Contest of XML Lock Protocols

Michael Haustein, Theo Hirder, Konstantin Luttenberger
University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany
thaustein, haerder, luttenberger}@informatik.uni-kl.de

Abstract

We explore and compare the performance behavior of lock

protocols to be used in XML DBMSs (XDBMSs, for short)
supporting typical XML document processing (XDP) inter-
faces. In this paper, we outline 11 protocols proposed in
the literature, highlight essential implementation concepts
of our XDBMS and realize all of them in the same DBMS
environment using so-called meta-synchronization. We de-
sign a framework for XML benchmarks including read and
update transactions, run extensive empirical experiments
which focus on the locking performance, and compare the
results using various performance metrics. As a conse-
quence, we can propose a group of protocols which won
this practical contest under identical conditions.

1 Motivation

As XML documents permeate information systems and
databases with increasing pace, they are more and more
used in a collaborative way. If you run today an experiment
on existing DBMSs with collaborative XML documents,
you may experience a "performance catastrophe" meaning
that most transactional operations are processed in strict se-
rial order. The challenge for database system development
is to provide adequate and fine-grained management for
these documents enabling efficient and concurrent read and
write operations. Therefore, future XML DBMSs will be
judged according to their ability to achieve high transaction
parallelism. !

Currently, navigational and declarative language mod-
els are used to process XML documents. Because they are
already available in the form of standards like SAX, DOM,
XPath, and XQuery [21] and used as typical XDP interfac-
es, XDBMSs should be able to run concurrent transactions
supporting all these interfaces simultaneously and, at the
same time, guarantee ACID properties [9] for all of them.

Although predicate locking of XQuery statements
[22]—and, in the near future, XUpdate-like statements—

1. A growing number of application developers believe XML and
XQuery should be treated as primary data structure and access pattern [8].

would be powerful and elegant, its implementation rapidly
leads to severe drawbacks such as undecidability problems
and the need to acquire large lock granules for simplified
predicates—a lesson learned from the (much simpler) rela-
tional world. To provide for an acceptable solution, we nec-
essarily have to map XQuery operations to a navigational
access model to accomplish fine-granular concurrency
control. Such an approach implicitly supports other XDP
interfaces mentioned because their operations correspond
more or less directly to a navigational access model. Our
primary goal is to identify, compare, and evaluate XML
concurrency control protocols being most suitable for the
task outlined.

A survey of the (hardly) existing literature on locking
methods tailored to fine-grained read and write operations
on XML documents disclosed some unfit concepts [5, 6].
The remaining approaches led us to essentially three
groups of protocols whose performance will be explored
and compared in an extensive empirical study. The first
group of protocols was developed in the context of the
Natix system [14], the second one is a straightforward ex-
tension of the well-known protocols for multi-granularity
locking (MGL) in classical (e.g., relational) DBMSs [9],
whereas we have designed the remaining protocols for our
native XDBMS called XTC (XML Transaction Coordina-
tor). These protocols called the taDOM* group were steadi-
ly refined along with its progress and the experience gained
from performance measurements [10].

In this paper, Sect. 2 gives a coarse characterization of
these groups of protocols representing 11 individual con-
currency control methods. The aspects of our testbed sys-
tem XTC essential for an empirical study are outlined in
Sect. 3, before we describe our experimental setting includ-
ing the framework TaMix for XML benchmarks and the
context of the measurements. In Sect. 5, extensive compar-
isons and interpretations of the performance results reveal
the strengths and weaknesses of the protocol groups and al-
lows to name a group of protocols superior to the competi-
tors. Finally, we wrap up with conclusions.

T A root

structure locks

locks for direct jumps
T M IDR IDX

T
M

T A parent

context node

+ - IDR | + -
- - IDX | - -

content locks

Fig. 1 Node2PL sample protocol and compatibilities for the different lock types

2 Approaches to XML Concurrency Control

Due to space limitations, it is impossible to describe all
11 rather complex XML concurrency control protocols in
detail. Instead, we content ourselves with brief sketches of
the main ideas behind the protocols and refer the careful
reader to the original publications. All protocols are de-
signed to achieve isolation level repeatable read for con-
current operations on XML trees.” For this reason, they not
only have to lock the nodes either accessed by navigation
or by direct jumps, e.g., via getElementByID(), but they
also have to automatically protect their ancestor path by ad-
equate means (typically intention locks). Furthermore, they
have to isolate the edges traversed to guarantee identical
navigation paths on repeated traversals. Navigational steps
are issued by DOM operations getFirstChild(), getLastCh-
ild(), getPreviousSibling(), and getNextSibling(). To pro-
tect each of these operations, a corresponding logical navi-
gation edge (which may not correspond to a physical edge
in the tree representation) has to be introduced, for exam-
ple, by locking the adjacent nodes.

2.1 Node2PL and its Followers

Let us begin with the first group denoted *-2PL. The
primary objective of Node2PL is synchronization of trans-
actions concurrently performing navigation and modifica-
tion operations on the document tree. Starting from the
document root, so-called structure locks are used in
Node2PL to appropriately lock the parent (typically an el-
ement node) of the context node to which the navigation or
update operation is applied—as illustrated in Fig. 1, the as-
sumed read navigation to the context node leaves T
(traverse) locks on its path from the root.

2. Isolation level serializable is provided by the taDOM* group, but is
not used in our experiments to enable comparison with the remaining pro-
tocols which don’t support this isolation level. Declarative index-based
access to XML documents would need some kind of key range locking to
prevent phantoms.

Furthermore, Node2PL strictly distinguishes structure-
based and content-based accesses using different lock
types. Hence, to change a node’s content (e.g., of a text
node), so-called content locks are used. In addition, a third
lock type is introduced to protect direct jumps to nodes. A
transaction directly jumping to a node addressed by an ID
attribute acquires for it a special read or write lock (IDR,
IDX). If the related subtree is to be deleted, IDX locks on
all elements owning ID attributes must guarantee that no
other transaction also jumped into this subtree reads or up-
dates it. As we will see, this may imply a very expensive
procedure. Such a penalty is especially performance-criti-
cal, because direct jumps may be rather frequent, for exam-
ple, if query processing uses indexes.

Note, when the context node in the example of figure 1
is to be updated later, lock conversion (to the M (modify)
mode) on the parent node is mandatory. Such conversions
are a source of deadlocks in all protocols; this danger may
only be alleviated by tailored intention locks. For the de-
tails of lock conversion, we refer to [14].

