
Coupling of FDBS and WfMS for Integrating
Database and Application Systems:

Architecture, Complexity, Performance

Klaudia Hergula1 and Theo Härder2

1 DaimlerChrysler AG, ITM, Databases and Data Warehouse Systems (TOS/TDW),
Epplestr. 225, HPC 0516, 70546 Stuttgart, Germany,

klaudia.hergula@daimlerchrysler.com
2 University of Kaiserslautern, Dept. of Computer Science (AG DBIS),

P. O. Box 3049, 67653 Kaiserslautern, Germany,
haerder@informatik.uni-kl.de

Abstract. With the emergence of so-called application systems which
encapsulate databases and related application components, pure data in-
tegration using, for example, a federated database system is not possible
anymore. Instead, access via predefined functions is the only way to get
data from an application system. As a result, retrieval of such heteroge-
neous and encapsulated data sources needs the combination of generic
query as well as predefined function access. In this paper, we present a
middleware approach supporting such novel and extended kind of inte-
gration. In particular, so-called federated functions combining function-
ality of one or more application system calls (local functions) have to be
integrated. Starting with the overall architecture, we explain the func-
tionality and cooperation of its core components: a federated database
system and, connected via a wrapper, a workflow management system
composing and executing the federated functions. Due to missing wrap-
per support in commercial products, we also explore the use of user-
defined table functions. In addition to our workflow solution, we present
several alternative architectures where the federated database system
directly controls the execution of the requested local functions. These
two different approaches are primarily compared w.r.t. their mapping
complexity and their performance.

1 Motivation

Most enterprises have to cope with heterogeneous system environments where
different network and operating systems, database systems (DBSs), as well as
applications are used to cover the whole life cycle of a product. Solutions pri-
marily focusing on problems of data heterogeneity exist in the form of federated
database systems (FDBSs) and multidatabase systems, even if there are still
open questions [1, 2]. But the database environment is changing now. While many
enterprises had selected their DBS and designed their tailored DB schema in the
past, they are now confronted with databases being delivered within packaged



software, so-called application systems. One of the most frequently used appli-
cation systems is, for example, SAP R/3 [3], whose data can be accessed via
predefined functions only. The same characteristics can be found in proprietary
software solutions implemented by the enterprises. As a consequence, pure data
integration is not possible anymore, since traditional DBSs have to be accessed
using a generic query language (SQL) whereas application systems only provide
data access via predefined functions.

We introduce an example in order to illustrate how users work with applica-
tion systems today. The sample scenario is located in the purchasing department
of an enterprise and can be found in similar forms in any other department. As-
sume the employee must decide whether he should order a new component deliv-
ered by a supplier already known. A purchasing system supports the employee by
providing a function DecidePurchase. This function proposes a decision based
on a calculated grade of quality and reliability and the number of the consid-
ered component. Unfortunately, the employee only knows the component name
as well as the supplier number. As a consequence, he has to query some other
systems to get the required input for the function DecidePurchase. Fig. 1 illus-
trates the single steps the employee has to go through, i.e. the functions he must
call. He gets the quality as well as the reliability rate for the supplier calling the
functions GetQuality of the stock-keeping system and GetReliability of the
purchasing system with the supplier number. He then uses these results as input
for the calculation of the component’s grade by means of the function GetGrade
and gets the first required input value for DecidePurchase. Moreover, he calls
the function GetCompNo of the product data management system to query the
corresponding number for the component name. With these values – the com-
ponent’s number and grade – he finally can call DecidePurchase to make his
decision.

INT GetQuality (INT SupplierNo) INT GetReliability (INT SupplierNo) INT GetCompNo (STRING CompName)

INT GetGrade (INT Quality, INT Reliability)

STRING DecidePurchase (INT Grade, INT CompNo)

Output: Decision

Input: SupplierNo, CompName

Fig. 1. Workflow process for the federated function BuySuppComp.

During the decision process, the user has to cope with three different applica-
tion systems and three different user interfaces. Technically spoken, he manually
achieves a kind of integration by calling the application systems’ functions and



copying and pasting result values between them. So the user’s interaction rep-
resents the glue between the application systems. In addition, we observe that
there are steps that are processed in the same order again and again. This fact
has led to our idea to support the user by providing so-called federated functions
that implement single calls of the local functions and that hide these steps from
the user. In our example, the user then has to call one federated function – let’s
denote it BuySuppComp – instead of five local functions.

