associated list of candidate values 
is called a filling column. Whenever a candidate value appears in S.k, it is kept com-
plete; only candidate values initiate caching when they are referenced by user queries.

Typically, filling columns are assumed simple. A multi-column mechanism differ-
ent from multiple simple columns is conceivable; then, values are to be composed of 
simple values belonging to the participating columns. The cache manager guarantees 
that a candidate value present in the cache is complete. Therefore, these values—pro-
vided either manually by the DBA or automatically upon monitoring the cache traffic 
by the cache manager—can always be used as entry points for predicate evaluation. 

Note, candidate values of filling columns play a dual role: They enforce cache load-
ing upon reference and—once in the cache—they represent entry points for querying, 
because they are complete. The resulting collection of cache tables, filling columns, and 
RCCs is called cache group: the particpating cache tables are linked by a set of RCCs. 
A distinguished cache table is called the root table R of the cache group and holds i fill-
ing columns ( ). The remaining cache tables are called member tables and must be 
reachable from R via the (paths of) RCCs. For example, our COP example constitutes 
a simple cache group having C as its root table, two RCCs (m = 2), O and P as member 
tables, and a single equality predicate on C.type (n = 1) as its filling column.

Domain-complete filling columns offer a simple way of specification because lists 
of candidate values are not required, but they do not seem to be generally applicable4. 

Safeness of cache groups. It is unreasonable to accept all conceivable cache group con-
figurations, because cache misses on filling columns may provoke unforeseeable load 
operations. Although the cache-populating procedure can be performed asynchronously 
to the transaction observing the cache miss, so that a burden on its own response time 

4. In the DBCache project [2], so-called cache keys are used as filling columns defined to 
be domain complete. Low-selectivity columns or single values in columns with skewed 
value distributions may cause cache filling actions involving huge sets of records never 
used later. It is therefore necessary to control the cache loading in a more refined way. 

1 i n≤ ≤
1 j m≤ ≤

i 1≥
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can be avoided, uncontrolled loading is undesirable: Substantial extra work, which can 
hardly be estimated, may be required by the frontend and backend DB servers, which 
will influence the transaction throughput in heavy workload situations.

Specific cache groups may even exhibit a recursive loading behavior that jeopardiz-
es their caching performance. Once cache filling is initiated, the enforcement of cache 
constraints may require multiple phases of record loading. Such behavior always oc-
curs, when two NU-DC columns of a cache table must be maintained, e.g., C.name and 
C.type in Fig. 5. A set of values appears in C.name, for which C is loaded with the cor-
responding records of CB to keep column C.name domain complete. These records, in 
turn, populate C.type with a set of (new) values which must be made complete, thereby 
possibly introducing new values into C.name and so on.

Cache groups are called safe if there is no possibility for recursive load behavior to 
happen. Upon a miss on a filling column, we want the initiated cache loading to stop 
after a single pass of filling operations through the tables of the cache group. The con-
ditions a safe cache group must meet are explored in [12].

Entry points for query evaluation. A cache table column can be correctly tested and 
used by an equality predicate only if the referenced value is complete. But how do we 
know that? Of course, candidate values in filling columns are explicitly made complete, 
and all cache table columns of type U are even domain complete.

Returning to Fig. 5, we find that C.cnr, O.id, and P.pnr are domain complete. If 
cache probing is successful for C.cnr = 1, O.id = α, or P. pnr = z, respectively, we can 
evaluate, in addition to the predicate type COP is designed for, the three predicates 
(C.cnr = 1 and C.cnr = O.cnr and O.pnr = P.pnr) or (O.id = α and O.pnr = P.pnr) or 
(P.pnr = z). 

Obviously, cache-supported query evaluation gains much more flexibility and pow-
er, if we can correctly decide that other cache columns are domain complete as well. Let 
us refer again to COP. Because  is the only RCC that induces loading 
of records in O, we know that O.cnr is domain complete (called induced domain com-
pleteness). 

Note, additional RCCs ending in O.cnr would not abolish the DC of O.cnr, though 
any additional RCC ending in a different column would do: Assume an additional RCC 
ending in O.id induces a new value β, which implies the insertion of σid = β OB into O—
just a single record o. Now a new value 7 of O.cnr, so far not present in O.cnr, may ap-
pear, but all other records of σcnr = 7 OB fail to do so.

For this reason, a cache table loaded by RCCs on more than one column cannot 
have an induced DC column. The same is true for a cache table that carries a filling col-
umn and is loaded by an RCC on a different column. Therefore, induced DC is context 
dependent, which leads us to the following definition: A cache table column S.c is in-
duced domain complete, if it is the only column of S that is loaded via one or more RCCs 
or that is a filling column.

To summarize our discussion of cache groups concerning their population and the 
domain completeness of their columns: A cache table T can be loaded via one or more 
filling columns or one or more RCCs ending in one or more of its columns. A column 

C.cnr O.cnr→
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of T is domain complete if it is a U column or a filling column with a complete list of 
candidate values or induced domain complete.

5.5 Generalization of Predicates

Cache groups enable specific PSJ queries to be evaluated in the cache. The inherent 
mechanism is to guarantee value or domain completeness in cache table columns and 
to maintain via RCCs predicate completeness across a cache group which support se-
lection operations for equality predicates and equi-joins, respectively. Varying the fun-
damental idea of cache groups, we can apply the probing and completeness conditions 
needed for local predicate evaluation to other types of SQL predicates. A generalization 
of constraint specification and probing mechanisms leads us to the key observation [11] 
that the cache group approach can be extended to 

– simple predicates with other comparison conditions Θ ∈ {<, >, <, ≠, >} 
– range predicates or even 
– complex predicates composed of them by Boolean operators (∨, ∧, ¬).