Node2PL is unnecessarily restrictive because, by lock-
ing the parent, it blocks the entire level of the context node,
and not only its direct neighborhood. As a refinement of
Node2PL’s structure locks, NO2PL locks in case of up-
dates only the nodes reachable from the context node there-
by reducing its blocking granularity. Further optimizations
are offered by a third variant OO2PL which locks for nav-
igation operations only the traversed edges and for update
operations only the affected navigation edges (again see
[14] for details)

2.2 Multi-Granularity Locking Applied to XML
Documents

As we will show in Sect. 5, the *-2PL group has some
serious practical disadvantages; the most critical ones are
handling of direct jumps by special lock modes IDR/IDX,
missing modes for locking entire subtrees, and missing

IR A root

IR A parent
ontext node

Fig. 2 URIX protocol: compatibilities and conversion rules

support for some operations, e.g., direct jumps to indexed
element nodes not owning any ID attribute. For these rea-
sons, we tried to avoid these drawbacks by adapting the
well-known MGL protocols [9]—originally introduced for
tables—to XML trees. As compared to classical MGL, a
main difference is the double role of intention locks to in-
dicate read/write operations deeper in the tree and to lock
nodes (without locking the attached subtrees). Another dif-
ference are the much more complex conversion rules.
When applied to the context node, the locks on its entire an-
cestor path have to be converted, too. Furthermore, we
have combined the protocols with a lock depth parameter,
the importance of which we have experienced in our mea-
surements (see Sect. 5)3 .

In this way, we have derived a group of MGL protocols
based on a general intention lock (IRX), on separate inten-
tion locks for read/write (IRIX), and finally an IRIX proto-
col enhanced by RIX and U modes [9] called URIX in Fig.
2. Special edge locks as introduced in [10] complement the
node locks shown for the URIX protocol. As an example,
assume no further locks are present in the protocol of Fig.
2, then a lock conversion of the context node to X can be
performed by converting IR to IX on the ancestor path and
R to X on the context node. In contrast to the *-2PL group,
direct jumps must be protected by locking the entire ances-
tor path in an appropriate mode. This is very efficient when
using DeweyIDs (see Sect. 3.2) for node identification

To optimize a protocol of the *-2PL group and to make
it comparable to all other protocols explored, we have add-
ed the concept of intention locks borrowed from URIX
with which the ancestor path to nodes accessed by direct
jumps were protected. Furthermore, we have integrated a
parameter for lock depth which, in turn, implied the intro-
duction of subtree locks. Because the resulting protocol fo-

3. Lock depth n determines that, while navigating through the docu-
ment, individual locks are acquired for existing nodes up to level n. If nec-
essary, all nodes below level n are locked by a subtree lock at level 7.

lock compatibility matrix

IR IX R RIX U X
IR + T ¥ T R
IX + + - - - -
R + - + - - -
RIX + - - - - -
U + - + - - -
X R R - R -
lock conversion matrix
IR IX R RIX U X
IR IR IX R RIX U X
IX IX IX RIX RIX X X
R R RIX R RIX R X
RIX RIX RIX RIX RIX X X
U U X U X U X
X X X X X X X

cuses on the parent of the context node, we called it
Node2PLa; it served as a proxy for the *-2PL protocols in
our experiments and, therefore, provided a kind of direct
performance comparison (simulating the best-case *-2PL
behavior) with the MGL* and taDOM* groups.

2.3 Protocols Tailored to DOM operations on
XML Trees

The taDOM* group of protocols [10, 12] distinguishes
node and edge locks and is a consequent optimization w.r.t.
the DOM operations (covering level 2 and level 3) starting
from the URIX protocol. Intention locks (IR, IX) are com-
plemented by a read lock for individual nodes (NR)4.
Whenever a context node is locked, its entire ancestor path
is protected by appropriate locks. Definitely new lock
modes are the so-called level locks (LR, CX) which, placed
on the context node, lock all its children in the appropriate
mode. Especially these two lock modes together with suit-
able conversion rules help to increase operation parallelism
on trees and count for substantial improvement of transac-
tion throughput. Hence, they make the difference of the ta-
DOM* group as compared to *-2PL and MGL* groups.

An LR lock mode (level read) locks the context node
together with its direct-child nodes for shared access. For
example, the method getChildNodes() only requires an LR
lock on the context node and not individual NR locks for all
child nodes. Similarly, an LR lock, requested for an at-
tributeRoot node (see Sect. 3.1), locks all its attributes im-
plicitly (to save lock requests for the getAttributes() meth-
od). A CX lock mode (child exclusive) on context node ¢
indicates the existence of an X lock on some direct-child
node and prohibits inconsistent locking states by prevent-
ing LR and SR lock modes. In contrast, it does not prohibit

4. The IR and NR modes show the same compatibilities in Fig. 3a;
they will be differentiated when the taDOM protocol is refined.

a) Compatibility matrix

s |
m Aflrstglast m A{apter

IR [NR|LR | SR | IX | CX | SU | SX T;: IR
IR + + + + + + - IR
NR + + + + + + - IR
LR + + + + + - -
NR
SR + + + + - -
SR
X + + + + - + + -
CX + + + - + + -
SU + + + + + - - -
sx | + - - - - - - -

bib Ty IR Thoont IX
topics IR X
topicO IR X
book NR CX

title author A price A\ chapters SR | history SX
By A lend

A it)
. summary (3 herson § %return
b) Locking example

Fig. 3 Node locking for the taDOM tree (taDOM2 protocol)

other CX locks on ¢, because separate direct-child nodes of
¢ may be exclusively locked by concurrent transactions.
Furthermore, we can use subtree locks on a context node
which implicitly lock the entire subtree in read mode, up-
date mode, or exclusive mode (SR, SU, SX).

