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Abstract. A key observation is that the invariants in database management
determine the mapping steps of the supporting architecture. Referring to the
multi-layered architecture of record-oriented database management systems
(DBMSs), we sketch the advances made during the past decades. Then, we
explore the ways how this proven architecture can be used to implement
XML DBMSs (XDBMSs). Major changes and adaptations are needed in
most of the layers to support fine-grained XML document processing (XDP).
The use of DeweylDs opens a new paradigm for the management of XML
document trees: While preventing node relabeling, even in case arbitrary
large subtrees are inserted into an XML document, DeweyIDs offer great
benefits for efficient navigation in the document trees, for declarative query
processing, and for fine-grained locking thereby avoiding access to external
storage as far as possible. The proposed architecture also captures horizontal
and vertical distribution of XML processing. Nevertheless, new architectural
models are needed beyond record-oriented data types.

1 Introduction

Data independence is accomplished by the data model through set orientation and val-
ue-based, declarative requests together with the database management system (DBMS)
implementing it. A high degree of logical and physical data independence is urgently
needed to provide a flexible view mechanism thereby insulating the users, e.g., appli-
cation programs, from DB schema evolution and to let the DBMS “survive” the perma-
nent change in computer science in general and in the DB area in particular. Further-
more, DBMSs have a lifetime >20 or even >30 years. Therefore, far-reaching require-
ments concerning the extensibility and evolution of a DBMS are abundant: growing
information demand led to enhanced standards with new object types, constraints, etc.;
advances in research and development bred new storage structures and access paths,
etc.; rapid changes of the technologies used and especially Moore’s law strongly affect-
ed storage devices, memory, connectivity (e.g., Web), and so on.

We could already experience that a multi-layered hierarchical DBMS architecture
is appropriate to fulfil the design objectives of data independence and to enable long-
term system evolution and flexible extensibility as far as relational and object-relational
data models and their implementations are concerned [8]. For this reason, we believe
that it is a good starting point for architectural considerations of DBMSs beyond them.



Table 1 Description of the DBMS mapping hierarchy

Level of abstraction Objects Auxiliary mapping data

Nonprocedural or

L5 . Tables, views, tuples Logical schema description
algebraic access

L4 Record-oriented, Records, sets, Logical and physical

navigational access hierarchies, networks schema description

13 Record and access Physical records, Free space tables, DB-key
path management access paths translation tables

L2 Propagation control Segments, pages DB buffer, page tables

L1 File management Files, blocks Directories, VTOCs, etc.

1.1  The History of the Layer Model

Mike Senko developed initial architectural concepts named Data Independent Access-
ing Model [18]. DIAM consists of four hierarchically layered levels called entity set
model, string model, encoding model, and physical device level model. Some years lat-
er, Harder and Reuter refined these ideas and proposed a mapping model or reference
architecture consisting of five hierarchical layers which should cooperate as "abstract
machines" and achieve a high degree of information hiding among them to facilitate
evolution and extensibility. As depicted in Table 1 [11], the architectural description
embodies the major steps of dynamic abstraction from the level of physical storage up
to the user interface. At the bottom, the database consists of huge volumes of bits stored
on non-volatile storage devices, which are interpreted by the DBMS into meaningful in-
formation on which the user can operate. With each level of abstraction (proceeding up-
wards), the objects become more complex, allowing more powerful operations and be-
ing constrained by a growing number of integrity rules. The uppermost interface sup-
ports a specific data model, in our case by data access via SQL.

1.2  Major Extensions and Optimizations

While the explanation model concerning the DBMS architecture is still valid, an enor-
mous evolution/progress has been made during the last two decades concerning func-
tionality, performance, and scalability. The fact that all these enhancements and chang-
es could be adopted by the proposed architecture, is a strong indication that we refer to
a salient DBMS model. We cannot elaborate on all extensions, let alone to discuss them
in detail, but we want to sketch some major improvements/changes.

Layer L1 was enhanced by the necessary functionality to attach and operate many
new types of storage devices such as SSDs, Worms, DVDs. Furthermore, specialized
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mapping functions allowed tailored clustering measures or LOB representation on ex-
ternal storage. Disk arrays with various forms of interleaving supported schemes with
adjustable degrees of redundancy (e.g., the RAID project) and enabled declustering of
objects at various levels to provide for parallel access.

