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PAbstract

We explore suitable node labeling schemes used in collaborative XML DBMSs (XDBMSs, for short) supporting typical
XML document processing interfaces. Such schemes have to provide holistic support for essential XDBMS processing
steps for declarative as well as navigational query processing and, with the same importance, lock management. In this
paper, we evaluate existing range-based and prefix-based labeling schemes, before we propose our own scheme based
on DeweyIDs. We experimentally explore its suitability as a general and immutable node labeling mechanism, stress its
synergetic potential for query processing and locking, and show how it can be implemented efficiently. Various compres-
sion and optimization measures deliver surprising space reductions, frequently reduce the size of storage representation—
compared to an already space-efficient encoding scheme—to less than 20–30% in the average and, thus, conclude their
practical relevance.
� 2005 Published by Elsevier B.V.
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1. Introduction

As XML documents permeate information systems and databases with increasing pace, they are more and
more used in a collaborative way. The challenge for database system development is to provide adequate and
fine-grained management for these documents enabling efficient and concurrent read and write operations. In
essence, this objective postulates the design and management of highly dynamic XML documents. Therefore,
future XML DBMSs will be judged according to their ability to achieve high transaction parallelism. Cur-
rently, navigational and declarative languages are used to process XML documents. Because they are already
available in the form of standards like SAX, DOM, XPath, or XQuery [25], and used as typical XML docu-
ment processing (XDP) interfaces, XDBMSs should be able to run concurrent transactions supporting all
these interfaces simultaneously and, at the same time, guarantee ACID properties [8] for all of them.
U
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1.1. Desired properties of node labeling schemes

Any node labeling scheme used in XDBMSs as a prerequisite of fine-grained storage and management of
XML documents must enable declarative and navigational operations equally well. Such multi-lingual XDP
support explicitly means that—starting from a context node—navigational operations of DOM and SAX lan-
guage models such as parent/first-child/last-child/previous-sibling/next-sibling must be facilitated and, at the
same time, adequate support for processing steps in declarative queries along the 13 axes [26] of the XQuery
and XPath 2.0 language model must be guaranteed. It is striking that the earliest proposals for node labeling
schemes [5] exclusively focused on parent/child and ancestor/descendant support thereby assuming static XML
documents. With the upcoming observation that large XML documents are likely to be used in collaborative
applications requiring read and write access to them, the aspects of dynamic XML documents enabling arbi-
trary node insertions and deletions were considered in addition, while the (limited) query evaluation support
was preserved by the enhanced dynamic labeling schemes.

As far as declarative query processing is concerned, we assume that the eight axes parent/child, ancestor/
descendant, previous-sibling/following-sibling, previous/following are of particular importance. They are fre-
quently exploited in XML query processing by decomposing complex queries into sequences of operations
where such tailored axis operators are employed and chained together to derive the final result. For example,
‘‘axis1::name_test1/.../axisn::name_testn’’ is such an evaluation sequence. For each of these axis operators, a
duplicate-free sequence of node labels (preferably in document order, i.e., corresponding to left-most depth-
first traversal of the document) together with a name test is assumed as input; the axis operator then derives a
duplicate-free sequence of node labels (in document order) where each of the qualified nodes satisfies the name
test w.r.t. the specified axis. Note, query processing applied to sufficiently broad classes of XML query types
requires the efficient support of all axis operators, potentially multiple times in a single query composed of n of
such processing steps.

So far, the most important dynamic aspect—the behavior of a node labeling scheme under concurrency
control requirements (efficient transactional isolation of readers and writers)—was completely neglected.
On the other hand, fine-grained storage and management of XML documents is mandatory for efficient
and scalable processing in multi-user XDBMSs. For this reason, we need a holistic view of a node labeling
scheme adequate in such environments and have to evaluate its synergetic potential for query processing as
well as concurrency control, before we can recommend it for general use.

Before the features of a labeling scheme can be used for query processing, appropriate support for node
locking is needed. Fine-grained locking means that all ancestors have to be protected by suitable kinds of
intention locks, before the context node—often an inner node of the document tree—can be locked by an
R/U/X lock [8]. Because navigational and declarative query processing typically begins—by using an
index—with a ‘‘jump’’ inside the tree, locking the entire ancestor chain is a very frequent internal operation.
If the transaction decides after some navigation steps that some node has to be updated, access to the entire
ancestor chain is again needed to perform appropriate lock conversions. Otherwise, if no index support and no
adequate node labeling scheme is available, accessing a specific node would necessarily call for a scan of the
entire document. Even in the case that the evaluation of processing steps are performed by exclusive use of
index entries (without accessing the document nodes), suitable locks have to protect at least the respective
index ranges to provide for repeatable results [20]. Furthermore, relabeling of nodes in transactional environ-
ments is not tolerable, because a user may keep node labels at the client-side application context for efficient
direct access (using, for example, the DOM interface).

Note, although predicate locking of XQuery statements [26]—and, in the near future, XUpdate-like state-
ments—would be powerful and elegant, its implementation rapidly leads to severe drawbacks such as unde-
cidability problems and the need to acquire large lock granules for simplified predicates—a lesson learned
from the (much simpler) relational world [14]. To provide for an acceptable solution, we necessarily have
to map XQuery operations to a navigational access model to accomplish fine-granular concurrency control.
Such an approach implicitly supports other XDP interfaces mentioned because their operations correspond
more or less directly to a navigational access model.

Very important for efficient access to XML tree nodes is a labeling scheme which supports all the naviga-
tional operations as well as the evaluation of the main axes for declarative query processing. At the same time,
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the labeling scheme must facilitate the work of the lock manager. In particular, the set of labels used to iden-
tify nodes in a lock protocol must be immutable (for the life time of the nodes), must, when inserting new
nodes, preserve the document order, and must easily reveal the level and the IDs of all ancestor nodes. Further-
more, the stored document must guarantee the round-trip property, that is, the XDBMS must be able to recon-
struct the document in its original form. Last, but not least, the labels need a very efficient variable-length
representation, because there are frequently millions of nodes in large XML documents (see Table 3).

1.2. Our contribution

We believe that very few of the existing approaches can fulfill the strong requirements outlined above. None
of the schemes proposed so far has considered the needs of locking protocols. Furthermore, none has taken
the support of navigation into account, which can be optimized together with the physical document mapping.

By surveying the existing node labeling schemes, we identify shortcomings which cannot cover all these fea-
tures. In contrast, we show that all of these enhanced requirements can be satisfied by the expressiveness of
DeweyIDs. To convince ourselves that DeweyIDs are a salient concept which is also implementable, we have
developed a native XDBMS prototype called XTC (XML Transaction Coordinator, [9,11]) which exploits
them for all tasks mentioned.

In this paper, Section 2 gives a characterization of the range-encoding and prefix-encoding labeling
schemes. Our approach based on the idea of Dewey classification and lexicographic order is outlined in Sec-
tion 3, where we show that all requirements listed in Section 1.1 are satisfied. In Section 4, we explore various
methods to efficiently implement DeweyIDs. Section 5 describes extensive empirical experiments and checks
various parameters of our DeweyID mapping. Finally, we give experimental results of various optimization
approaches, before we summarize our study and wrap up with conclusions.

2. Range-based vs. prefix-based schemes

An XML document is usually represented by an ordered, labeled tree which is defined in the DOM stan-
dard [25]. Each node in the tree corresponds to an element, an attribute, or text data1; edges between the nodes
represent element–subelement or element–attribute relationships. An XML database can be considered as a
forest of such trees.

Node labeling was considered a challenging task and has attracted lots of researchers at an early stage [5].
Today, some of the proposals are of historical interest at best, because important requirements, such as sup-
port of dynamic schemes, later emerged. For example, bit-vector schemes where all labels have fixed size n and
the storage space required for all labels in a document is exactly n2, cannot cope with the characteristics of
large XML documents. Furthermore, a scheme assuming perfectly balanced and static trees can provide extra
functionality [15] when certain numbering conventions are observed. Based on a complete k-ary tree possibly
filled with virtual nodes, it is easy to calculate from a given ID the ID of its parent, sibling, and (possibly vir-
tual) child nodes. However, such an enforced regular structure comes with a high price: a huge number of IDs
must be wasted to balance a highly skewed tree into a complete k-ary tree. If detailed advance knowledge
about the XML document structure is available, the parameter k can be adjusted at each level. Hence, meta-
data consisting of a vector with tailored values ki per level i [17] could lead to levelwise regular structures (see
also Section 4.1). Despite such optimization efforts (levels with varying k), this idea had to be given up for
practical applications (see XML document characteristics in Table 3).