Fig. 3b represents a cutout of the taDOM tree depicted
in Fig. 5 and illustrates the resulting lock protocol using
lock depth 4 for the following example: Transaction T,
(TAqueryBook, see Sect. 4.2) uses an index and jumps to
the book node in Fig. 3b to read all descendents of the book.
in document order. It sets an NR lock on book and IR locks
on all ancestors up to the root. Then, it navigates to the first
child and, because lock depth 4 is reached, it places an SR
lock on title, reads the nodes of the subtree, and proceeds to
the author node setting again an SR lock. In this situation,
T, (TAlendandReturn, see Sect. 4.2) enters the system,
also uses index-based access to the same book node, and
locks it by NR and its ancestors by IR. Afterwards it for-
wards to the last child and locks the entire subtree Aistory
by SR (lock depth 4). Assume it decides to lend this book;
then it has to attach an additional subtree lend’ with at-
tributes person and return under the history element. For
this reason, a lock conversion to SX on Aistory is needed
which is propagated to the root by converting NR on book
to CX and the remaining IR locks to IX, as shown as Ty
in Fig. 3b.

Although this example is very simple, it reveals a cer-
tain kind of complexity to be anticipated in XML lock pro-
tocols. Our example also nicely demonstrates the effect of
lock depth. If we would have chosen lock depth 3, T,
would have set an SR lock on book. This lock, because in-
compatible with CX, would have prohibited the lock con-
version. Hence, fine-grained locking supported by the lock
depth parameter enhances concurrency.

The compatibility matrix shown in Fig. 3a describes
the compatibility of locks acquired on the same node by

separate transactions. If a transaction T already holds a lock
and requests a lock in a more restrictive or incomparable
mode on the same node, we would have to keep two locks
for T on this node. In general, & locks per transaction and
node are conceivable. This proceeding would require long-
er lists of granted locks per node and a more complex run-
time inspection algorithm checking for lock compatibility.
Therefore, we replace all locks of a transaction per node
with a single lock in a mode giving sufficient isolation. The
corresponding rules are specified by the lock conversion
matrix in Fig. 4, which determines the resulting lock for
context node c, if a transaction already holds a lock (matrix
header row) and requests a further lock (matrix header col-
umn) on c¢. A lock /; specified by an additional subscripted
lock /5 (e. g., CXyg) means that /; has to be acquired on ¢
and /, has to be acquired on each direct-child node of c.

In particular, conversion of the level locks becomes
much more complex; its handling requires specialized
locks to preserve the elegance and optimality of the new
concept. An example for this conversion is as follows: As-
sume, a user starts a transaction requesting all child nodes
of ¢ which results in acquiring an LR lock on c¢. LR mode

- IR | NR | LR | SR IX | CX | SU | SX

IR IR IR NR | LR SR IX CX | SU SX

NR J NR | NR | NR | LR | SR IX | CX | SU | SX

LR | LR | LR | LR | LR | SR |IXpg |CXnr| SU | SX

SR | SR | SR | SR | SR | SR |IXgg [CXsp| SR | SX

X | IX | IX | IX |[IXwg|TXgr| IX | CX | SX | SX

cx | X | CX | €X |CXpr|CXgr| CX | CX | sX | sx

SU SU SU SU SU SU SX SX | SU SX

SX f SX | SX | SX | SX | SX | SX | SX | SX | SX

Fig. 4 Lock conversion matrix

lAblb

A element node

t ersons 15AtOP|CS @ ~attribute root
attribute node
133 person Aperson % g
text node
1 333 3 35 1.3.3.7)
(* JEEN name Aadr Aphone |54 (D string node
| 155
13.3.1.3 N 13353 1 3373 AtomeAtome Atopmo Atop|c1
8d 4 Aflrst1 é}l"gst
T 1.3353.1 143.3.7.3.1
1'3'3'1‘3‘11 3 3|3 33 1335353
“““ 15334 book
13335.3.1 1.5.3.3..9 1.5.3.3.11
1333331 title author Aprice AchapterS Ah|story
1.}333 15335 15337 153393 |1533 13
m A first A st A'chéptér Aisn
1.53. 31. 153353 153355
Atitle 1.5.33.11.3.1
1.5.3.3.14%)/d ~1533.15 m m 1.53.3.93.1.3 ~1.53.3.11.3.1.5
! ear - summary person return
1533131 1533.15.1

1.5.3.3.11.3.1.3.1 1.5.3.3.11.3.1.5.1

Fig. 5 A sample taDOM tree of a library document labeled with DeweyIDs

locks ¢ and all direct-child nodes in shared mode. After
that, the user wants to delete one of the previously deter-
mined child nodes. Therefore, the transaction acquires an
SX lock on the corresponding child node and—applying
the locking protocol—this requires the acquisition of a CX
lock on ¢ which already holds the LR lock. Using rule
CXyp specified in Fig. 4, the transaction has to convert the
existing LR lock on ¢ to a CX lock and to acquire an NR
lock on each direct-child node of ¢ (except the child node
which is already locked for deletion by an SX lock).

So far, we have sketched the taDOM?2 protocol cover-
ing all operations of the standard DOM?2, whereas
taDOM?2+ optimizes certain situations which may occur
during lock conversions. Therefore, the four lock modes
LRIX/SRIX (level/subtree read intention exclusive) and
LRCX/SRCX (level/subtree read child exclusive) are pro-
vided in addition. Together with a lock compatibility ma-
trix the related conversion rules have to be derived. The
DOM3 standard introduces new operations, e.g., the re-
naming of nodes. Hence, the taDOM3 protocol offers tai-
lored and dedicated lock modes for the enhanced DOM
standard and taDOM3+ additionally supports conversion in
an optimal way. Because all taDOM?* protocols are abso-
lutely complex—taDOM3+ includes 20 lock modes and
three modes for edges together with the related compatibil-
ities and conversion rules—the reader will understand that
we cannot just quickly cover them or repeat them for com-
prehension. We have described and compared the protocols
of the taDOM* group and proven their correctness in [12].
As for all other protocols referenced, they are not visible to
the programmer; in contrast, they are automatically applied
by the lock manager when protecting the actual DOM op-
eration or the corresponding operation issued when a high-
er level request (e.g., XQuery or XPath) is mapped to the
operations of the access system.

3 System Aspects of XTC

High degrees of parallelism for read and write opera-
tions are a prime objective of each concurrency control pro-
tocol. As a prerequisite, fine-grained storage and manage-
ment of XML documents has to be achieved. We have
learnt that the location of node IDs together with the deter-
mination of their ancestor node IDs are of outmost impor-
tance for any locking protocol. These key tasks should be
performed without accessing the nodes in the document it-
self, because references to external memory for locking
purposes should be avoided to the extent possible. For
these reasons, the design of the storage model together with
addressing and indexing schemes play a performance-crit-
ical role in our context.