At layer L2, Moore’s Law increased the available memory for DB buffers by a fac-
tor of 10* within the past 20 years thereby achieving an optimization by default. Use of
improved replacement algorithms—exploiting reference density combined with LRU
(e.g., LRU-K)—, prefetching and pipelined execution in case of scan-based DB pro-
cessing, etc. greatly improved DB buffer efficiency. Furthermore, configuring a set of
buffers (for example, up to 80 in DB2) to separate workloads of different types and op-
timized to specific data types further boosted performance behavior at level L2.

Of all access path structures which could potentially fill level L3, the dominant one
is still the ubiquitous B-tree. Despite a "firestorm" of research resulting in a few hun-
dred proposals of novel index structures, the B- or B*-tree seem to be sufficient to cover
all practical needs. At best, a few other structures such as UB-tree, R-tree, or Grid file
are integration candidates for specialized access support. Indeed, the most dramatic per-
formance enhancements at this architectural layer are due to fine-grained locking meth-
ods, in particular, applied to index structures, i.e., to B*-trees [16].

To mention a few optimization measures applied at level L4 and referring to the ac-
cess paths of L3: selection and join algorithms utilizing TIDs of existing indexes there-
by avoiding physical I/O as much as possible, hash joins which may also dramatically
reduce access to external storage, and adaptive algorithms of various kinds which sup-
port load balancing and optimized throughput. Such adaptive techniques include setting
or adjusting the degree of parallelism depending on the current workload, reordering
and merging ranges to optimize repeated probes into an index, sharing scans among
multiple queries, and so on [4].

Compilation and optimization of queries embodies the major functionality of LS5.
Although the quality of the optimizer—as a kind of landmark concept of a DBMS—has
greatly improved in the course of the past two decades, e.g., by using refined statistics
and histograms, there still remain open problems and even emerge new challenges. For
example, user-defined types have to carry their own cost model to be integrated by cost-
based optimizers. Furthermore, effective optimizers for dynamic QEPs (query execu-
tion plans) must address the problems of changes in resource availability or at least pro-
vide for dynamic plans with alternative algorithms or alternative plan shapes [4].

1.3 The Search for Future DBMS Architectures

The architectural layers sketched so far perfectly match the invariants of set-oriented,
record-like database management: storage management (L1 and L2), access path and
record management (L3), compilation, optimization, and evaluation of queries (L4 and
L5). During the recent decade, integration efforts for functionality not fitting into this
framework were primarily based on a kind of loose coupling of components—called
Extenders, DataBlades, or Cardridges—and a so-called extensibility infrastructure. Be-
cause these approaches could neither fulfil the demands for seamless integration nor the
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overblown performance and scalability expectations, future solutions may face major
changes in the architecture.

A hot topic of research is the appropriate integration of XML document manage-
ment, because messages are data, too. Questions controversially discussed so far are
"Will the DBMSs of the future be hybrids, storing both relational and XML?" or "Will
everything be stored in XML format?" making myriads of SQL systems "legacy appli-
cations". Besides hybrid architectures which map XML documents and tables by sepa-
rate storage and access systems and support coexistence/combination of DB requests of
both kinds, a futuristic scenario motivated by the questions above was discussed in
ROX: Relational over XML [15] to support SQL APIs as well as XDP interfaces. While
XML operations on native XML structures are the target of optimization in XDBMSs,
such future DBMS architectures represent mixed SQL and XQuery systems to run SQL
applications on native XML or on hybrid structures concurrently.

A key observation of relational DBMS architectures is that the invariants in data-
base management determine the mapping steps of the supporting architecture. Because
of the record-oriented nature of fine-grained management of XML documents the in-
variants of XDP are, at least, similar to the relational ones. Therefore, we explore in
Sect. 2 the ways how the original layer model has to be adjusted to serve for the descrip-
tion and explanation of XDBMS implementations. In Sect. 3, we consider variants of
this model to be applied to data management scenarios where horizontal and vertical
distribution of XML database processing is needed. Sect. 4 sketches a number of new
data types which cannot be smoothly integrated into the architectural framework and ar-
gues about the need for enhanced adaptivity and dependability properties for future
DBMS:s. Finally, we conclude with some brief remarks in Sect. 5.