Furthermore, it is conceivable, however much more complex, to establish predicate 
completeness for aggregation, recursion, and other SQL predicates (Exists, Subquery, 
etc.). The usefulness and realization aspects of such extensions have to be explored yet.

6 Seamless Processing of Web Objects

Obviously, all these ideas of constraint-based DB caching are not restricted to the rela-
tional model.or to SQL predicates. They may be applied equally well to other data mod-
els and the caching needs of their applications, e. g., to XML documents and XQuery 
operations [27]. This observation delivers another argument for the opportunities and 
benefits of the upcoming XML database management systems (XDBMS). If they are 
native, that is, if they provide for the variety of XML language models (such as SAX, 
DOM, XPath, and XQuery [27]) specific access models to fine-grained storage struc-
tures tailored to the processing requirements of XML documents [10], then there is no 
need anymore to perform frequent, different, and heterogeneous type conversions often 
complained in RDBMS-based e*-applications. Message data and DB data could be 
managed and stored in the same way. Hence, queries on DB-based data could be direct-
ly evaluated on its native XML storage structures. Their result sets shaped as XML frag-
ments could be forwarded and stored in the various DB and Web caches up to the user 
thereby only handled by a single and, therefore, homogeneous processing model. 

The currently futuristic view of XDBMS dominance was already taken in [13] 
where innovative DBMS architectures were explored. As a consequence of such a tech-
nological change, the myriads of SQL applications would become legacy applications 
to be emulated on, say, XQuery interfaces—nowadays a rather weird imagination.
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7 Open Problems

We have considered the entire user-to-data path in Web applications and have discussed 
the caching problems occurring under a view which separated the specified problems. 
Web caching achieved by four different kinds of caches targets at the minimized com-
munication effort and freshness of single Web objects, whereas DB caching attempts to 
perform as much query evaluation as possible (and cost-effective) in caches close to the 
edge of the Internet—both to primarily reduce the user-perceived delay of Web re-
quests. In contrast to Web caching where only identifier-based access is supported for 
Web objects, declarative and set-oriented query processing of database records is in the 
focus of DB caching. 

In the future, fragment-enabled fine-granular caching can essentially improve the 
effectiveness of all kinds of Web caches. Furthermore, various protocol refinements 
seem possible to improve caching and content delivery of uncacheable HTTP content 
[28]. For example, pushing the functionality of uncacheable content generation to the 
network edge may have a substantial effect. Another promising area is the monitoring 
and recognizing of access patterns in caches and exploiting their results in prefetching 
schemes. For DB caching, we seem at the beginning of a promising research area con-
cerning constraint-based and adaptive DB caching. Hence, a number of important is-
sues remains to be solved or explored.

So far, all aspects of cache maintenance [6] were excluded. How difficult is it to 
cope with the units of loading and unloading? Let us call such a unit cache instance (CI), 
which is a collection of records satisfying all RCCs of a cache group for a single root 
record. Depending on their complexity, CIs may exhibit good, bad, or even ugly main-
tenance properties. The good CIs are disjoint from each other and the RCC relationships 
between the contained records form trees, for example, a cache group consisting of cus-
tomer and order only (CO). Then a newly referenced candidate value (NU) of C.ctype
causes a forest of such trees to be loaded, which, in case of unloading, can be removed 
without interference with other CIs. The bad CIs form DAGs and weakly overlap with 
each other. Cache group COP in Fig. 6 is an example where several CIs may share 
records of cache table P. Hence when loading a new CI, one must beware of duplicates. 
Accordingly, shared records must be removed only together with their last sharing CI. 
To maintain cache groups with cross constraints can be characterized as ugly, because 
CIs may strongly overlap so that duplicate recognition and management of shared 
records may dominate the work of the cache manager.

Improvement of adaptivity is another important problem, much more difficult than 
in Web caches. How can constraint-based approaches evolve with changing locality 
patterns of the workload? To support frequently requested join operations by additional 
RCCs or to remove RCCs not exploited anymore needs adaptive RCC specifications! 
Hence, for each variation of constraint-based caching, quantitative analyses must help 
to understand which cache configurations are worth the effort. For this purpose, a cache 
group advisor can be designed to support the DBA in the specification of a cache group 
when the characteristics of the workload are known. Here, the expected costs for cache 
maintenance and the savings gained by predicate evaluation in the cache can be deter-
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mined thereby identifying the trade-off point of cache operation. For example, starting 
with the cache tables and join paths exhibiting the highest degrees of reference locality, 
the cache group design can be expanded by additional RCCs and/or tables until the op-
timum point of operation is reached. On the other hand, such a tool may be useful during 
cache operation by observing the workload patterns and by proposing or automatically 
invoking changes in the cache group specification. The kind of self-administration or 
self-tuning opens a new and complex area of research often referred to as autonomic 
computing.

Other interesting research problems occur if we apply different update models to 
DB caching. Instead of processing all (transactional) updates in the backend DB first, 
one could perform them in the cache (under ACID protection) or even jointly in cache 
and backend DB under a 2PC protocol. Such update models may lead to futuristic con-
siderations where the conventional hierarchic arrangement of frontend cache and back-
end DB is dissolved: If each of them can play both roles and if together they can provide 
consistency for DB data, more effective DB support may be gained for new applications 
such as grid or P2P computing.
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