Here we concentrate on competitive schemes supporting at least dynamic documents concerning the most
important requirements mentioned above. As far as an appropriate scheme for XDBMSs is concerned, we
have to observe the modification of such trees relevant for labeling and order preservation of the tree nodes.
In a tree, arbitrary insertions and deletions can take place at any position, e.g., using DOM operations, typ-
ically resulting in the attachment of new or the removal of existing subtrees. Even renaming of existing nodes
1 The labeling schemes could be extended to other node types such as namespace or comment in a straightforward way.
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is possible [25]. All serious node labeling schemes proposed in the literature [1,4,7,22,27] can be classified into
range-based and prefix-based node labeling schemes.

2.1. Range-based schemes

Traditional range-based schemes encode the position of the nodes in the tree by a 3-tuple (DocNo, Left-
Pos :RightPos, LevelNo). DocNo is the identifier of the document, which we ignore in the following (without
any loss of generality), because we concentrate on the labeling of nodes in the same document. The pair of
LeftPos (LP) and RightPos (RP) characterizes the range of numbers covered by a node and its subtree; it
can be generated by performing a left-most depth-first traversal of the tree (indicated by the node numbers
in Fig. 1) and sequentially assigning a monotonically increasing number at each visit of a node. LevelNo
(lv) describes the nesting depth of the tree nodes starting with 0 at the root.

Range-based schemes [1,5] can easily determine some of the axis relationships: the ancestor/descendent rela-
tionship can be directly revealed by comparing the ranges of two nodes: a tree node n1, (LP1 :RP1, lv1), is
ancestor of a tree node n2, (LP2 :RP2, lv2), iff LP1 < LP2 and RP1 > RP2. Node n1 is parent (child) of node
n2, if lv1 = lv2 � 1 (lv1 = lv2 + 1) holds, in addition. Furthermore, a simple test is sufficient to determine the
following/preceding relationship: node n2 is a following (preceding) node of n1, if LP2 > RP1 (RP2 < LP1). How-
ever, traditional schemes are not expressive enough to figure out the following-sibling/preceding-sibling rela-
tionship. To cure this shortcoming, an enhanced range-encoding scheme was proposed in [4]: a three-
dimensional descriptor (LP :RP, lv,P_LP) additionally includes the parent node’s left position (P_LP). With
this information, the following-sibling/preceding-sibling relationship between two nodes can be concluded: n1 is
a following-sibling node of n2, iff LP1 > LP2 and P_LP1 = P_LP2. Similarly, n1 is a preceding-sibling node of
n2, iff LP1 < LP2 and P_LP1 = P_LP2.

How do we gain a range-encoding scheme whose node labels (descriptors) are immutable under arbitrary
insertions? An obvious idea is to leave sufficiently large ‘‘gaps’’ in the numbering range upon initial number
assignment [7]. For example, we could use instead of 1 an increment of 1000 thereby enabling later node inser-
tions in the tree (see Fig. 1a). In this case, we could, for example, insert after the author node a second author
with its subtree using the labeling gap 10,001 to 10,999. This measure would hold off on relabeling nodes in
dynamic XML documents, but could not avoid them, e.g., in case of heavy point insertions in a subtree.

Much more serious is the question how we can efficiently figure out the identifiers (labels) of all ancestor
nodes. A frequent situation is that an index allows jumps into the document and that a node, in this way,
is accessed ‘‘out of the blue’’. If the document itself has to be accessed to determine all ancestors, a kind of
backward scan in document order is needed thereby traversing the entire document in the worst case. Assume
the node labels (LP :RP, lv,P_LP) stored together with the nodes are additionally organized—having LP as a
kind of key—in an index pointing to the physical node locations of the document. Then, P_LP could be used
to access the parent node entry in the index and, in turn, P_LPparent to access the parent’s parent in the index.
U
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Fig. 1. Examples of enhanced tree node labeling schemes: (a) range-encoding scheme and (b) prefix-encoding scheme.
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For deep trees, this still results in a very expensive procedure and seems to be a knock-out criterion for the use
of range-encoded labels in XDBMSs. Other procedures such as described in [1] behave in a similar way,
because they have to access conceivable ancestor nodes (possibly on disk) and verify their existence, while
an ideal scheme should calculate them.

2.2. Prefix-based schemes

Prefix-based schemes directly encode the parent of a node as a prefix of its label using for instance a tra-
versal in document order. The simplest algorithm is the Dewey Decimal Coding (DDC, [6]) frequently used
to classify topics in libraries. As a matter of fact, DDC (see Section 3) in its original form introduces a fixed
alphabet per level and therefore consumes more bits per node than actually required. This extra cost makes the
representation of the DDC scheme easier, because it does not need special separators (in the stored format) to
distinguish the tree levels characterized by the label [22]. Furthermore, it makes the scheme more expressive,
because each node label can be considered as a kind of index for the entire ancestor path of the node. How-
ever, in deep trees these labels may grow very large such that they were considered not ‘‘implementable’’ in
XDBMSs.

Traditional prefix-based schemes label each tree node with a unique string S such that (1) S1 of node n1 is
before S2 of node n2 in lexicographic order, iff n1 is before n2 in the document order and (2) S1 is a prefix of S2,
iff n1 is an ancestor of n2. As indicated in Fig. 1b, a set of fixed-length (and, therefore, prefix-free) binary
strings (edge codes) is assigned—from left to right in lexicographic order—to the outgoing edges of each node.
Then we build the string Sc of a node by concatenating the string of the parent node with the string assigned to
its incoming edge. A level indicator lv is kept together with this string. If we keep an indicator sl describing the
string length of the incoming edge, then we can easily determine the string Sp of the parent node. Given two
nodes, such a scheme (S, lv, sl) essentially allows the determination of the eight axis relationships as discussed
in Section 2.1.

An enhancement of this traditional prefix-encoding scheme is introduced in [4]. Instead of keeping sl in the
three-dimensional node descriptor, the so-called edge string length (esl) is stored in each node label. The values
of this parameter are calculated in a complex procedure taking the lengths of all edge codes of all levels in the
path to the root into account (see Appendix A). As a consequence, esl can be used to extract the label strings
of a node’s ancestors.2 Hence, this opportunity enables us—given the label (S, lv,esl) of any node—to derive
the strings (identifiers) of each ancestor node without accessing the document. Note, the lengths of all edge
codes are tailored to the fan-out in the individual path to be encoded. The fact that the lengths of these initially
assigned edge codes remain constant, is a cornerstone of the stability of this enhanced prefix-encoding scheme.
Unfortunately, initial and optimal assignment of these edge codes is susceptible to node insertions and, in
turn, to the need to relabel entire paths. Reservation of gaps by providing (overly) long edge codes at each
level may dramatically increase the length of S and may not tolerate all insertions, because the document order
of the nodes, which is encoded in S, has to be preserved. Hence, the insertion of a second author and its sub-
tree after the author node in Fig. 1b could not use the free edge code ‘‘11’’. Therefore, a reassignment of the
edge code ‘‘10’’ or a new assignment of 3-bit edge codes at level 2 to all outgoing edges of book (leaving some
room for future insertions) would require the relabeling of some parts in the document which involves com-
plex computations in the entire subtree.

Variations of prefix-free edge codes were explored in [7]. The children of a node, starting from the left, have
edge codes ‘‘0’’, ‘‘10’’, ‘‘110’’, etc. with the ith child having edge code s(i) = ‘‘111i�10’’. Hence, the ‘‘0’’ is used
as a kind of separator which allows to determine the relative position of a child in the set of siblings and its
depth in the tree, when the entire string concatenating the path from the root is checked. For trees with
restricted depth, Ref. [7] proposed a more suitable labeling scheme. Again for the edge codes of a sibling
set, s(i) for the ith child is defined such that s(1), s(2), s(3), . . . = 0,10,1100,1101,1110,11110000, . . . This edge
code increments the binary number represented by s(i) to obtain s(i + 1). If the representation of s(i) + 1
2 For typical value distributions in real applications, this approach is impractical, because the representation of an esl would require up
to 50 decimal digits (or 167 bits) for deep trees which happen to also exhibit a wide fan-out in some location.
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consists of all ones, the code doubles its length by attaching a sequence of zeros. Both schemes for assigning
edge codes are not length-restricted, but very expensive in terms of space consumption, if the set of siblings is
very large. But the decisive reason for their disqualification is that these codes fail to support order-sensitive
insertions.