2 Architectural Requirements for XML Databases

Currently available relational or object-relational (O)RDBMSs only manage structured
data well. There is no effective and straightforward way for handling XML data. This
is obviously true when simple CLOB types have to be used. In particular, searching of
XML documents becomes prohibitively slow. But also more refined mappings do not
lead to good solutions per se: An innumerable number of algorithms [19] has been pro-
posed for the mapping of semi-structured XML data to structured relational database ta-
bles and columns (the so-called "shredding"). All these approaches have failed to effi-
ciently support the wide spectrum of DB applications and to guarantee satisfactory per-
formance in high-performance transaction environments. Furthermore, as XML
documents permeate information systems and databases with increasing pace, they are
more and more used in a collaborative way. If you run today an experiment on existing
DBMSs with collaborative XML documents, you may experience a "performance ca-
tastrophe" meaning that most transactional operations are processed in strict serial or-
der. The challenge for database system development is to provide adequate and fine-
grained management for these documents enabling efficient and concurrent read and
write operations. Therefore, future XML DBMSs will be judged according to their abil-
ity to achieve high transaction parallelism.
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Fig. 1 XTC system — overview

2.1 XTC Architecture

First attempts to provide for DB-based XML processing focused on using the lower lay-
er features of relational DBMSs such that roughly the access and storage system layers
were reused and complemented by the data system functionality tailored to the demands
of the XML data model (e.g., DOM, SAX, XQuery); this implied the mapping (called
“shredding”) of XML document structures onto a set of tables.

Although viable within our five-layer architecture (by reusing L1 to L4), this idea
had serious performance trade-offs, mainly in the areas of query optimization and con-
currency control. New concepts and implementation techniques in the reused layers are
required to achieve efficient query processing. For these reasons, so-called native XML
DBMSs emerged in recent years, an architectural example of which is illustrated in
Fig. 1. The current state of the XTC architecture (XML Transaction Coordinator [12])
perfectly proves that native XDBMSs can be implemented along the lines of our five-
layer architecture.

2.2 Storage and Buffer Management
At the layers L1 and L2, reuse of concepts as described in Sect. 1.2 is obvious. Hence,

we can more or less adopt the mechanisms proven in relational DBMS implementations
and adjust them to the specific needs of XML document representations. In summary,
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our storage layer offers an extensible file structure based on the B*-tree mechanism as
a container of single XML documents such that updates of an XML document (by IUD
operations) can be performed on any of its nodes. We have shown that a very high de-
gree of storage occupancy (> 96%) for XML documents is achieved under a variety of
different update workloads.

Although the functionality in the remaining three layers is comparable at an abstract
level, the objects and the specific implementation methods exhibit strong distinctions.
Due to space restrictions, we can only focus on some new important aspects.

2.3 Access Services

Efficient and effective processing and concurrent operations on XML documents are
greatly facilitated, if we use a specialized internal representation which enables fine-
granular management and locking. For this reason, we have implemented in our XTC
system the taDOM storage model illustrated in Fig. 3 as a slight extension of the XML
tree representation defined in [21]. In contrast to the DOM tree, we do not directly at-
tach attributes to their element node, but introduce separate attribute roots which con-
nect the attribute nodes to the respective elements. String nodes are used to store the ac-
tual content of an attribute or a text node. Via the DOM API, this separation enables
access of nodes independently of their value. Our representational enhancement does
not influence the user operations and their semantics on the XML document, but is sole-
ly exploited by the lock manager to achieve certain kinds of optimizations.