Thus, an integration of functions or application systems is needed. Since also
database systems could be involved in such a user request, a combined approach
of data and function access has to be achieved. Such scenarios can be encountered
in many practical and/or legacy applications.

We consider an FDBS as an effective integration platform, since it provides
a powerful declarative query language. Many user applications are SQL-based
to take full advantage of its properties. A query involving both databases and
application systems includes SQL predicates as well as some kind of foreign
function access.

To implement such an extended kind of integration, we have developed an
integration architecture consisting of two key components: an FDBS and a work-
flow management system (WfMS). Obviously, a WfMS is quite a big engine which
seems to be oversized as part of a middleware. Hence, questions crop up, why
not directly accessing each of the local functions by a user-defined table function
(UDTF for short) instead of using the workflow engine. Therefore, we have im-
plemented both alternatives to be able to examine the differences between them
regarding mapping complexity and performance.

In the remainder of this paper, we describe architectures based on UDTFs
with and without the workflow system in Sect. 2. In Sect. 3, we point out the
mapping complexity these architectures are able to implement. Afterwards, we
present the results of our performance tests in Sect. 4, answering the question
how much time is consumed by the WfMS. In the remaining sections, we briefly
review related work and summarize our ideas.

2 Integration Architectures

The goal of our three-tier integration architecture is to enable the applications
to transparently access heterogeneous data sources, no matter if they can be
accessed by means of SQL or functions (see Fig. 2). Applications referring to a
(homogenized) view to the data comprise the upper tier, and the heterogeneous
data sources represent the bottom tier. Due to space limitations, we focus on
the middle tier, the so-called integration server, which consists of two key com-
ponents: an FDBS achieving the data integration and a WfMS which realizes a
kind of function integration by invoking and controlling the access to predefined
functions. In our terms, function integration means to provide federated func-
tions combining functionality of one or more local functions [4] as introduced in
our sample scenario. Considering the federated function BuySuppComp, one can
see that the mapping from federated to local functions is guarded by a prece-



Data

Functions

Workflow System

Wrapper

FDBS

API API API

Fig. 2. Integration architecture.

dence graph and it typically consists of a sequence of function calls observing
the specific dependencies between the local functions.

As a key concept of our approach, we use a WfMS as the engine processing
such a graph-based mapping where its activities embody the local function calls
and where the WfMS controls the parameter transfer together with the prece-
dence structure among the local function calls [4]. The workflow to be executed
is a production workflow representing a highly automated process [5]. Then, a
unified wrapper can be used to isolate the FDBS from the intricacies of the fed-
erated function execution and to bridge to the WfMS thereby supplying missing
functionality (glue) and making various query optimization options available.
In order to be independent of vendor-specific solutions, a standardized wrapper
interface according to the draft of SQL/MED (Database Languages – SQL –
Part 9: Management of External Data, [6]) is used. As a result, the WfMS pro-
vides so-called federated functions used by the FDBS to process queries across
multiple external data sources.

We have decided to use the WfMS because we want to use existing tech-
nology instead of implementing the engine by ourselves. Moreover, the basic
concept of a workflow engine matches our mapping graph and supports very
complex mapping scenarios. In addition, the workflow engine enables transpar-
ent access to different platforms, hides the interfaces to the application systems
to be integrated, and copes with different kinds of error handling. As a result,
the WfMS implements distributed programming over heterogeneous applications
and, thereby, abstracts the function integration towards the FDBS which then
has to deal with only one interface, that is, that of the workflow engine resp. that
of the wrapper. Finally, the implemented mapping is much easier to maintain
when realized by means of a workflow product.

The applications (users) can access the integration server via an object-
relational interface connecting them to the FDBS. The FDBS’s query processor
evaluates the user queries and those parts requiring foreign function access are
handed over to the wrapper which activates the WfMS. The workflow engine
performs the function integration by calling the local functions of the referenced
application systems as specified in the predefined workflow process. The wrapper
returns the result back to the FDBS where it is mapped to an abstract table.



The remaining parts of the user query are processed by the FDBS, i. e., the query
is divided into the appropriate SQL subqueries for the SQL sources. Eventually,
the subquery results are further processed by the query processor, if necessary,
and merged to the final result.