A variant of a prefix-based labeling scheme is the so-called prime-number labeling scheme [24]. In the top-
down prime-number labeling scheme,3 unique, so-called self-label primes are first assigned to each node. Then
the labeling algorithm starts from the root node and assigns the multiplication result of all self-label primes in
the ancestor path as a label to each node. Node insertions require the preservation of the document order,
which is maintained by order numbers, calculated according to the so-called simultaneous congruence. This
may cause the recalculation of the order information for all successor nodes. Ancestor determination can
be achieved by a kind of number factorization applied to the label of the context node to gain the individual
node numbers along the ancestor path. Although this may be an elegant idea for textbook trees, it is totally
inappropriate in real situations.4 As further optimization, the node’s self-label prime can be stored together
with the node label such that the parent node label can be computed by a division. Hence, this improvement
to derive the parent node label is similar to the P_LP idea in [4]; however, it needs in the same way additional
index accesses to derive the entire ancestor chain which makes the procedure too slow.

3. Prefix-based schemes reconsidered

An important advantage of prefix-based labeling schemes is their capacity to adjust arbitrary updates in
documents. If labels can be of variable size, there is no limitation of the tree growth in breadth and depth.
Insertions are particularly simple as long as ordering among descendants is not critical: then new child nodes
can be added to the right side of existing nodes without having to relabel them. Hence, labels of variable size
enable insertions, while, on the other hand, this variability opens new opportunities of compression. There-
fore, we must preserve these benefits while we enhance such schemes to match the new requirements.

3.1. ORDPATH concept

ORDPATH is a hierarchical labeling scheme which implements a prefix-based scheme (similar to the rep-
resentation in Fig. 2). It is called ‘‘insert-friendly XML node labeling’’ and was first explored in [21]. For
example, an ORDPATH label is 1.5.3.3.9, which consists of five so-called divisions (components) separated
by dots (in the human readable format). The root node of the document is always labeled by ORDPATH
value 1 and consists of only a single division. The children obtain the ORDPATH value of their parent
and attach another division whose value increases from left to right. Every division is represented by an ordi-
nal for which a variable-length bit encoding is provided. During the initial load of the tree, only positive, odd
integers are assigned as division values. Counting odd division values of an ORDPATH label is used to deter-
mine the level (depth) of the labeled node. Because an ordinal is (theoretically) not restricted in its length, it is
obvious that rightmost insertions of new child nodes can be performed at any position of the tree. Leftmost
insertions are handled in a similar way by extending the labeling range using negative ordinals. If no labeling
space is available when inserting a new node between two existing children, a ‘‘careting-in’’ technique is
applied. The label is generated using additional intermediate careting divisions having even values. These
careting divisions do not count as divisions that increase the encoded depth of the node in the tree. In all cases,
relabeling of nodes is avoided, though substantial storage space may by consumed by the carets.

A variation of the DeweyID concept called Dynamic Level Numbering Scheme (DLN) was proposed in [3].
The basic DLN scheme takes advantage of advance knowledge of the document structure and is discussed in
Section 4.3. While it supports right-hand insertions after existing siblings, left-hand insertions may quickly
3 An analogous, but less suitable scheme uses bottom-up prime-number node labeling.
4 Note, we have experimented with trees having a depth of 37 and a maximal fan-out of several millions. Assume, we would have solved

the problem of self-label assignment of unique primes and of number representation. But number factorization during query processing
remains a nightmare. Such an approach is definitely impractical.
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Fig. 2. A sample DOM tree labeled with DeweyIDs.
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lead to inflated labels. Compared to ORDPATH, they would need shorter reorganization intervals in case of
unfavorable insertion orders.

3.2. Mapping of DeweyIDs to DOM trees

DeweyIDs implement a prefix-based scheme for the labeling of DOM trees, which is also based on the con-
cept of Dewey order characterized by Fig. 2. Conceptually similar to the ORDPATH scheme, our DeweyID
scheme refines the Dewey order mapping,5 provides for gaps in the labeling space, and introduces a kind of
overflow mechanism when gaps for new insertions are in short supply. To allow for later node insertions, we
introduce a parameter distance, which determines the gap initially left free in the labeling space between neigh-
bor nodes at a given level. Only odd division values also used for level identification are assigned during initial
document loading and as long as a gap in the labeling space is big enough for inserting a new node. In con-
trast, even division values play a special role as kind of overflow indicator. In Fig. 2, we have chosen a distance
value of 4. When assigning at a given level a division to the first child, we always start with distance + 1,
because division value 1 is reserved for attribute maintenance. When all nodes of the document are
loaded—typically bulk-loaded in document order—, their labeling is guided by the following rules:

• Element root node: It always obtains DeweyID 1.
• Element and text nodes: The first node at a level receives the DeweyID of its parent node extended by a
division of distance + 1. If a node N is inserted after the last node L at a given level, DeweyID of L is
assigned to N where the value of the last division is increased by distance.

• Attribute nodes: All attribute nodes of N obtain the DeweyID of N extended by a division with value 1
indicating the type ‘‘attribute’’ and another division labeling the attribute and its value. If it is the first attri-
bute node of N, this division has the value 3. Otherwise, the division receives the division value of the last
attribute node of N increased by 2. In this case, the distance value does not matter, because the attribute
sequence does not affect the semantics of the document. Therefore, new attributes can always be inserted at
the end of the attribute list.

After initial loading of our sample document in Fig. 2, we have inserted the nodes of the second author and
then of the third author. For author2, we could assign an odd division value 11 resulting in DeweyID 1.5.11.
To keep the gap open for arbitrary many insertions, we cannot use 12 as a regular division value for author3.
5 The memory representation is based on so-called taDOM trees which virtually provide two new node types ‘‘attribute root’’ and
‘‘string’’ which are exclusively used by the XTC lock manager to enhance concurrency [11]. These extensions are neither stored on external
storage nor visible at the XML APIs.
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Instead, we indicate by an even value for a division that some overflow has happened. Furthermore, we indi-
cate by an additional division the position of the new node by an odd value using the same distance value.
Hence, author3 receives DeweyID 1.5.12.5 which preserves the document order and allows the correct level
identification by counting the odd division values.

Assignment of a DeweyID for a new last sibling is similar to the initial loading, if the last level only consists
of a single division. Hence, when inserting element node year after price (with DeweyID 1.5.13), addition of
the distance value yields 1.5.17. In case, the last level consists of more than one division (due to earlier inser-
tions and deletions), the first division of this level is increased by distance � 1 to obtain an odd value, i.e., the
successor of 1.5.14.6.5 is 1.5.17.

If a sibling is inserted before the first existing sibling, the first division of the last level is halved and, if nec-
essary, ceiled to the next integer or increased by 1 to get an odd division. This measure secures that the
‘‘before-and-after gaps’’ for new nodes remain equal. Hence, inserting a type node before title would result
in DeweyID 1.5.3. In case the first division of the last level is 3, it will be replaced by 2.distance + 1, when
the next predecessor is inserted, e.g., 1.5.2.5. If the first divisions of the last level are already 2, they have
to be adopted unchanged, because smaller division values than 2 are not possible, e.g., the predecessors of
1.5.2.5 are 1.5.2.3, 1.5.2.2.5, 1.5.2.2.3, 1.5.2.2.2.5, and so on.

The remaining case is the insertion of node d2 between two existing nodes d1 and d3. Hence, for d2 we must
find a new DeweyID with d1 < d2 < d3. Because they are allocated at the same level and have the same parent
node, they only differ at the last level (which may consist of arbitrary many even divisions and one odd divi-
sion, in case a weird insertion history took place at that position in the tree). All common divisions before the
first differing division are also equal for the new DeweyID. The first differing division determines the division
becoming part of DeweyID for d2. If possible, we prefer a median division to keep the before-and-after gaps
equal. Assume for example, d1 = 1.9.5.7.5 and d3 = 1.9.5.7.16.5, for which the first differing divisions are 5 and
16. Hence, choosing the median odd division results in d2 = 1.9.5.7.11. As another example, if d4 = 1.5.6.7.5
and d6 = 1.5.6.7.7, only even division 6 would fit to satisfy d4 < d5 < d6. Remember, we have to recognize the
correct level. Hence, with distance value 4, d5 = 1.5.6.7.6.5. The reader is encouraged to construct DeweyIDs
for further weird cases.