Most influential for an access model to the tree nodes of an XML document is a suit-
able node labeling scheme for which several candidates have been proposed in the lit-
erature. While most of them are adequate to label static XML documents, the design of
schemes for dynamic documents allowing arbitrary insertions within the tree—free of
reorganization, i.e., no reassignment of labels to existing nodes—remains a challenging
research issue. The existing approaches can be classified into range-based and prefix-
based labeling schemes. While range-based schemes consisting of independent num-
bering elements (e.g., DocID, startPos : endPos, level, see [1]) seem to be less amenable
to algorithmic use and cannot always avoid relabeling in case of node insertions, prefix-
based schemes seem to be more flexible. We believe that they are at least as expressive
as range-based schemes, while they guarantee stability of node IDs under arbitrary in-
sertions, in addition. In particular, we favor a scheme supporting efficient insertion and
compression while providing the so-called Dewey order (defined by the Dewey Deci-
mal Classification System). Conceptually similar to the ORDPATH scheme [17], our
scheme refines the mapping and solves practical problems of the implementation.

Fast access to and identification of all nodes of an XML document is mandatory to
enable effective indexing primarily supporting declarative queries and efficient pro-
cessing of direct-access methods (e. g., getElementByld()) as well as navigational meth-
ods (e. g., getNextSibling()). For this reason, we have implemented the node labeling
scheme whose advantages should be illuminated by referring to Fig. 2. For example, a
DeweylD is 1.3.4.3.5 which consists of several so-called divisions separated by dots (in
the human readable format). The root node of the document is always labeled by Dew-
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Fig.2 A sample taDOM tree labeled with DeweylIDs

eyID 1 and consists of only a single division. The children obtain the DeweyID of their
parent and attach another division whose value increases from left to right. To allow for
later node insertions at a given level, we introduce a parameter distance which deter-
mines the gap initially left free in the labeling space. In Fig. 3, we have chosen the min-
imum distance value of 2. Furthermore, assigning at a given level a distance to the first
child, we always start with distance + 1, thereby reserving division value 1 for attribute
roots and string nodes (illustrated for the attribute root of 1.3 with DeweyID 1.3.1).
Hence, the mechanism of the Dewey order is quite simple when the IDs are initially as-
signed, e.g., when all nodes of the document are bulk-loaded. In the above tree example,
the author node is inserted later within the gap 1.3.3 to 1.3.5. Because arbitrary many
nodes may be inserted into any gap, we need a kind of overflow mechanism indicating
that the labeling scheme remains at the same level when an odd division value is not
available anymore for a gap. Thus, we reserve even division values for that purpose;
they may occur consecutively (depending on the insertion history) where an uninter-
rupted sequence of even values just states that the same labeling level is kept [13].

The salient features of a scheme assigning a DeweylID to each tree node include the
following properties: Referring to the DeweyID of a node, we can determine the level
of the node in the tree and the DeweylD of the parent node. Hence, we can derive its
entire ancestor path up to the document root without accessing the document. By com-
paring the DeweyIDs of two nodes, we can decide which node appears first in the doc-
ument’s node order. If all sibling nodes are known, we can determine the exact position
of the node within the document tree. Furthermore, it is possible to insert new nodes at
arbitrary locations without relabeling existing nodes. In addition, we can rapidly figure
out all nodes accessible via the typical XML navigation steps, if the nodes are stored in
document order, i.e., in left-most depth-first order.



Fast (indexed) access to each node a) Storage structure

is provided by variants of B*-trees tai- 13.15.1
lored to our requirements of node iden- 1 135
tification and direct or relative location y N S A

A

of any node. Fig. 3a illustrates the stor- |1 bibfl 3 book 1.3.1.5.1 11.3—»{1.3.5 price |
age structure—consisting of document M . [ tide] N
index and document container as a set
of chained pages—for the sample XML 13131 [ 134 L5 book ...
document of Fig. 2, which is stored in 3.53.1 W
document order; the key-value pairs  p) Element index
within the document index are referenc-

ing the first DeweylD stored in each authoy
container page. Additionally to the stor-
age structure of the actual document, an
element index is created consisting of a
name directory with all element names
occurring in the XML document
(Fig. 3b); for each specific element
name, in turn, a node-reference index is maintained which addresses the corresponding
elements using their DeweyIDs. In all cases, variable-length key support is mandatory;
additional functionality for prefix compression of DeweylDs is very effective. Because
of reference locality in the B*-trees while processing XML documents, most of the ref-
erenced tree pages (at least the ones belonging to the upper tree layers) are expected to
reside in DB buffers—thus reducing external accesses to a minimum.