At the moment, there is no database vendor supporting the SQL/MED wrap-
pers. As an alternative, we decided to replace the wrapper by user-defined table
functions (UDTFs, see Fig. 3). These UDTFs can be referenced in the FROM
clause of an SQL query and return their result as a table to the FDBS. They
can be implemented in different programming languages accessing any kind of
data source. In such an architecture, each federated function is represented by
a UDTF. In our example, a UDTF BuySuppComp can be referenced in a select
statement starting the appropriate workflow process. Unfortunately, UDTFs only
support read access, i. e., we are not able to propagate inserts, deletes, and up-
dates. But since we want to get a first impression of the workflow performance,
read access is a sufficient first step.

Of course, the use of a workflow engine seems to be oversized to some reader,
since, in principle, specialized wrappers or UDTFs could be used to access each
of the local functions which are often supplied by different applications systems.
These functions are frequently called together in a way where the output data
of a function call is the input data of a subsequent function call. The execution
of the single functions could be directly controlled by the FDBS. However, such
an approach would require substantial extensions of the FDBS components in
addition to the writing of the specialized wrappers or UDTFs. Furthermore,
the FDBS had to cope with the different application systems and their local
functions which could be distributed, heterogeneous, and autonomous.

Despite these potential drawbacks, we discuss possible solutions without a
WfMS. In such cases, the integration logic has to be implemented by means of
UDTFs only, where each single local function is connected by a UDTF to the
FDBS. In the following, we present a spectrum of architectures based on UDTFs.

Simple UDTF Architecture
While providing only a simple connectivity for the local functions, the first ap-
proach burdens the application with the integration problem. Each local func-
tion is separately accessed by means of a UDTF, which then can be used in SQL
queries. Since these UDTFs allow only for a single function access, we will call
them Access UDTFs or A-UDTFs for short (see Fig. 3). The actual integration is
not supported by this architecture. Instead, it is achieved by the application1 by
issuing several SQL statements referencing the A-UDTFs and perhaps compos-
ing the related result sets even ’manually’. For our sample scenario, we have to
implement five A-UDTFs for the corresponding local functions. These A-UDTFs
can then be referenced in SQL statements that are embedded in the application
programming code. The logic of the federated function BuySuppComp is repre-
sented by the following select statement. Please note, that the syntax shown
in the examples is based on the implementation of IBMs DB2 UDB v7.1 that
introduces UDTFs with the key word TABLE and and a mandatory correlation
1 Or rather by the application programmer.



name. UDTFs can be only referenced in the FROM clause which is processed in
left-to-right order. This means that there is a precedence structure among the
UDTF calls that is determined by the availability of the input parameter val-
ues. Since, for instance, UDTF GetGrade is dependent on the output values of
UDTF GetQuality and GetReliability, it cannot be executed until the other
two UDTFs have been finished. During the processing of the SQL statement, the
table functions are called returning the output values. In the SELECT clause,
the user can specify which output values to project. Although the statement
seems to specify a cross join, we get only single values in the following example:

SELECT DP.Answer

FROM TABLE (GetQuality(SupplierNo)) AS GQ,

TABLE (GetReliability(SupplierNo)) AS GR,

TABLE (GetGrade(GQ.Qual, GR.Relia)) AS GG,

TABLE (GetCompNo(CompName)) AS GCN,

TABLE (DecidePurchase(GG.Grade, GCN.No)) AS DP

Obviously, this approach is not satisfactory at all, since the integration logic
is hidden within the application code. If the developers have to change the in-
tegration scenario by adding or removing application systems and their local
functions, they have to understand the current implementation possibly done
by developers not present anymore. Usually, its documentation is incomplete or
even missing, so they will need much more time to understand and to adjust it.
Therefore, we will not further consider this approach.

Data

Functions

WfMS

FDBS

API

UDTF UDTF UDTF...

SQL SQL
API API

Data

A-UDTF

Functions

FDBS

API

...

SQL SQL
API API

A-UDTFA-UDTF A-UDTF

Fig. 3. WfMS approach (on the left) and simple UDTF approach (on the right).