3.1 taDom Storage Model

Efficient and effective processing and concurrent oper-
ations on XML documents are greatly facilitated, if we use
a specialized internal representation. Therefore, we have
implemented in our XTC system the taDOM storage model
illustrated in Fig. 5 as a slight extension of the XML tree
representation defined in [21]. In contrast to the DOM tree,
we do not directly attach attributes to their element node,
but introduce separate attribute roots which connect the at-
tribute nodes to the resp. elements. String nodes are used to
store the actual content of an attribute or a text node. Via
the DOM API, this separation enables access of nodes in-
dependently of their value. Our representational enhance-
ment does not influence the user operations and their se-
mantics on the XML document, but is solely exploited by
the lock manager to achieve certain kinds of optimizations.
In summary, our storage mechanism offers an extensible

file structure as a container of single XML documents such
that updates (by IUD operations) can be performed on any
of its nodes. We showed that a very high degree of storage
occupancy (> 96%) for taDOM trees is achieved under a
variety of different update workloads [10].

3.2 Addressing and Indexing Schemes

Fast access to and identification of all nodes of an
XML document is mandatory to enable effective indexing
primarily supporting declarative queries and efficient pro-
cessing of direct-access methods (e.g., getElementByld())
as well as navigational methods (e.g., getNextSibling()).
Furthermore, we have observed very early in our XTC
project that, for fine-grained locking, it is indispensible to
rely on an immutable labeling scheme which provides,
when accessing a node, the node labels (identifiers) of all
ancestors without accessing the XML document, as
sketched in the example lock protocol in Sect. 2.3 .

Several candidates for such a scheme have been pro-
posed in the literature [1, 4, 20]. While most of them are ad-
equate to label static XML documents, the design of
schemes for dynamic documents allowing arbitrary inser-
tions within the tree—free of reorganization, i.e., no reas-
signment of labels to existing nodes—remains a challeng-
ing research issue. Note, we also cannot tolerate so-called
dynamic schemes which modify labels on the fly, because
the lock manager uses these labels as node identifiers and,
on the other hand, an application may keep such a label for
later direct access to a tree node. Hence, the proposed ap-
proaches are classified into range- and prefix-based
schemes. While range-based schemes consisting of inde-
pendent numbering elements (e.g., DoclD, startPos : end-
Pos, level, see [1]) cannot always avoid relabeling in case
of node insertions, prefix-based schemes seem to be more
flexible. We believe that they are at least as expressive as
range-based schemes, while some suitable candidates of
them guarantee stability of node IDs under arbitrary inser-
tions, in addition. In particular, we favor a scheme support-
ing efficient insertion and compression while providing the
so-called Dewey order (defined by the Dewey Decimal
Classification System). Conceptually similar to the ORD-
PATH scheme [18], our scheme refines the mapping and
solves practical problems of the implementation.

At the first sight, everybody claims that a scheme based
on DeweylDs cannot be efficiently implemented. There-
fore, we have performed an extensive empirical evaluation,
before we decided this design issue. We have shown in [13]
for a large variety of XML documents that the use of Dew-
eylDs is feasible. Using a wvariable-length encoding
scheme, we obtained an average DeweylD size of 5 to 10
bytes where the average and maximum tree depths were up
to 9 and 38, respectively. To further reduce the DeweylID

size in frequent situations, we enhance our implementation
with prefix compression.

Referring to Fig. 5, our solution is sketched by exam-
ples. A DeweyID like 1.5.3.3.9 consists of several so-
called divisions separated by dots (in the human readable
format). The root node of the document is always labeled
by DeweylID 1 and consists of only a single division. The
children obtain the DeweyID of their parent and attach an-
other division whose odd value increases from left to right.
To allow for later node insertions at a given level, we intro-
duce a parameter distance which determines the gap initial-
ly left free in the labeling space (at least one even division
value). In Fig. 5, we have chosen the minimum distance
value of 2. Furthermore, assigning at a given level a dis-
tance to the first child, we always start with distance + 1,
thereby reserving division value 1 for attribute roots and
string nodes (illustrated for the attribute root of 1.3.3 with
DeweylID 1.3.3.1). Hence, the mechanism of the Dewey or-
der is quite simple when the IDs are initially assigned, e.g.,
when all nodes of the document are bulk-loaded. Mainte-
nance of Dewey order under UID operations is, however,
more complex [13].

The salient features of a scheme assigning a DeweyID
to each tree node include the following properties: Refer-
ring to the DeweylID of a node, we can determine the level
of the node in the tree and the DeweyID of the parent node.
Hence, we can derive its entire ancestor path up to the doc-
ument root without accessing the document. By comparing
the DeweyIDs of two nodes, we can decide which node ap-
pears first in the document’s node order. If all sibling nodes
are known, we can determine the exact position of the node
within the document tree. Furthermore, it is possible to in-
sert an arbitrary number of new nodes at any location with-
out relabeling existing nodes. After insertion of topic0’ and
topic(’’ in Fig. 5, the even division value 4 (keeping the
current node level) is exploited in the address of the new el-
ement nodes. In addition, we can rapidly figure out all
nodes accessible via the typical XML navigation steps, if
the nodes are stored in document order, i.e., in left-most
depth-first order.

Fast (indexed) access to each node is provided by vari-
ants of B*-trees tailored to our requirements of node iden-
tification and direct or relative location of any node. Fig. 6a
illustrates the storage structure — consisting of document in-
dex and document container as a set of chained pages —
sketching a sample XML document, which is stored in doc-
ument order; the key-value pairs within the document in-
dex are referencing the first DeweylD stored in each con-
tainer page. In additional to the storage structure of the ac-
tual document, an element index is created consisting of a
name directory with all element names occurring in the
XML document (Fig. 6b).

Eor each) Storage structure
specific ele- 1.3.3,5

ment name, {
in turn, a “g= K 4
node-refer- | bib]L.3 pers}—»{1.33.5 ad] |—»{1.53.3 book]

ence index 1133..] . le—13. «—
may be main-

1 1.53

tained which |[1.33.13id L1337 [oprice ..
addresses the phone _|
F:orrespond- b) Element index
ing elements
using their authoy bib\ book
DeweylDs. ~ N
In all cases,
support of 1

i - 1.5.33
variable 15335\ .. w1900,
length Dew-

eyIDs in their Fig. 6 Document storage using B*-trees

roles as keys

and pointers is mandatory; additional functionality for pre-
fix compression is very effective. Because of reference lo-
cality in the B*-trees while processing XML documents,
most of the referenced tree pages (at least the ones belong-
ing to the upper tree layers) are expected to reside in DB
buffers — thus reducing external accesses to a minimum.