bib\ last

1.3.433
1.7.33

Fig. 3 Document storage using B*-trees

2.4  Node Services—Support of Navigation, Query Evaluation, and Locking

Selection and join algorithms based on index access via TID lists together with the
availability of fine-grained index locking boosted the performance of DBMSs [8], be-
cause they reduced storage access and minimized blocking situations for concurrent
transactions as far as possible. Both factors are even more critical in XDBMS. Hence,
when designing such a system, we have to consider them very carefully.

Using the document index sketched in Fig. 3, the five basic navigational axes par-
ent, previous-sibling, following-sibling, first-child, and last-child, as specified in DOM
[21], may be efficiently evaluated—in the best case, they reside in the page of the given
context node cn. When accessing the previous sibling ps of ¢n, e.g., node 1.5 in Fig. 2,
an obvious strategy would be to locate the page of 1.5 requiring a traversal of the doc-
ument index from the root page to the leaf page where 1.5 is stored. This page is often
already present in main memory because of reference locality. From the context node,
we check all IDs backwards, following the links between the leaf pages of the index,
until we find ps—the first ID with the same parent as ¢n and the same level. All IDs
skipped along this way were descendants of ps. Therefore, the number of pages to be
accessed depends on the size of the subtree having ps as root. An alternative strategy
avoids this unwanted dependency: After the page containing 1.5 is loaded, we inspect
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the ID d of the directly preceding node of 1.5, which is 1.3.5.3.1. If ps exists, d must be
a descendant of ps. With the level information of c¢n, we can infer the ID of ps: 1.3. Now
a direct access to 1.3 suffices to locate the result. The second strategy ensures indepen-
dence from the document structure, i.e., the number of descendants between ps and cn
does not matter anymore. Similar search algorithms for the remaining four axes can be
found. The parent axis, as well as first-child and next-sibling can be retrieved directly,
requiring only a single document index traversal. The last-child axis works similar to
the previous-sibling axis and, therefore, needs two index traversals in the worst case.

For declarative access via query languages like XQuery, a set-at-a-time processing
approach—or more accurately, sequence-at-a-time—and the use of the element index
promise in some cases increased performance over a navigational evaluation strategy.
Nevertheless, the basic DOM primitives are a fallback solution, if no index support is
available. To illuminate the element index use for declarative access, let us consider a
simple XQuery predicate that only contains forward and reverse step expressions with
name tests: axis!::namel/.../axisN::nameN. XQuery contains 13 axes, 8 of which span
the four main dimensions in an XML document: parent—child, ancestor—descendant,
preceding-sibling—following-sibling, and preceding—following. For each axis, we pro-
vide an algorithm that operates on a duplicate-free input sequence of nodes in document
order and produces an output sequence with the same properties and containing for the
specified axis all nodes which passed the name test. Therefore, the evaluation of axes is
closed in this group of algorithms and we can freely concatenate them to evaluate path
expressions having the referenced structure. Our evaluation strategy follows the idea of
structural joins [1] adjusted to DeweyIDs, and additionally expanded to support the pre-
ceding-sibling—following-sibling and preceding—following dimensions.

Let us consider the following-sibling
axis as an example. In Fig. 4, the nodes of
the input sequence P, which may be the re-
sult of a former path step, are marked in a
dark shade. Furthermore, the sequence of
nodes F in our document that satisfy the
name test for the current evaluation of the
following-sibling axis carry the letter 'n'.
The DeweylIDs of these nodes are retrieved
using the element index. A problem of us-
ing the following-sibling axis is the possi-
ble generation of duplicates. For example,
node 1.3.9 qualifies as a following-sibling