3.3. Fine-grained access to XML documents

Fast (indexed) access to each node is provided by variants of B*-trees tailored to our requirements of node
identification and direct or relative location of any node. Fig. 3a illustrates the physical document structure—
consisting of document index and document container as a set of chained pages—sketching the sample XML
document of Fig. 2, which is stored in document order; the key-value pairs within the document index are ref-
erencing the first DeweyID stored in each container page. Using a vocabulary, we can compress the actual
storage representation of a node and increase the storage utilization on disk. In addition to the storage struc-
ture of the actual document, an element index is created consisting of a name directory with (potentially) all
element names occurring in the XML document (Fig. 3b); this name directory often fits into a single page.
For each specific element name, in turn, a node reference index may be maintained which addresses the cor-
responding elements using their DeweyIDs. In all cases, variable-length key support is mandatory; additional
functionality for prefix compression of DeweyIDs is very effective. Because of reference locality in the B*-trees
U
N
C

1 bib
.5 title

1.5.13 price

1

1.5.3.5
1.5.13
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............
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Fig. 3. Document storage using B*-trees: (a) Physical document structure and (b) element index.
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while processing XML documents, most of the referenced tree pages (at least the ones of the upper tree layers)
are expected to reside in DB buffers—thus reducing external accesses to a minimum.

3.4. Holistic system support of DeweyIDs

Existing DeweyIDs are immutable, that is, they allow the assignment of new IDs without the need to reor-
ganize the IDs of nodes present. A relabeling after weird insertion histories6 can be preplanned; it is only
required, when implementation restrictions are violated, e.g., the max-key length in B*-trees. Comparison
of two DeweyIDs allows ordering of the respective nodes in document order. As opposed to competing
schemes, DeweyIDs (and ORDPATHs) easily provide the IDs of all ancestors to enable intention locking
of all nodes in the path up to the document root without any access to the document itself [10]. For example,
the ancestor IDs of 1.5.12.5.2.2.5.9 are 1.5.12.5.2.2.5, 1.5.12.5, 1.5, and 1.

Declarative queries are supported by the efficient evaluation of the eight axes frequently occurring in XPath
or XQuery path expressions:

• parent/child: Checking whether node d1 is parent of d2 only requires a check whether DeweyID of d1 is a
prefix of DeweyID of d2 and level(d1) = level(d2) � 1 and vice versa.

• ancestor/descendant: Checking whether node d1 is an ancestor of d2 only requires to check whether Dewe-
yID of d1 is a prefix of DeweyID of d2 and vice versa.

• following-sibling/preceding-sibling: An element or text node7 d1 is a following-sibling of d2 if par-
ent(d1) = parent(d2) and d1 > d2. Similarly, d1 is a preceding-sibling of d2 if parent(d1) = parent(d2) and
d1 < d2.

• following/preceding: Node d1 is in following relationship to d2 if d1 > d2 and d1 is not a descendant of d2,
whereas d1 is in preceding relationship to d2 if d1 < d2 and d1 is not an ancestor of d2.

Using the document index sketched in Fig. 3, the five basic navigational axes parent, previous-sibling, fol-
lowing-sibling, first-child, and last-child, as specified in DOM [25], may be efficiently evaluated—in the best
case, they reside in the page of the given context node cn. When accessing the previous sibling ps of cn,
e.g., node 1.9 in Fig. 3, an obvious strategy would be to locate the page of 1.9 requiring a traversal of the doc-
ument index from the root page to the leaf page where 1.9 is stored. This page is often already present in main
memory because of reference locality. From the context node, we check all IDs backwards, following the links
between the leaf pages of the index, until we find ps—the first ID with the same parent as cn and the same level.
All IDs skipped along this way were descendants of ps. Therefore, the number of pages to be accessed depends
on the size of the subtree having ps as root. An alternative strategy avoids this unwanted dependency: After
the page containing 1.9 is loaded, we inspect the ID d of the directly preceding node of 1.9, which is 1.5.13.5. If
ps exists, d must be a descendant of ps. With the level information of cn, we can infer the ID of ps: 1.5. Now a
direct access to 1.5 suffices to locate the result. The second strategy ensures independence from the document
structure, i.e., the number of descendants between ps and cn does not matter anymore. Similar search algo-
rithms for the remaining four axes can be found. The parent axis, as well as first-child and next-sibling can
be retrieved directly, requiring only a single document index traversal. The last-child axis works similar to
the previous-sibling axis and, therefore, needs two index traversals in the worst case.

Despite of these really useful properties for holistic processing support, it is often claimed that DeweyIDs
are not ‘‘implementable’’ because of their size which is primarily influenced by the document depth, the node
fan-out, and the distance parameter. High distance values reduce the probability of overflows. Their selection
has to be balanced against increased storage space for the representation of DeweyIDs. Nevertheless, Dewey-
IDs may become quite long, especially in trees with large max-depth values. Therefore, serious efforts are
needed to develop a practical solution for them.
6 For example, point insertions of thousands of nodes between two existing nodes may produce large DeweyIDs. Especially insertions
before the currently inserted node may enforce increased use of even division values thereby extending the total length of a DeweyID.
7 Attribute nodes have no siblings.
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4. Efficient encoding of DeweyIDs

Due to the large variance of XML documents in number of levels and, even more, number of elements per
level, we cannot design a (big enough) fixed-length storage scheme of DeweyIDs; such a scheme would mean
fixed for individual divisions and fixed for the number of maximum allowed repetitions per level. Even if the
first sibling at a level has a small division value distance, the bulk-loaded millionth sibling would have a value
of 106 Æ distance (e.g., requiring the representation of �4 · 106 as an individual division value using the exam-
ple in Fig. 2). On the other hand, we have more smaller division values—assigned to the ‘‘first’’ children of a
node—than larger ones constructed for children inserted later. Of course, there are definitely more ‘‘first’’ chil-
dren. Therefore, we urgently need adaptivity for our storage scheme.

For the sake of space economy and flexibility, the storage scheme must be dynamic, variable, and effective
in each aspect and, at the same time, it must be very efficient in storage usage, encoding/decoding, and value
comparison. As far as space is concerned, we need a bit-level encoding scheme, which achieves very efficient
representation of small values, while it is reasonably space-efficient for very large values. To allow for marginal
optimization, we assume that field length = 0 and division value = 0 do not occur in our encoding units such
that we can use ‘‘0’’ to improve the encoding. The critical question is how can we provide for such a scheme?
Therefore, we will explore the solution space for efficient encodings of division values in the following.

We discuss the encoding of division values Oi at the bit level to allow for the minimum storage space pos-
sible. To enable integration into a system context, e.g., the use of DeweyIDs consisting of a variable number of
Oi’s as keys or references in B*-trees, they have to be aligned to and compared with each other using variable-
length byte structures, that is, a field of typically 1-byte length prefixes the DeweyID encoding. Here we con-
centrate on the storage consumption of single division values.

4.1. Static schemes using advance knowledge

Advance knowledge of the maximum number of siblings per document level (msl) in static documents leads
to the most simple encoding scheme using per level a fixed encoding unit. In this restricted case, the length
information Eli per level i can be factored out and kept as metadata. Encoding length Eli = ceil(log2msl(i))
corresponds to the storage space needed for a division representation. If we assume that division value 0 does
not occur and we have encountered msl(0) = 1, msl(1) = 8, and msl(2) = 35 in an analysis phase before storing
the document, we yield El0 = 1, El1 = 3, and El2 = 6. Hence, DeweyID 1.7.11 is encoded by the concatenation
of the three codes for the individual division values resulting in 0 110 001010. Obviously, such encodings at
the division level and, in turn, at the DeweyID level are order preserving. Direct bit-level (or byte-level) com-
parison of a shorter encoding E1 with the corresponding prefix P2 of a longer encoding E2 always delivers cor-
rect results. In case E1 = P2, then E2 is larger than E1. Otherwise, the comparison result of E1 and P2 decides.

Despite of the strong assumptions, this encoding scheme results in minimal storage usage only, if the doc-
ument tree is well balanced, that is, (nearly) msl(i) siblings occur under each node of level li�1. Note, if the
document tree is skewed, e.g., msl(i) siblings only occur under a single node of level li�1, other encoding
schemes may deliver better results. Nevertheless, this scheme represents the theoretical minimum if msl divi-
sion values can appear in a given division at a given level (see Appendix B, where we have contrasted these
results with a single fixed (maximal) encoding unit per document).