3.3 Meta-Synchronization

For our task, a system is needed capable of running
concurrency control experiments using different locking
protocols in the same physical environment. As a prerequi-
site, we had developed during the last two years our XTC
primarily as a testbed for empirical concurrency control.
The key idea to really enable cross-protocol comparison
was the appropriate isolation of the XTC lock manager as
a kind of abstract data type. It accepts the locking requests
from the XTC node manager (and other participating com-
ponents) in a more abstract form as so-called meta-lock re-
quests including

» node locks (shared, update, exclusive)

 shared level locks

+ tree locks (shared, update, exclusive)

» edge locks (shared, update, exclusive) on previous
sibling edge, next sibling edge, first child edge, and
last child edge

» as well as release locks at commit for isolation level
repeatable read or at end of operation for isolation
levels uncommitted read and committed read.

When using this so-called meta-synchronization, XTC
has to map the meta-lock requests to the actual locking al-
gorithm which is achieved by the lock manager’s interface.
Hence, exchanging the lock manager’s interface imple-
mentation exchanges the system's complete XML locking

mechanism. In this way, we could run XTC in our experi-
ments with 11 different locking protocols. At the same
time, all experiments were performed on the taDOM stor-
age model which is optimized for fine-grained manage-
ment of XML documents by using a refined node structure
and DeweylIDs.

All mandatory concepts of a lock manager are intro-
duced in [9]. Our implementation including lock requests,
lock conversions, and lock waits is described in [11].

4 Experimental Setting

So far, we have sketched the characteristics of all ap-
proaches known to us which focus on fine-grained XML
concurrency control. By looking at their features or lock
compatibilities alone, it is impossible to gain sufficient in-
sight into their relative performance. Simulation of such
complex protocols reflecting practical XML document
structures and workloads just evaluates the underlying pro-
cessing model—not necessarily close to a real environ-
ment—and can, therefore, not reveal unknown bottlenecks
or genuine “performance surprises”. Therefore, we need a
series of controlled empirical experiments to determine the
protocols’ relative strengths in typical applications. To
compare the results in the most accurate way, it is indis-
pensable to run all experiments in the same XDBMS set-
ting using the same database and the same workload.

4.1 Existing XML Benchmarks

The suitable selection of benchmarks is critical to the
quality of the results drawn from experiments, because
benchmarks should, in the first place, reflect the most im-
portant characteristics of the application domain. Accord-
ing to Jim Gray [7], general properties of benchmarks in-
clude design towards the application domain, relevance,
portability, scalability, and simplicity. In particular, design
mirroring the application domain and relevance requiring
the use of typical operation mixes of it are the key proper-
ties of database benchmarks. Because concurrency control
is in the focus of our explorations, the scope of the bench-
mark must be directed towards stretching the lock manag-
er’s behavior and must therefore include multi-user opera-
tions and contain a varying degree of update operations to
be useful.

Unfortunately, existing benchmarks do not match all
these requirements. XMach-1 [2], for example is designed
for scalable, multi-user Web applications, but targets the
XDBMS behavior, in general, without specific emphasis
on concurrency control. In contrast, the scope of XMark
[19] is the XML query processor and concentrates on sin-
gle-user mode only. XOO7 [3] also targets on the query
processor as its scope and has no particular application ori-

entation. Hence, benchmarks for our specific needs are
missing—primarily, because so far XDBMS research was
strongly focused on retrieval only. Therefore, we had to de-
sign tailored benchmarks together with an automated mea-
surement environment. For this reason, we could specifi-
cally realize the following performance metrics for each
experiment:

« number of committed and aborted transactions for a
prespecified lock depth and isolation level

* Average, maximal, and minimal duration of a trans-
action of a given type

* number and type of deadlocks for a lock protocol.
4.2 Framework TaMix for XML Benchmarks

To support expressive transaction runs and to observe
at the same time the mentioned guidelines, we have de-
signed and implemented the framework TaMix for bench-
marks on XML documents. Fig. 7 sketches the TaMix in-
frastructure which illustrates that a number of TaMix cli-
ents can execute transactions while XTC serves their
concurrent DB requests. Typical tasks of the TaMix coor-
dinator are starting and stopping the XTC server and the
TaMix clients. To configure the test runs, the coordinator
owns two property files. TaMix.Coord.props contains
management information about the clients and the server as
well as directives how to load the XML documents (to start
with fresh copies for each run). TaMix.props specifies the
experiments: duration of the various test runs, number of
runs for each lock protocol, lock depths to be applied, iso-
lation levels to be used, etc. Begin and duration of individ-
ual transactions can be varied by properties waitAfterOper-
ation and waitAfterCommit which force the related client to
wait a specified period after each DB operation or transac-
tion, respectively (simulation of think time, increase of
lock wait, etc.).

TaMix records the measurement results for the speci-
fied metrics to enable later evaluation. Furthermore, in co-
operation with the XTCdeadlockDetector, it collects data
in case of deadlocks about the number of active transac-
tions, the locks held, the state of the wait-for-graph, etc.
Thus, we are able to analyze each deadlock event very pre-

I
TaMix.props

| ‘h TaMix
TaMix.

I Coord.props

Coordinator

Client
Machines

Fig. 7 TaMix infrastructure

cisely, e.g., whether it was caused by lock conversion (fre-
quent occurrence) or by lock requests in separate subtrees
(rather rare cases).

Here we can give only a brief overview of the transac-
tion types emulating a library application, before we de-
scribe the specific transaction mixes for our experiments:

* TAqueryBook selects a book element by random ID
and provides details of the book. It uses a direct jump
via an ID attribute into the tree (using an index) and
traverses the subtree by navigational read operations.

* TAchapter: same operational read profile followed
by an update of a text node.

+ TAdelBook: same operational read profile, but on a
random fopic element followed by a deletion of a
book subtree.

* TAlendAndReturn: direct location of a randomly
chosen book element followed by complex naviga-
tional steps with updates, deletions, and insertions of
elements.