1.3.563.3 1.3.5.3.5 1.3.9.3.3 1.3.9.3.,5 1.3.9.3.7

phase 1: creation of a hash table
input HT

for nodes 1.3.3, 1.3.5, and 1.3.7. Because }gg HT(.3)=1.3.3
duplicate removal is an expensive opera- 135733 HT(1.3.5.3)=1.3.5.3.3
tion, our strategy is to avoid duplicates in [ 3535

the first place. The evaluation algorithm 1355 HT(1.3.5)=1.3.5.5
works as follows: In a first phase, input Pis  1.3.7

processed in document order. For each 1.3.9.3.5 HT(1.3.9.3)=1.3.9.3.5

DeweylID d, a pair (key, value) as (par- 1.3.9.3.7
ent(d), d) is added to a hash table HT. If Flg. 4 Following_sibling algorithm
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parent(d) is already present in HT, d can be skipped. Because we process P in document
order, only the first sibling among a group of siblings is added to HT. In the second
phase, we iterate over F and probe each ID fagainst HT. If parent(f) is contained in HT,
we simply compare whether or not f'is a following-sibling of HT (parent(f)). This com-
parison can easily be done by looking at the two DeweyIDs. Assume, the parent of
f=1.3.5.3.5 is contained in HT and f'is a following-sibling of HT(1.3.5.3), then f'will be
included into the result sequence. For ID f=1.3.9.3.3, this test fails, because f'is not a
following-sibling of 1.3.9.3.5. F is processed in document order, therefore, the output
also obtains this order. Similar evaluation algorithms are provided for all other axes.

Fine-grained concurrency control is of outmost importance for collaborative use of
XML documents. Although predicate locking of XQuery and XUpdate-like statements
[21] would be powerful and elegant, its implementation rapidly leads to severe draw-
backs such as the need to acquire large lock granules, e.g., for predicate evaluations as
shown in Fig. 4, and undecidability problems—a lesson learned from the (much sim-
pler) relational world. To provide for a multi-lingual solution, we necessarily have to
map XQuery operations to a navigational access model to accomplish fine-granular
concurrency control. Such an approach implicitly supports other interfaces such as
DOM, because their operations correspond more or less directly to a navigational ac-
cess model. Therefore, we have designed and optimized a group of lock protocols ex-
plicitly tailored to the DOM interfaces which are absolutely complex—20 lock modes
for nodes and three modes for edges together with the related compatibilities and con-
version rules—, but for which we proved their correctness [12] and optimality 1[14].

2.5 Query Compilation and Optimization

The prime task of layer L5 is to produce QEPs, i.e., to translate, optimize, and bind the
multi-lingual requests—declarative as well as navigational—from the language models
to the operations available at the logical access model interface (L4). For DOM and
SAX requests, this task is straightforward. In contrast, XQuery or XPath requests will
be a great challenge for cost-based optimizers for decades. Remember, for complex lan-
guages such as SQL:2003 (simpler than the current standard of XQuery), we have ex-
perienced a never-ending research and development history—for 30 years to date—and
the present optimizers still are far from perfect. For example, selectivity estimation is
much more complex, because the cardinality numbers for nodes in variable-depth sub-
trees have to be determined or estimated. Furthermore, all current or future problems to
be solved for relational DBMSs [4] will occur in XDBMSs, too.

1. By using so-called meta-synchronization, XTC maps the meta-lock requests to the ac-
tual locking algorithm which is achieved by the lock manager’s interface. Hence, ex-
changing the lock manager’s interface implementation exchanges the system's complete
XML locking mechanism. In this way, we could run XTC in our experiments with 11
different lock protocols. At the same time, all experiments were performed on the ta-
DOM storage model optimized for fine-grained management of XML documents.
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3 Architectural Variants

Because the invariants in database management determine the mapping steps of the sup-
porting architecture, we can also use our architectural framework in new data manage-
ment scenarios where XDBMSs are involved, as long as the basic invariants still hold
true: page-oriented mapping to external storage, management of record-oriented data,
set-oriented/navigational data processing. Similar to the scenarios evolved in the past
for relational database management, equivalent ones may emerge in the future, in case
XDBMSs gain the momentum in the market.