4.2. Use of length fields

If advance knowledge is not available or the number of siblings at a given level is strongly varying (possibly
after later insertions), storing of division values Oi can take advantage of variable-length representations. This
could be achieved in the simplest case by attaching a fixed-length field Lf representing the actual length of Oi.
If we always choose minimal Lf values, we can exploit a kind of range expansion by assigning codes to Oi

according to the following pattern sketched for lf = 2:
00 0 � 1; 00 1 � 2; 01 00 � 3; . . . ;

01 11 � 6; 10 000 � 7; 10 001 � 8; . . .
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XLf
j¼1

2j ¼ 2Lfþ1 � 2.
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Most division values are expected to be rather small (<100), but some of them could reach >109. While for the
former example value Lf = 7 and lf = 3 would be sufficient, the latter would require Lf P 30 and lf P 5. Fur-
thermore, whatever reasonable value for lf is chosen, it is not space optimal and additionally introduces an
implementation restriction. For this reason, we should make the length indicator itself of variable length, espe-
cially to improve the encoding of small values.

A first approach makes the length indicator variable without storing explicit length information for it. The
variable length LOi can be coded in a way that it can grow in a stepwise manner without any limit [13]. For
code unit u = 3 bit, we assign length codes for LOi in the following way: 000 � 1, 001 � 2, . . . , 110 � 7,
111 000 � 8, 111 001 � 9, etc. Obviously, the n code units of u bits needed to represent LOi can be determined
such that following inequality holds for n = 1,2, . . .:
 Rðn� 1Þ � ð2u � 1Þ ¼ Ln�1 < LOi 6 Ln ¼ n � ð2u � 1Þ.
PTo guarantee minimal space consumption, we again exploit range expansion for the representation of division
values Oi. Using the following inequality:
XLn�1

j¼1

2j ¼ 2Ln�1þ1 � 2 < Oi 6

XLOi
j¼1

2j 6
XLn
j¼1

2j ¼ 2Lnþ1 � 2;
T
E
D

we can calculate for a given Oi the required length and, in turn, the entire division length Eli ¼ n � uþ LOi . Our
evaluation in Appendix B however reveals that we pay the reduction of space overhead for small values with a
significant increase for large values.

Therefore, we developed a second approach to make the length information variable. The idea is to spend a
fixed-length field LLf of length llf to describe the actual length of Lvi resulting in an entry LLf jLvi jOi. Length llf
of LLf allows the representation of values n between
C

1 6 n 6 2llf ;
R
Ewhich can be used to code values for Lvi which, in turn, determine the length of the Oi representation. Both, for

Lvi and Oi, it is advisable to apply range expansion which guarantees for minimal code length and correct divi-
sion comparison. Using llf = 2, this double range expansion works as follows:
C
O
R00 0 0 � 1; 00 0 1 � 2;

00 1 00 � 3; . . . ; 00 1 11 � 6;

01 00 000 � 7; . . . ; 01 00 111 � 14;

01 01 0000 � 15; . . . ; 01 01 1111 � 30;

01 10 00000 � 31; . . . ; 01 10 11111 � 62;

01 11 . . .
To determine the code for a given Oi, we need to find the smallest LOi such that the following inequality holds:
U
NXLn

k¼1

2k ¼ 2Lnþ1 � 2 < Oi 6

XLOi
k¼1

2k 6
XLnþ1

k¼1

2k ¼ 2Lnþ1þ1 � 2.
Then the smallest n satisfying the inequality
2n � 2 ¼ Ln < LOi 6 Lnþ1 ¼ 2nþ1 � 2;
allows to compute the space needed for a division value Oi by Eli ¼ llf þ nþ LOi .
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Table 1
Assigning codes for streaming DLNs

m Codes for k = 4 Value range of Oi

1 0xxx 0–7
2 10xx 1 xxxx 8–71
3 110x 1 xxxx 1 xxxx 72–583
4 1110 1 xxxx 1 xxxx 1 xxxx 584–4679
. . . . . . . . .
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for values of Oi P 231 � 1. Otherwise, llf = 3 (allowing values of Oi 6 2511 � 2) has to be chosen. However,
both schemes discussed so far carry a penalty for the frequent divisions with small values (see Appendix
B). Furthermore for the practical value range considered, llf P 3 reserves useless extra bits for length informa-
tion. In summary, all methods based on length fields are less suitable candidates for division encoding.

4.3. Use of control tokens

The use of control tokens is based on positions which appear in equidistant, potentially level-specific inter-
vals and can, therefore, be determined by some kind of metadata. Based on their use, the simple scheme dis-
cussed in Section 4.1 can be extended for the basic DLN [3] to support insertions which may lead to several
encoding units per level. For this reason, control tokens in the form of single bits are applied whose metadata
are collected before storing the document. Control bit ‘‘0’’ indicates a level transition, while divisions at the
same level stemming from later node insertions, e.g., for node 1.7/1, are marked by ‘‘1’’. The same msl num-
bers as in Section 4.1 lead for DLN 1.7.11 to the encoding 0 0 110 0 001010. The reason for the positional
use of ‘‘0’’ and ‘‘1’’ becomes clear when we encode DLN 1.7/1.1. The node 1.7/1 inserted as sibling after node
1.7 results in a DLN 0 0 110 1 000 0 000000. Some indicative values for the DLN space consumption are
listed in Appendix B. Note that we assume that msl is known such that each division can be represented by a
single encoding unit. If skewed sets of disjoint siblings occur at a level, these values may be misleading and far
from being optimal. On the other hand, the DLN scheme has to use the fixed encoding units per level. For this
reason, they should not be used for cross-comparisons.

The scheme discussed for basic DLN becomes far from optimal if large division values x have to be used for
nodes where new nodes are inserted relative to them and are labeled with small division values (e.g., x/1, x/1/1,
x/1/2, etc.). Therefore, it is advisable to build division values using smaller encoding units and an expansion
mechanism. Such a mechanism is also required for a DLN scheme applied to streamed data (where the msl

values are not known), because there is no guarantee that a single encoding unit of length k can express all
division values present. To reveal the intricacies of encoding approaches based on control token use, we ana-
lyze a method proposed in [3] by referring to our running example 1.7.11. In addition to a level separator
(‘‘0’’), a sequence of m encoding units (mP 1), whose construction is illustrated by Table 1,8 is needed to
express a division value Oi. The first bit occurring with value 0 is used to distinguish the length information
(in terms of encoding units of length k) from the encoding of Oi. Seemingly redundant control bits (‘‘1’’) are
used to glue the encoding units of Oi together (so-called glue bits). Obviously, we can drop these control bits
without loosing any information for Oi. We can even (repeatedly) attach a new division value O0

i (stemming
from an overflow—a later inserted node), because the position after Oi can be computed. A ‘‘1’’ in this posi-
tion would indicate the existence of an O0

i, whereas a ‘‘0’’ would switch to the next level. Hence, we can attach
several division values without changing the level.

However, the subtlety of this encoding enters the stage when it comes to the comparison of two DLNs
where overflow division values participate. Assume DLNs 1.7.11 and 1.7/1.1 encoded by means of Table 1
and k = 4. Then we yield
8 Division value 0 enables node insertions before a node labeled by division value 1.
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0000 0 0110 0 1000 1 1010

0000 0 0110 1 0000 0 0000
Due to the control token use we achieve the correct comparison result 1.7.11 < 1.7/1.1. If we would drop the
control tokens in the chosen encoding of Oi, we could not guarantee anymore that we compare control tokens
with each other. This, however, may be a prerequisite to obtain correct comparison results when the division
encoding is composed of multiple encoding units [2].

For the analysis of this encoding scheme, we define the following relationships:
FXm�1

j¼1

2jðk�1Þ � 1 < Oi 6

Xm
j¼1

2jðk�1Þ � 1 for m P 1;
R
O
Oand m = ceil((ceil log2Oi)/(k � 1)). Then the resulting storage space consumption for Oi is Eli = m(k + 1) bits.

Using our DeweyID labeling scheme, we do not need a separate mechanism to indicate overflow divisions
or level transitions, because the distinction is made by odd and even values which are chosen to be order pre-
serving. Hence, we could use an optimized DLN encoding scheme for our DeweyIDs by dropping the glue bits
in the scheme of Table 1 and by abandoning the control tokens. The resulting encoding of DeweyIDs 1.7.11
and 1.8.3.3 (we assume that 1.9.xx is already taken) is more economical and allows correct and fast compar-
isons (at the byte level):
 P0000 0110 1000 1010

0000 0111 0010 0010
U
N
C
O
R
R
E
C
T
E
DThis encoding method can be analyzed using the same calculation formulas for Oi and m, but resulting in

Eli = m Æ k bits. See Appendix B for some indicative values for their space requirements.