* TArenameTopic locates a fopic element by a random
ID and renames it.

As any concurrency protocol, all XML lock protocols
try to maximize throughput. The role of the reader transac-
tions (TAqueryBook) is to provide a continuous system
load under which the remaining IUD transactions have to
compete for data sources. They provoke together with the
readers wait relationships and deadlocks, which, in turn,
determine the transaction throughput.

4.3 Composition of TaMix

Evaluation of concurrency control protocols is very
complex because of the huge parameter space (fan-out and
depth of XML trees, mix of transactional operations, spe-
cific application domains, degree of application concurren-
cy, optimization of protocols, etc.) and the timing condi-
tions (arrival and blocking times, transaction duration,
etc.). Therefore, it is not well amenable to analytical meth-
ods. On the other hand, there are no perfect benchmarks for
XDP processing on document trees either. However, by
running experiments in a real XDBMS environment we
gain accuracy of what is going on and we hope to derive
first indicative results.

All transactions are composed to so-called clusters and
operate on a bib document (see Fig. 5) which itself can be
configured to the size desired; it is highly scalable and may
range from a few Kbytes to several hundred Mbytes. For all
subsequently reported results on lock performance compar-
isons, bib was composed in the following way:

* 1000 person elements and 100 author elements
* 2000 book elements equally distributed across 100
topic elements (20 per fopic)

450 T T T T T T
W g :
%0 i
B0 koo NONE ———
n | UNCOMTTED ---=--- |
COMMITTED ==---====-
150 — 4 REPEATABLE - P .
100 : — . :
0 1 2 3 4 5 6 7

160 T T T T T T

VT So— q]
00 UNCOMMITTED ———s—~- 1
' COMMITTED ----- —

80 F REPEATABLE ------- P T

Fig. 8 CLUSTERI under taDOM3+—influence of isolation level: transaction throughput (left) and deadlocks (right)

» each book owns 5 to 10 chapter elements

* ahistory element owns with equal probability 9 or 10
lend elements.

Because of space restrictions we concentrate on two
cluster evaluations providing the most expressive results
for the performance comparisons of the lock protocol.
CLUSTERI1 specifies a continuous workload for each of
the 3 TaMix clients as follows (hence, TaMix Coordinator
keeps 72 transactions active during a benchmark run):

* O transactions of type TAqueryBook and 5 of type
TAchapter

» 2 transactions of type TArenameTopic and 8 of type
TAlendAnd Return

The TaMix-specific parameters for CLUSTERI char-
acterizing the variation of the test runs were as follows:

 isolation levels: none, uncommitted, committed, re-
peatable

* lock depths where applicable: 0 to 7

* number of runs per isolation level and lock depth: 4

e run duration: 5 mins, waitAfterCommit: 2500 ms,
waitAfterOperation: 100 ms

* random wait before executing the first operation of a
transaction: 0 to 5000 ms

In contrast to CLUSTER1, we planned a very specific
experiment with CLUSTER2 which reveals remarkable
weaknesses of locking performance in some protocols. It
only consists of a single execution of TAdelBook in single-
user mode, however, using isolation level repeatable.
Hence, the metrics of CLUSTERI1 cannot be used in the ex-
periment, because transaction parallelism, etc. are not in-
dicative. Here, transaction duration is very expressive and
characterizes the amount of locking overhead necessary.

Our testbed environment consists of a server machine
and a number of workstations. The server is equipped with
4 Intel XEON processors (1.50 GHz each), 4 GB memory,
and an IDE disk with 280 GB. The TaMix clients run on
separate workstations (1.70 GHz Intel Celeron processor,
256 MB memory, and 100 Mbit ethernet connection to the
server).

5 Results and Interpretation

After the consolidated description of the TaMix frame-
work and the workloads on the bib document, we first dis-
cuss (out of numerous measurements) our most important
findings running CLUSTERI1, before we add a remark on
the results of CLUSTER?2.

5.1 Influence of the Isolation Level

The stronger the isolation level®, the higher the consis-
tency guarantees of the XDBMS, but the less transaction
throughput has to be achieved, in general. To confirm this
expectation, our first experiment concentrates on the influ-
ence of the isolation level on the performance behavior. We
have chosen, as we will see later, the best overall protocol
taDOM3+ to characterize the influence of isolation level
and locking depth on transaction throughput. On the other
hand, the relative behavior of all other protocols supporting
lock depth is similar such that we can cover the principal
behavior by considering a single protocol. Fig. 8 illustrates
the behavior expected in its characteristic aspects. Note,
lock depth 0 corresponds to the use of document locks,
which explains the low performance. The higher the lock
depth parameter, the smaller are the subtrees locked. As a
consequence, throughput rapidly increases to a level where
further refinement does not enhance anymore parallelism.
The only surprise is the unexpected ordering of the proto-
cols of isolation level committed and uncommitted at depth
0 and 1. Closer inspection explains this special behavior
[17].

5.2 Results for Isolation Level repeatable

To include the *-2PL group of protocols (having no
lock depth parameter) into our evaluation, we compare
them as a separate group only using transaction throughput.
Fig. 9 visualizes the throughput gained for CLUSTERI

5. While none acquires no locks at all, all others need long write locks;
uncommitted means no read locks, committed and repeatable short and
long read locks, respectively.

CLUSTER!
TAchapter
400 | TAlendAndReturn

TAqueryBook &
300 | TArenameTopic

200 F

=

ESSSSSS

50 F

10

SRR
SRERE

Node2PL 002PL

Fig. 9 Running CLUSTERI1 under the *-2PL group

counting all transactions and considering the individual
transaction types. Although also producing a higher num-
ber of aborted transactions (deadlocks), the throughput of
OO2PL is remarkably higher than that of NO2PL and that
again is higher than that of Node2PL. Such a behavior can
be anticipated, because Node2PL locks the entire level of
the context node for any IUD operation, whereas NO2PL
and OO2PL only lock its neighborhood. As compared to its
group competitors, OO2PL implies the acquisition of finer
and, therefore, a larger number of locks; the advantage of
higher parallelism, however, clearly outweighs this pro-
cessing overhead of the lock manager [11].

As already explained, we have optimized the idea un-
derlying the *-2PL group protocols, added lock depth, and
in this way derived Node2PLa which turned out to be gen-
erally superior to the remaining group members. Therefore,
we have chosen Node2PLa as a proxy for the *-2PL group
used in further comparisons.