3.1 Horizontal Distribution of XDBMS Processing

A variety of DB processing scenarios can be characterized as the horizontal distribution
of the entire DB functionality and of partitioned/replicated data to processing nodes
connected by a network. As a consequence, the core requirements remain, leading to a
simplified architectural model sketched in Fig. 5, which consists of identical layered
models for every node together with a connection layer responsible for communication,
adaptation, or mediation services. In an implementation, this layer could be integrated
with one of the existing layers or attached to the node architecture to encapsulate it for
the remaining system.

For these reasons, our layer model can serve as a framework for the implementation
of XDBMS variants for architectural classes such as Shared Nothing, Shared Disk, and
Parallel DBMSs, because all of them have to run identical operations in the various lay-
ers. Adaptation of processing primarily concerns the handling of partitioning or repli-
cation and, as a consequence, issues of invalidation, synchronization, and logging/re-
covery.

When heterogeneity of the data models or autonomy of database systems comes
into play, the primary tasks of the connection layer are concerned with adaptation and
mediation. Federated XDBMSs could represent the entire spectrum of possible data in-
tegration scenarios and would need an adjustment of the DB requests at the level of the
data model or a compensation of functionality not generally available. As opposed to
distributed homogeneous XDBMSs, some users (transactions) may only refer to a local
view thereby abstaining from federated services, while, at the same time, other users ex-
ploit the full services of the data federation. The other extreme case among the federa-
tion scenarios is represented by Multi-XDBMSs, for which the connection layer prima-
rily takes over the role of a global transaction manager passing unmodified DB requests
to the participating DB servers.

3.2 Vertical Distribution of XDBMS Processing

Our layer model also fits to client/server database processing. In this category, the major
concern is to make XDBMS processing capacity available close (or at least closer) to
the application of the client (computer). So far, client/server DBMSs are used in appli-
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Fig. 5 Horizontal XDBMS distribution

cations relying on long-running transactions with a checkout/checkin mechanism for
(versioned) data. Hence, the underlying data management scenarios are primarily tai-
lored to engineering applications. Object-oriented DBMS distinguish between file serv-
ers, object servers, and query servers: the most sophisticated ones are the query servers.
Their real challenge is declarative, set-oriented query processing thereby using the cur-
rent content of the query result buffer [3].

Until recently, query processing in such buffers was typically limited to queries
with predicates on single tables (or equivalent object types). Now, a major enhancement
is pursued in scenarios called database caching. Here, full-fledged DBMSs, used as
frontend DBs close to application servers in the Web, take over the role of cache man-
agers for a backend DB. As a special kind of vertical distribution, their performance-
enhancing objective is to evaluate more complex queries in the cache which, e.g., span
several tables organized as cache groups by equi-joins [10]. The magic concept is pred-
icate completeness where the DBMS (i.e., its cache manager) has to guarantee that all
objects required for the evaluation of a query predicate are present in the cache and are
consistent with the DB state in the backend DB. So far, these concepts are explored for
relational models, e.g., SQL. However, we have observed that the idea of predicate
completeness can be extended to other types of data models—in particular, XML data
models—, too. Thinking about the potential of this idea gives us the vision that we could
support the entire user-to-data path in the Internet with a single XML data model [9].

While the locality preservation of the query result buffer in query server architec-
tures can take advantage of application hints [3], adaptivity of database caching is a ma-
jor challenge for future research [2]. Furthermore, precise specification of relaxed cur-
rency and consistency of data is an important future task to better control the wide-
spread and growing use of distant caches and asynchronous copies [7]. Other interesting
research problems occur if transactional updates are directly performed in DB caches.
Instead of processing them in the backend DB first, they could be executed in the cache
or even jointly in cache and backend DB under a 2PC protocol. Such update models
may lead to futuristic considerations where the conventional hierarchic arrangement of
frontend cache and backend DB is dissolved: If each of them can play both roles and if
together they can provide consistency for DB data, more effective DB support may be
gained for new applications such as grid or P2P computing.
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Fig. 6 Desirable extensions for future DBMS architectures

4 New Types of DBMS Architectures?

XML data could not be adequately integrated into the original layer model because the
processing invariants valid in record-oriented DBMS do not hold true for document
trees with other types of DB requests. Therefore, we needed substantial changes and ad-
aptations, especially in layers L3 to L5, while the overall layered framework could be
preserved. However, what has to be done when the conceptual differences of the data
types such as VITA (video, image, text, audio) or data streams are even larger?