4.4. Use of separators

As opposed to control tokens, separators are characterized by the value of a bit sequence. Based on such
separators, an encoding approach of this class is using a k-based digital representation where the length of
the encoding unit is determined by m = log2(k + 1). The idea is to reserve an m-bit code to represent the sepa-
rator ‘‘.’’, while a sequence ofm-bit codes is interpreted as a number with base k. For example, k = 3 delivers the
following codes: 00: ‘‘0’’, 01: ‘‘1’’, 10: ‘‘2’’, 11: ‘‘.’’. Hence, 1.7.11 is encoded by E1 = 01 11 10 01 11 01 00 10
which reads (1 · 30) · (2 · 31 + 1 · 30) · (1 · 32 + 0 · 31 + 2 · 30). Our evaluation in Appendix B compares the
conceivable candidates for k. While k = 1 delivers a ‘‘funny’’ and very inefficient encoding, k = 3 and k = 7may
be appropriate for specific value distributions. Ref. [27] claims that k = 3 is superior to other Dewey encodings.
However, a k-based digital representation for small division values is rather space-consuming and therefore
does not provide an optimal solution.

On the other hand, such schemes embody a definite disadvantage: fast bit- or byte-level comparison—a core
operation for query processing—is not possible. While, due to their positional use, control tokens preserve
comparability, separators do not. Assume E2 = 01 11 10 01 11 10 01 as the encoding for 1.7.7. Then the
comparison delivers E1 < E2 while 1.7.11 > 1.7.7, although in this case separator values and data values were
compared with each other. Hence, algorithms have to regard separators and division lengths (to be detected by
checking separators) to provide correct comparisons.

4.5. Use of prefix-free codes

Prefix-free codes can be adjusted to the value distributions of the divisions used for DeweyIDs. Hence, they
offer an extra degree of freedom for optimization. Using pairs CijOi to represent division values, the idea of
Huffman trees can be applied to determine prefix-free codes Ci and to assign to them a specific length for O,
e.g., via Table 2. Direct comparability of encoded division values can be always guaranteed by proper assign-
ment of codes and value ranges. To compare the space consumption of Huffman codes with the other schemes
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Fig. 4. DeweyID template.

Table 2
H1: Assigning codes to Li fields

Code Ci Li Value range of Oi

0 3 1–7
100 4 8–23
101 6 24–87
1100 8 88–343
1101 12 344–4439
11100 16 4440–69,975
11101 20 69,976–1,118,551
11110 24 1,118,552–17,895,767
11111 31 17,895,768–2,165,379,414
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Pconsidered, we have checked several codes where the superior one H1 delivering encodings P4 bit is contained

in Table 2 and H2 in Table 5.

4.6. Encoding DeweyIDs

We have designed an overall template for a DeweyID where each division consists of a CijEi pair as illus-
trated in Fig. 4. TL of fixed length contains the total length in bytes of the actual DeweyID, belongs to the
externally stored DeweyID format, and is kept in a resp. entry of the B*-tree managing the collection of
DeweyIDs on external storage. A given encoded DeweyID is decoded as follows: As soon as a code given
in Table 2 is matched while scanning the field C0, the associated length information is used (assume code
101 in row 3) to extract the E0 value contained in the subsequent 6 bits. Encoding is performed by assigning
000000 to the first value 24 and 111111 to the last value 87 of the related range. Therefore, if we have extracted
001010, we can decode it to value 34. Then we scan field C1 and so on, until Ek is reached. Because the actual k
is not explicitly stored, TL helps to determine the proper end of the DeweyID. Encoding is accomplished the
other way around. Assume the encoding Ei of a division Oi with decimal value 11. Hence, the second row in
Table 2 delivers Ci = 100 and Li = 4. Because 11 is the fourth value of range 8–23, we yield an encoding of
0011, which is composed to the CijEi encoding of 1000011.

Because DeweyIDs are stored and managed in byte-structured sequences in B*-trees, storing a bit-encoded
DeweyID in a byte structure needs some alignment measure. By using Table 2, DeweyID 1.7.11, for example,
results in the bit sequence 00010111.1000011 where we have inserted a dot to indicate the byte boundary for
improved clarity. Because the last byte is incomplete, it is padded by zeros.9 Hence, the TL value is 2 (bytes)
and the stored DeweyID is 00010111.10000110. When Huffman codes are assigned in ascending order (Table
2), the encoded values and the entire DeweyIDs are order preserving. Hence efficient byte-level (prefix) com-
parisons can be applied to determine the order of two DeweyIDs.

5. Empirical evaluation of DeweyIDs

Efficient encoding and variable-length representation of DeweyIDs is a prerequisite in XDBMSs. To assess
their capability in a ‘‘holistic’’ sense, we have implemented XTC [11] as a prototype XDBMS with multi-lin-
gual XML interfaces and concurrent transaction processing. Hence, we were able to study the DeweyID
behavior in a real system context. The benefits of DeweyIDs for locking protocols in collaborative
9 Because value 000 is not used, padded zeros can be distinguished from encoded values. In the following, we exclude TL, typically a
single byte, from our size considerations.
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Table 3
DOM characteristics of the XML documents considered

File name (.xml) Description Size (bytes)

1 treebank Encoded DB of English records of Wall Street Journal 86,082,517
2 nasa Astronomical data 25,050,288
3 psd7003 DB of protein sequences 716,853,016
4 SwissProt DB of protein sequences 114,820,211
5 dblp Computer Science Index 284,994,162
6 customer Customers from TPC-H benchmark 515,660
7 ebay Ebay auction data 35,562
8 lineitem Line items from TPC-H benchmark 32,295,475
9 mondial-3.0 Geographical DB of diverse sources 1,784,825
10 orders Orders from TPC-H Benchmark 5,378,845
11 uwm Courses of a University Website 2,337,521

File name Number of nodes Depth Fan-out of nodes

Element Text Attribute Max. B Max. B

1 treebank 2,437,666 1,391,845 1 37 8.44 56,385 1.58
2 nasa 476,646 303,676 56,317 9 6.08 2435 1.76
3 psd7003 21,305,818 15,955,109 1,290,647 8 5.68 262,529 1.81
4 SwissProt 2,977,031 2,013,844 2,189,859 6 4.07 50,000 2.41
5 dblp 6,662,623 6,013,355 1,375,832 7 3.39 649,080 2.11
6 customer 13,501 12,000 1 4 3.41 1501 1.89
7 ebay 156 107 0 6 4.26 12 1.90
8 lineitem 1,022,976 962,800 1 4 3.45 60,176 1.94
9 mondial-3.0 22,423 7467 47,423 6 4.15 955 3.45
10 orders 150,001 135,000 1 4 3.42 15,001 1.90
11 uwm 66,729 40,234 6 6 4.37 2112 1.91
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Tenvironments with navigational and declarative access to XML documents were reported in [10]. Here we con-

centrate on the consumption and optimization of storage space of DeweyIDs needed for fine-grained repre-
sentation of XML documents and indexing support and refine our preliminary study of [12]. A critical
question is ‘‘what are representative documents, especially, concerning their depth?’’. An empirical study
[18] gathered about 200,000 XML trees worldwide where 99% have less than 8 levels, i.e., less than depth
8. Almost all of the remaining 1% documents range between 8 and 30. Only a tiny fraction of the documents
gathered has more than 30 levels.10 For this reason, we have empirically explored a variety of 11 XML doc-
uments [19] listed in Table 3, which roughly fit into this statistical distribution. Because of the wide spectrum
of structural properties, these documents provide an ‘‘acid test’’ for any labeling scheme.

5.1. Consumption of storage space

Given the benefits of DeweyIDs summarized in Section 3.4, the most important question is: at which cost
can these processing services be provided? Because XML documents may be very large, they are fetched to
memory in small fractions only as needed. If possible, most of the document processing should be performed
on indexes and reference lists (similar to TID processing in relational systems) to reduce access to external
storage as far as possible. Hence, the most critical cost factor is the size of the DeweyIDs and, because of their
immense variation, the average size (B-size) per document, which is defined as storage consumption of all
DeweyIDs of a document divided by the number of all its nodes (element/text/attribute). Of course, B-size
is strongly influenced by the document characteristics. However, the selection of the distance parameter—crit-
ical for later node insertions and the avoidance of division overflows—also largely determines the B-size.
While the document characteristics are ‘‘there’’, the appropriate choice of distance is a design decision and
should somehow reflect the later modification activity.
10 The maximum depth of 135 found was due to an erroneous translation from html [21].
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In our experiments, we assigned the DeweyIDs (according to the rules in Section 3.2) during the bulk-load
of the documents thereby using Huffman code H1 (see Table 2). A slight optimization is already included in
the results of Fig. 5. Because all DeweyIDs start with ‘‘1.’’, we do not explicitly store this division thereby sav-
ing 4 bits for every document node. We have systematically varied the distance parameter of a division from 2
(where almost no inserts are expected) to 256 (to characterize the B-size growth beyond the range of practical
interest). For clarity, our presentation in Fig. 5 is restricted to the most demanding documents and, as a con-
trast, to the document customer.xml which more or less represents a relational structure in XML format. We
assume that the interesting range of the distance parameter, depending on the update activity anticipated, is
less than 32 in practical applications. Note, B-size is surprisingly small for (the full storage of) the encoded
DeweyIDs. In particular, if we restrict the design space to distance d 6 32, we can come up for 10 documents
withB-sizes of 3–9 bytes which is comparable to TID encodings in relational DBMSs. Even in the exceptional
case of document 1 (max. depth 37, max. fan-out 56,385) B-size remains under 12 bytes.