With these explanations we can illustrate all results of
CLUSTERI1 obtained for isolation level repeatable in Fig.
10. The first impression concerns the clear gaps separating
the various protocol groups (*-2PL, MGL*, taDOM¥*),
which highlights the relative performance advantages. As
compared to the *-2PL group, we obtain in the average
~50% and ~100% throughput gain for the MGL* group and
taDOM* group, respectively, while less deadlocks are pro-
voked by them (particularly in cases of lower lock depths).
Furthermore, it nicely illuminates the average performance
gain accomplished by fine-grained locks tailored to the ef-
fects of the operations to be isolated. However, detailed ex-
planations of the locking behavior are impossible for these
aggregated CLUSTERI1 results. Of course, there is the low

500

400
300
200

0 1 2 3 4 5 6 7
Fig. 10 Synopsis of all protocols on CLUSTER 1—transaction throughput (left) and deadlocks (right)

10

' ' i
ESTTTTN

CLUSTER!
TAchapter
8 [FTAlendAndReturn
TAqueryBook ~ E
6 | TArenameTopic

0 F

Z
Z
Z
zZ
zZ
zZ
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
zZ
Z
Z
Z
zZ
Z
ZES
Z
“

E]
Pl
:
2
2
2
2
H
H
2
H
H
£

Node2PL 002PL

: transaction throughput (left) and deadlocks (right)

transaction throughput at locking depth 0 and 1, which is
caused by the high number of transaction aborts at these
levels which, in turn, are attributed to deadlocks. Higher
lock depths mean that the nodes at upper tree levels carry
intention locks, whereas locks are set on deeper tree levels
dramatically reducing the blocking and deadlock potential
(see Fig. 10).

Closer inspections of the separate transaction types al-
low us to refine the result interpretation. Fig. 11 illustrates
the throughput separated by transaction type. Analyzing
read transactions of type TAqueryBook, it immediately be-
comes clear that they (without any aborts) almost exclu-
sively contribute to the CLUSTERI throughput at level 0
and 1. Looking at the corresponding results of write trans-
actions of type TAChapter, TAlendAnd Return, and TAre-
nameTopic confirms this observation. These three writer
transaction types together produced all deadlocks at level 0
and 1, whereas the reader transaction type did not contrib-
ute to transaction aborts. The course of the deadlock graphs
of the writers (not shown here) again exhibits the same
characteristic behavior than that of Fig. 10.

Fine-granular locking comes into play at depth levels >
1, where the three update transactions begin to compete
with the readers of type TAqueryBook. The graphs nicely
show that Node2PLa begins to react a level deeper (depth
level > 2) to enable true reader/writer competition. This is
due to the overly restrictive parent locking when process-
ing the context node. Furthermore, Node2PLa fails to suc-
ceed almost completely with type TArenameTopic, be-
cause it is not prepared to the specific operation and has to
use very large lock granules.

180
160
140 T
120
100
80
60
40
2

0

Node2PLa .

0 1 2 3 4 5 6 7

160

" &=
120 4e=7
100
8
60
1
0

%W F
120 F
10 F
80

60

0 F

0 F

02 <

¢) TAlendAndReturn

100

and URIX

o
=
L L L L

0 5 b !
w [' ' L ———]
0 / e
taDOM*gmup.—
0 / 1
60 ¢
0 F
0k
: f,; . R N Node2Pla
0 f 2 3 4 5 6 !

d) TArenameTopic

Fig. 11 Transaction throughput of CLUSTERI1 separated by transaction types

Although the MGL* group can keep up very well with
the best protocols in some depth ranges, it has to experience
strong drawbacks in other situations. For example in pro-
cessing TArenameTopic, it cannot separate the name from
the content of a topic and can, therefore, not optimize lock-
ing in such situations. As a result, the MGL* group ends up
in the middle position when drawing the average perfor-
mance over all transaction types.

Finally, when considering the superior group, we can
clearly identify the additional gain caused by specialized
handling of lock conversions. However processing transac-
tion types TAchapter and TAlendAndReturn, read locks
for getChildNodes() together with a specialized operation
for subtree access (in our case, getFragment nodes() [17])
and subsequent conversions needed for updates deeper in
the subtree caused blocking situations which degraded the
performance of taDOM2 and taDOM3 (as well as IRIX and
URIX) in levels > 4. Tailored locks and their conversions
prevented such a penalty.

5.3 Direct Jumps Unprotected by Intention Locks

Because CLUSTER2 only contains a single transaction
of type TAdelBook, we here use as a performance metric
its execution time under the various lock protocols. This
experiment primarily revealed that all protocols using in-
tention locks effectively handle all situations where large
subtrees have to be deleted. In contrast, it uncovered the
ponderous behavior of the *-2PL group to cope with such
situations. Because they set aside the use of intentions to
protect the paths to the nodes directly accessed, these pro-

11

tocols—before removing a subtree—need to search the en-
tire subtree for elements owning ID attributes. Only setting
IDX locks on them guarantees that other transactions do
not reference anymore nodes in the tree to be deleted. The
necessary location steps have to be performed via the node
manager and may include accesses to external devices.
Therefore, the cost of such deletions critically depends on
the size of the related subtree. Hence, in our example the *-
2PL group roughly consumes for the deletion twice as
much time than all other protocols considered (see Fig. 12).

6 Conclusions

Specialization of concurrency control protocols mat-
ters. We have obtained convincing results that tailoring the
protocol behavior to the properties of XML documents and
the related navigational model delivers substantial opera-
tional benefit. Note, a blindly applied relational protocol
would achieve the throughput at depth 0 in all our through-
put graphs.

We have experienced that adequate edge locks and
node locks—including intention, level, and subtree locks—
and their conversion rules are mandatory to accomplish
high transaction throughput. Lock depth itself is at least in
the upper document layers a performance-critical parame-
ter. We believe that the use of DeweylDs is of paramount
importance for the lock protocol overhead and, in turn, for
the entire performance of concurrency control in XML
trees. All ancestor node IDs and most other IDs needed for
locking navigation steps can be derived from them (using
indexes and Dewey order) without traversing the document

9000
8000 -
7000 -
6000 |~
5000 -
4000 -
3000 f-
2000 f-
1000 |-

1aDOM3+ BDOM3 taDOM2 taDOM2+

Node2PL NO2pL OO2PL]

RIX o URX NogeoPla _|

Fig. 12 Transaction execution times for all protocols on CLUSTER2

itself. Queries specified by declarative languages are as-
sumed to be frequently processed via indexes which will
require a large number of direct jumps. On the other hand,
DeweylDs allow structural joins and set-theoretic opera-
tions such that they become more useful than TIDs in rela-
tional DBMS:s.