4.1 The Next Database Revolution Ahead?

VITA types, for example, are managed in tailored DB buffers and are typically deliv-
ered (in variable-length junks) to the application thereby avoiding additional layer
crossings. In turn, to avoid data transfers, the application may pass down some opera-
tions to the buffer to directly manipulate the buffered object representation. Hence,
Fig. 6 illustrates that the OS services or, at best, the storage system represent the least
common denominator for the desired DBMS extensions.

If the commonalities in data management invariants for the different types and thus
the reuse opportunities for functionality are so marginal, it makes no sense to squeeze
all of them into a unified DBMS architecture. As a proposal for future research and de-
velopment, Jim Gray sketched a framework leading to a diversity of type-specific
DBMS architectures [6]. As a consequence, we obtain a collection of heterogeneous
DBMSs which have to be made accessible for the applications—as transparently as pos-
sible by suitable APIs. Such a collection embodies an “extensible object-relational sys-
tem where non-procedural relational operators manipulate object sets. Coupled with
this, each DBMS is now a Web service” [6]. Furthermore, because they cooperate on
behalf of applications, ACID protection has to be assured for all messages and data tak-
ing part in a transaction.
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4.2 Dependability versus Adaptivity

Orthogonal to the desire to provide functional extensions, the key role of DBMSs in
modern societies places other kinds of “stress” on their architecture. Adaptivity to ap-
plication environments with their frequently changing demands in combination with de-
pendability in critical situations will become more important design goals—both lead-
ing to contradicting guidelines for the architectural design.

So far, information hiding and layers as abstract machines were the cornerstones for
the design of large evolutionary DBMSs. Typically, adaptable component (layer) be-
havior cannot be achieved by exploiting local “self”’-observations alone. Hence, auto-
nomic computing principles applied to DBMS components require more information
exchange across components (introducing more dependencies) to gain a more accurate
view when decisions relevant for behavioral adaptations have to be made. Trouble-free
operation of a DBMS primarily comes from adjustment mechanisms automatically ap-
plied to problems of administration, tuning, coordination, growth, hardware and soft-
ware upgrades, etc. Ideally, the human system manager should only set goals, policies,
and a budget while the automatic adaptation mechanisms should do the rest [5]. Online
feedback control loops are key to achieve such adaptation and "self-*" system proper-
ties, which, however, amplify the information channels across system layers.

In contrast, too many information channels increase the inter-component complex-
ity and are directed against salient software engineering principles for highly evolution-
ary systems. In this respect, they work against the very important dependability objec-
tive which is much broader than self-tuning or self-administration. Hence, design chal-
lenges are to develop a system which should be always available, i.c., exhibiting an
extremely high availability, and which only services authorized uses, i.e., even hackers
cannot destroy data or force the system to deny services to authorized users. Jim Gray
summarizes the main properties of a dependable and adaptive system as always-up +
secure + trouble-free. To develop such systems, innovative architectures observing
new software engineering principles have to be adopted. However, most of their prop-
erties are not easily amenable to mathematical modeling and runtime analysis, because
they are non-functional in general. Weikum calls for a highly componentized system ar-
chitecture with small, well-controlled component interfaces and limited and relatively
simple functionality per component which implies the reduction of optional choices
[20]. The giant chasm to be closed results from diverging requirements: growing system
complexity due to new extensions and improved adaptivity as opposed to urgent simpli-
fication needs mandatory for the development of dependable systems.

5 Conclusions

In this paper, we primarily explored how XDBMSs fit into the framework of a multi-
layered hierarchical architecture originally developed for record-oriented data models.
We proposed major changes and adaptations for which DeweyIDs embody the funda-
mentally new concept. Their expressive power and stability enabled new classes of
evaluation algorithms for services supporting navigation, declarative queries, and fine-
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grained locking. Finally, we sketched some ideas for integration data types which can-
not be efficiently mapped to the layer architecture and emphasized the need to decidedly
improve adaptability and dependability properties in future DBMSs.
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