Dependent on max-/B-depth, we group the B-size results of Fig. 5 into three classes: As expected, docu-
ment 1 with characteristic values (37/8.44) clearly represents the ‘‘loser’’ in terms of space consumption. Note,
the absolutely minimal length of a DeweyID at level 37 is 18 bytes (with our H1 encoding). Documents 2 and 3
(with (9/6.08) and (8/5.68)) are in the ‘‘middle’’ class, whereas very economical solutions are provided by the
remaining documents with an B-depth of 3 or 4.

We do not want to keep the maximum lengths (max-sizes) of DeweyIDs secret which occur in our exper-
iments. This property is only relevant if we consider implementation restrictions for variable-length keys or
references in the XDBMS. For example, if the B*-tree implementation has a hypothetical restriction for
the entry length (say 128 bytes), then a violation by a longer DeweyID would imply a reorganization/relabel-
ing of the document. As illustrated in Table 4 for selected values of documents from the three ‘‘size’’ classes,
the max-size behavior is reasonable and can be captured by flexible implementation mechanisms.

5.2. Influence of distance parameter

Fig. 6 visualizes for all sample documents the average fraction of the B-size caused by the distance
parameter. If we define the measure DistanceInfluence per document as DI(doc#,d) = (B-size@dist(d) � B-
size@dist(2))/B-size@dist(2), we can immediately calculate some of these factors using Table 4. While distance
dominates the B-size for large values, e.g., DI(1,256) = 1.39 (or 139%), this relationship is more reasonable
for distance d 6 32. For example, applied to documents 1, 2, and 5, we yield DI(1,32) = 0.73,
DI(2,32) = 0.64, and DI(5,32) = 0.33.
U
N
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R

Fig. 5. B-size of DeweyIDs grouped by the document’s B-depth.
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Fig. 6. Influence of the distance parameter.

Table 4
Comparison of B-sizes to max-sizes

Document B-size Max-size

dist(2) dist(32) dist(256) dist(2) dist(32) dist(256)

1. treebank 6.67 11.57 15.94 22 46 72
2. nasa 5.19 8.54 11.30 8 13 18
3. psd7003 5.61 8.84 11.30 8 13 17
4. SwissProt 5.10 7.04 8.14 8 11 13
5. dblp 4.58 6.12 7.16 7 10 13
6. customer 3.17 5.04 6.19 4 6 7
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documents are bulk-loaded and experience less modifications, d = 2 is the right choice. However, frequent
updates need some serious considerations to reduce the danger of ‘‘gap overflows’’ while limiting space con-
sumption. An overflow lengthens the DeweyIDs in the entire subtree and, if several of them in the same ‘‘tree
area’’ accumulate even division values in some DeweyID, the first one violating the implementation restric-
tions on key length provokes a reorganization run (limited to a particular subtree would ease this situation).
Thus, optimal assignment of the DeweyID parameters is complex and could be greatly supported by a physical
structure advisor which could use our findings.

5.3. Prefix compression

Another way to relieve this problem may be found in further optimization measures. A hint may be given
by Fig. 3 where the DeweyIDs representing variable-length keys occur in document order in the pages of the
document container (document index). This tight sequence of DeweyIDs lends itself to prefix compression
across the entire physical document. Even in the node reference indexes (element index) is a great deal of sor-
tedness of the DeweyIDs used here as references to the resp. element nodes. Hence, we have applied prefix
compression to the DeweyIDs in both types of structures. For example, in each container page of size 8K,
the first DeweyID is stored in the uncompressed format, while for subsequent DeweyIDs only the matching
prefix length PL—aligned to byte boundaries—is stored in a 1-byte field and attached to the uncompressed
remainder. This prefix compression works in such an effective way that we were surprised about the space
reduction achieved. The results for the average number of bytes needed for entries (PL + remainder) are illus-
trated in Figs. 7 and 8 which can be immediately compared with Fig. 6.
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Fig. 8. B-size and DistanceInfluence in the prefix-compressed document.

Fig. 7. B-size and DistanceInfluence in the prefix-compressed element index.
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element name. Although they are ordered, they are rather sparse, because they do not occur in the same paths.
Nevertheless, this optimization measure is very effective. As illustrated in Fig. 7, we obtain B-comp-size@-
dist(2) in the range of 3–4 bytes. With the exception of treebank (because of its extraordinary depth), we
can estimate B-comp-size in the range of 3–6 bytes per DeweyID for all documents and distance values eval-
uated which often corresponds to a reduction of more than 40%. For this reason, it is safe to say that space
consumption of compressed DeweyIDs in node reference lists is absolutely comparable to that of TID lists11

and in many cases even better.
Because of the lexicographic order in the document container, prefix compression is most effective and gains

a reduction (B-comp-size@dist(d)/B-size@dist(d)) to less than �0.35 (35%) of the uncompressed size; this cor-
responds to a saving of more than 200%. As a rule of thumb, we obtain B-comp-size in the range of 2–
3.5 bytes per DeweyID for all documents and distance values evaluated.
11 Typical sizes of tuple identifiers (TIDs) in relational DBMSs vary from 4 to 6 bytes.
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Table 5
H2: Assigning codes to Li fields

Code Li Value range of Oi

0 7 1–127
10 14 128–16,511
110 21 16,512–2,113,663
1110 28 2,113,664–270,549,119
1111 36 270,549,120 � 237
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5.4. Optimization by tailoring Huffman codes to value distributions

The codes of Table 2 are only an example used for our experiments. They can be constructed using a Huff-
man tree thereby adjusting the code lengths to the anticipated Oi length distributions. For this reason, we are
able to achieve the optimal assignment of code lengths/Oi length distributions, if the latter are known in
advance or are collected in an analyzing run or a by a representative sample before bulk-loading of XML doc-
uments. By default, we expect the larger numbers of divisions in the smaller value ranges of Oi and use this
heuristics for the Huffman codes and length assignments. Obviously, the lion share of optimization was
achieved by prefix compression of DeweyIDs in the document structure and the element index. Nevertheless,
to explore this opportunity for further DeweyID optimization, we perform an analysis phase before loading of
documents. Hence, we can figure out the distributions and frequencies of the division values, which we use to
derive a Huffman code tailored to the document.

Table 5 contains Huffman code H2 which was optimized for treebank and, at the same time, for its use
under prefix compression. Hence, we counted the frequencies of the different division values to decide on
the assignment of codes and length values. One important observation was that prefix compression cuts divi-
sions in the path closer to the root often containing smaller values. Hence, smaller codes are not so critical
anymore. Another observation was equally important. Because the DeweyIDs are stored, indicated by TL,
in byte structures and the compressed DeweyID is also aligned to full bytes, it is important to avoid padding
with zeros (see Section 4.6). Therefore, H2 was designed in a way that each division already observes byte
boundaries.

By comparing Fig. 8 with Fig. 9, the additional space saving can be immediately determined. Because we
compare (PL + remainder) with a one-byte entry for PL, we can state that the remainder for B-comp-size
never needs more than 2 bytes and that it is a good rule of thumb to expect a one-byte remainder for B-
comp-size@dist(d 6 32). As an example, concerning the treebank document, we achieve a reduction (B-
comp-size@dist(d 6 32)/B-size@dist(d 6 32)) to less than 0.2–0.3 (20–30%) of the uncompressed size. In
U
N
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Fig. 9. B-size and DistanceInfluence in the optimized document.



659
660
661
662
663
664
665
666
667

668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

700

701
702

20 T. Härder et al. / Data & Knowledge Engineering xxx (2005) xxx–xxx

DATAK 874 No. of Pages 24, Model 3+

28 December 2005 Disk Used
ARTICLE IN PRESS
U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

our experiments, this further optimization does not much influence the node reference index. Some marginal
improvements could be achieved by adjusting the encoding scheme to the distance parameter.