In our XTC project, we use taDOM trees as a storage
model for XML documents thereby removing some block-
ing situation when navigation touches attribute or text
nodes. Our taDOM* protocols, however, can be applied to
DOM trees [21] as well. Indeed, we currently virtualize
these extra node types such that regular DOM trees are
stored, but the lock manager virtually expands the attribute
and text nodes to reduce some blocking situations.

The more the locks are adjusted to the tree structure
and its operations, the more complex is the resulting proto-
col (up to 20 lock modes in taDOM3+)—but the substan-
tially higher is the transaction throughput. Fig. 10 confirms
that the performance gain of the best protocols (taDOM*)
as compared to the optimized *-2PL group may be in the
order of 100%. For some transaction types favored by spe-
cial properties of taDOM*, the performance gain may be
~200% (see Fig. 11d). Because the relative performance
differences within the taDOM* group are rather minimal
while all of them have revealed their quality, we can claim
that each of them can be applied in an XDBMS guarantee-
ing satisfactory performance. The selection of an individu-
al protocol of the taDOM* group may be driven by the
trade-off of optimization overhead and extra benefit in spe-
cific applications.

References

S. Al-Khalifa, et al.: Structural Joins: A Primitive for Effi-
cient XML Query Pattern Matching. Proc. 18th Int. Conf. on
Data Engineering, 141 (2002)

T. Bohme, E. Rahm: XMach-1: A Benchmark for XML Data
Management. Proc. National German Database Conference
(BTW 2001), Informatik aktuell, Springer, 264-273

S. Bressan, M. L. Lee, Y. G. Li, Z. Lacroix, U. Nambiar: The
X007 Benchmark, http://www.comp.nus.edu.sg/~ebh/
X0O07.html

(1]

(2]

(3]

12

(4]
(3]

E. Cohen, H. Kaplan, T. Milo: Labeling Dynamic XML

Trees. PODS 2002: 271-281

S. Dekeyser, J. Hidders: Path Locks for XML Document

Collaboration. Proc. 3rd Conf. on Web Information Systems

Engineering (WISE), Singapore, 105-114 (2002)

T. Grabs, K. Bohm, H.-J. Schek: XMLTM: Efficient Trans-

action Management for XML Documents. Proc. ACM

CIKM Conf., McLean, VA, 142-152 (2002)

[71 J. Gray: The Benchmark Handbook for Database and Trans-
action Systems (2nd Edition). Morgan Kaufmann 1993

[8] J.Gray: A Call to Arms. ACM Queue 3:3, 30-38, April 2005

[9]1 J. Gray, A. Reuter: Transaction Processing: Concepts and
Techniques. Morgan Kaufmann (1993)

[10] M. Haustein, T. Harder: Adjustable Transaction Isolation in
XML Database Management Systems. Proc. 2nd Int. Data-
base Symp., Toronto, Canada, LNCS 3186, 173-188 (2004)

[11] M. Haustein, T. Hérder: A Lock Manager for Collaborative
Processing of Natively Stored XML Documents, in: Proc.
Braz. Symp. on Databases (SBBD), Brasilia, 230-244 (2004)

[12] M. Haustein, T. Hérder: Optimizing Concurrent XML Pro-
cessing, submitted (2005),
http://wwwdvs.informatik.uni-kl.de/pubs/p2005.html

[13] M. Haustein, T. Harder, C. Mathis, M. Wagner: DeweyIDs -
The Key to Fine-Grained Management of XML Documents,
submitted (2005),
http://wwwdvs.informatik.uni-kl.de/pubs/p2005.html

[14] S. Helmer, C.-C. Kanne, G. Moerkotte. Evaluating Lock-
Based Protocols for Cooperation on XML Documents. SIG-
MOD Record 33(1): 58-63 (2004)

[15] H. V. Jagadish, S. Al-Khalifa, A. Chapman. TIMBER: A
Native XML Database. The VLDB Journal 11(4): 274-291
(2002)

[16] J. R. Jordan, J. Banerjee, R. B. Batman: Precision Locks.
Proc. ACM SIGMOD Conf., Ann Arbor, Michigan, 143-147
(1981)

[17] K. Luttenberger: Lock Protocols in XML Database Systems
(in German). Diploma Thesis, Dept. of Comp. Science,
Univ. of Kaiserslautern (2005)

[18] P. E. O'Neil, E. J. O'Neil, S. Pal, I. Cseri, G. Schaller, N.
Westbury: ORDPATHS: Insert-Friendly XML Node Labels.
Proc. SIGMOD Conf.: 903-908 (2004)

[19] A. Schmidt, F. Waas, M. Kersten. XMark: A Benchmark for
XML Data Management. Proc. 28th VLDB Conf., Hong
Kong, China, 974-985 (2002)

[20] A. Silberstein, H. He, K. Yi, J. Yang: BOXes: Efficient
Maintenance of Order-Based Labeling for Dynamic XML
Data. ICDE 2005: 285-296

[21] W3C Recommendations. http://www.w3c.org (2004)

[22] XQuery 1.0: An XML Query Language. W3C Working

Draft (Oct. 2004)

(6]

	1 Motivation
	2 Approaches to XML Concurrency Control
	2.1 Node2PL and its Followers
	2.2 Multi-Granularity Locking Applied to XML Documents
	2.3 Protocols Tailored to DOM operations on XML Trees

	3 System Aspects of XTC
	3.1 taDom Storage Model
	3.2 Addressing and Indexing Schemes
	3.3 Meta-Synchronization

	4 Experimental Setting
	4.1 Existing XML Benchmarks
	4.2 Framework TaMix for XML Benchmarks
	4.3 Composition of TaMix

	5 Results and Interpretation
	5.1 Influence of the Isolation Level
	5.2 Results for Isolation Level repeatable
	5.3 Direct Jumps Unprotected by Intention Locks

	6 Conclusions
	References