In summary, prefix compression on DeweyIDs works very well and supports the clustering effects of our
storage structures on disk. Therefore, it also greatly reduces the number of page fetches needed to reconstruct
(parts of) the XML documents or to fetch DeweyID lists from the element index. Furthermore, our Huffman
encodings preserve the direct comparability of DeweyIDs at the byte level. This comparison property is very
important, because axes operations in path processing steps frequently need to compare (long) lists of Dewey-
IDs. In experiments we have revealed that DeweyID comparisons at the byte level are 60–100 times faster than
those at the bit level, for example, needed in case of separator use [23].

6. Conclusions

In this paper, we classified existing node labeling schemes and analyzed them in the light of new XML pro-
cessing requirements mainly coming from multi-lingual interfaces (support of declarative and navigational
access) and collaborative transactional modifications (requiring kind of hierarchical lock protocols). With
the advent such additional XML processing functionality, early node labeling schemes turned out to be less
useful, because often balanced document structures or read-only declarative access were assumed. Even
sophisticated enhancements in range-encoded or prefix-encoded schemes were unable to repair the defects
under the new requirements.

We introduced a particular and dynamic mapping of the lexicographic Dewey order to the nodes of XML
document trees which can guarantee immutable node labels and very effective locking support. We refined this
mapping to the concept of DeweyIDs and showed that they best satisfy the support of all enhanced XML pro-
cessing needs. We believe that the use of DeweyIDs is of paramount importance for the lock protocol over-
head and, in turn, for the entire performance of concurrency control in XML trees. All ancestor node IDs and
most other IDs needed for locking navigation steps can be easily derived from them (using indexes and Dewey
order) without traversing the document itself. Queries specified by declarative languages are assumed to be
frequently processed via indexes, which will require a large number of direct jumps. On the other hand,
DeweyIDs allow structural joins and set-theoretic operations such that they become more useful than TIDs
in relational DBMSs. This behavior is achieved because DeweyIDs themselves essentially represent a kind
of path index reference which can be effectively used in many processing steps during query evaluation on
XML documents [16].

The proposition often raised in the literature that DeweyIDs are not ‘‘implementable’’ triggered a broad
empirical study to ‘‘prove’’ the opposite. Based on a suitable physical document structure and element index,
DeweyIDs are used as variable-length keys and references. We have shown that DeweyIDs and their divisions
can be efficiently encoded by several methods. We preferred a method based on Huffman codes because of its
flexibility and optimization potential.

While encoded DeweyIDs are manageable—consuming 3–11 bytes for all documents and distance values
considered with the exception of treebank—, our optimization based on prefix compression delivered surpris-
ing results: as a rule of thumb, we need anB-comp-size in the range of 2–3.5 bytes and 3–6 bytes per DeweyID
for all documents and distance values evaluated for the document container and element index, respectively.
Tayloring the Huffman codes to the value distributions of the divisions and adjusting them to the byte struc-
ture of the index, further reduced storage overhead and the influence of the distance parameter. In particular
for the document container, we achieved an optimized B-comp-size of 2–3 bytes for all documents considered.
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Appendix A. Calculation of the edge string label

As shown in Section 2.2, the label string Sc of node c is a concatenation of edge codes, where each code is
taken from a prefix-free set Bn of binary strings (assigned to the outgoing edges of a node n). Therefore, Sc can
be written as Sc = s0s1. . .sk, where s0 is the edge code for the root node and sk is the edge code for node c. As a
result, Sc contains the labels of all its ancestors as prefixes. To calculate these labels, we simply have to infer
the lengths ej of each edge code sj (0 6 j 6 k) in Sc, and truncate Sc at the derived positions. Because the num-
ber of a node’s children can vary heavily, the size of each Bn, and therefore the length of distinct edge codes,
may be different.12 To solve this problem, the length information of each ej is encoded into the esl.

The encoding works analogous to the conversion of natural numbers from base b to base 10. Consider, e.g.,
the number x3 = 2103 (of base 3). We can calculate its value to base 10 by x10 = 2 · 32 + 1 · 31 +
0 · 30 = 2110. Conversely, given length k of x, we can infer the value of each digit di on position i of
x3 = d0d1d2 with the following formula:
12 In
codes,
Odi ¼
x10

3ðk�1Þ�i

� �
mod 3.
RCalculating an esl, base b is set to the maximum length of the longest edge code occurring in the document,
increased by one. For example, in the document of Fig. 1b, b is 3. With the node’s depth k and the length of
each edge code ej, the esl can be computed by the formula
 P

esl ¼ e0 � bk�1 þ e1 � bk�2 þ � � � þ ek�1 � b0.

Therefore, the esl of node n6 in Fig. 1b is
 Desl6 ¼ 1� 33�1 þ 2� 33�2 þ 1� 30 ¼ 16.
 EIf we want to recalculate the edge code lengths of the ancestors for n6, we can use the same formula as shown
above:
 T

ei ¼
esl

bðk�1Þ�i

� �
mod b.
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CThis results in the lengths e0 = 1, e1 = 2, and e2 = 1.

In practice, the edge string labels may get very large. The length of an edge code is bounded by
ei = jsij 6 logD, when D denotes the maximum fan-out of a node in the document. Therefore, if a node has
106 children, b = 20. With a node depth of 37, we would need an esl with approximately 50 decimal digits.

Appendix B. Comparison of space consumption for encodings

For the methods introduced in Section 4, we have calculated in Table B.2—using relevant parameter val-
ues—the storage space needed for indicative division values of DeweyIDs. Furthermore, we have listed the size
limit for each encoding method, which indicates that some method/parameter combinations are not eligible
for practical applications. The tradeoff between the encodings for very small and very large values varies
among the methods, while no method gains in all division sizes. The quantities for the static schemes only
serve for comparison reasons. While the choice of a fixed maximum encoding unit for a document embodies
the worst case, the optimum msl assignment for Oi characterizes the lower boundary which dynamic schemes
strive for. Methods based on length fields with stepwise growth and such using control tokens (optimized
DLN codes) deliver comparable results, whereas methods using separators do not convince due to space con-
sumption (and lack of direct comparability of divisions and DeweyIDs). The best results for the compared
division values are highlighted by bold style. While some of the eligible methods provide for reasonable stor-
age cost efficiency, we prefer the methods based on Huffman codes, because they can be adjusted to division
value distributions and tailored to optimal representation of small values. H1 corresponds to the code given in
general, when short labels are desired, this proposition is true. However, it is possible, though a waste of space, to construct edge
which mutually have the same length.
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Table B.1
H3: Assigning codes to Li fields

Code Li Value range of Oi

0 3 1–8
10 6 9–72
110 9 73–584
1110 12 585–4680
11110 15 . . .

Table B.2
Lengths of division encodings (ee: explicitly extendable)

Encoding methods ELi for division value Oi Limit

7 27 214 221 228

Static schemes with advance knowledge

Fixed maximum (28) 28 28 28 28 28 228

Optimum msl for Oi 3 7 14 21 28 ee

Length fields

Fixed length li = 4 7 11 18 – – 216

li = 5 8 12 19 26 33 232

li = 6 9 13 20 27 34 264

Stepwise growth u = 2 5 13 24 34 48 –
u = 3 6 10 20 30 40 –
u = 4 7 11 18 29 36 –

Variable length lli = 2 7 12 19 27 34 �231

lli = 3 8 13 20 28 35 �2511

Control tokens

Optimum msl for Oi, skewless docs only 4 8 15 22 29 ee

Streaming DLN codes k = 3 7 15 27 43 55 –
k = 4 4 14 24 34 49 –
k = 5 5 11 23 35 41 –

Optimum DLN codes for DeweyIDs k = 3 6 12 21 33 42 –
k = 4 4 12 20 28 40 –
k = 5 5 10 20 30 35 –

Separators

k-based digits k = 1 8 27 + 1 214 + 1 221 + 1 228 + 1 –
k = 3 6 12 20 30 36 –
k = 7 9 12 18 27 33 –

Prefix-free codes

Huffman code H1 4 12 21 29 36 ee

H2 8 16 16 24 32 ee
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Table 2. As shown in Table 5, Huffman code H2 can be tailored to favor large and very large values. In Section
4.4 we have optimized the DLN scheme of Table 1 where only the length delimiter was kept. Due to DeweyID
use we could drop all control tokens. A closer look at this scheme reveals that it is identical to a Huffman code
H3 with a fixed length assignment scheme illustrated in Table B.1 for k = 4. Hence, our Huffman schemes are
superior, because they have an additional degree of freedom, which enables a tailored length assignment
adjusted to the distribution of division values.
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