Enhanced SQL UDTF Architecture
Next, we enhance the simple UDTF approach by pushing down the integration
logic from the user code into the FDBS. In order to flexibly compose a feder-
ated function using multiple local functions, we introduce so-called Integration
UDTFs or I-UDTFs. These I-UDTFs consist of an SQL statement which includes
references to A-UDTFs, thereby implementing the integration logic. Hence, they
incorporate our federated functions and lead to our enhanced SQL UDTF archi-
tecture (see Fig. 4). Unfortunately, in the product we used, the function body



may contain only one single SQL statement, i.e., the logic has to be expressed
by one SQL statement. This restriction obviously results in further restrictions
regarding the mapping complexity to be implemented. Since we are able to ex-
press the mapping logic of our example with one statement, the definition of the
I-UDTF BuySuppComp looks as follows:

CREATE FUNCTION BuySuppComp (SupplierNo INT, CompName VARCHAR)

RETURNS TABLE (Decision VARCHAR) LANGUAGE SQL RETURN

SELECT DP.Answer

FROM TABLE (GetQuality(BuySuppComp.SupplierNo)) AS GQ,

TABLE (GetReliability(BuySuppComp.SupplierNo)) AS GR,

TABLE (GetGrade(GQ.Qual, GR.Relia)) AS GG,

TABLE (GetCompNo(BuySuppComp.CompName)) AS GCN,

TABLE (DecidePurchase(GG.Grade, GCN.No)) AS DP

In contrast to the simple UDTF architecture, the application code contains
a rather simple select statement now:

SELECT BSC.Answer

FROM TABLE (BuySuppComp(SupplierNo, CompName)) AS BSC

Assessing the enhanced SQL UDTF architecture we can state that it is able
to provide the applications with federated functions which can be referenced
within SQL statements and, therefore, be combined with references to other
federated functions or local and remote tables. Since the federated functions are
implemented by means of SQL at the FDBS side, the maintenance of them is
much more convenient than for the simple UDTF architecture.

Enhanced Java UDTF Architecture
This architecture is based on the same idea like the enhanced SQL UDTF archi-
tecture. The difference is found in the specific implementation of the integration
logic to be realized by means of Java (see Fig. 4). So if we consider this ar-
chitecture from bottom to top, each local function is made accessible to the
FDBS via an A-UDTF written in Java. These A-UDTFs can now be used in the
FROM clause of an SQL statement. The federated functions that are mapped
to the local ones are realized based on Java I-UDTFs which include JDBC calls
invoking the A-UDTFs. Proceeding this way, we can avoid the ’one SQL state-
ment’ restriction. Instead, the Java I-UDTF can issue as many SQL statements
as needed in order to implement federated functions of much more complexity.
Moreover, we can make use of all the features a programming language provides
like, for instance, control structures. Transferring our sample to this architecture,
the Java I-UDTF would contain the same SQL statement like the SQL I-UDTF
since the logic can be expressed by one select statement.

The enhanced Java UDTF architecture seems to be the most powerful solu-
tion to implement federated functions within the FDBS. However, the mainte-
nance becomes more difficult again, since the integration logic is partially hidden
within the programming code. In our view, logic implemented by means of SQL



FDBS

Data

A-UDTF

Functions

API

...

SQL SQL
API API

A-UDTFA-UDTF A-UDTF

I-UDTF ...I-UDTF I-UDTF

FDBS

Data A-UDTF

Functions

API

...

SQL SQL
API API

A-UDTFA-UDTF A-UDTF

I-UDTF ...I-UDTF I-UDTF

Fig. 4. Enhanced SQL UDTF (on the left) and Java UDTF approach (on the right).

only is easier to understand. Of course, we could use PSM (persistent stored mod-
ule) stored procedures which support SQL as well as procedural extensions2, so
that we can obtain the same mapping complexity by means of SQL only. How-
ever, stored procedures have to be handled as ’procedures’, that is, they can
only be invoked by a CALL statement. This restriction, in turn, means that a
user is not able to reference a stored procedure (which represents a federated
function) in a select statement. Hence, such a mechanism cannot be combined
with references to other federated functions or tables.

Alternative Architectures
Besides the presented architectures, there is also the possibility to implement an
integration based on the WfMS only. In this case, the workflow system represents
the top layer of an integration architecture accessing functions as well as data
(via an FDBS, for instance). But since we focus on the data we get by means
of function calls and its further processing, we believe that a database system
provides an engine that is more suitable.

Moreover, there are further solutions possible without using an FDBS and a
WfMS at all. For instance, a J2EE compliant application server could represent
the integration engine implementing access to database and application systems
by means of appropriate J2EE connectors. Enterprise Java Beans have to contain
the mapping and integration logic. Another solution could be based on a message
broker which is also able to execute a kind of precedence graph to some degree.
Or the integration engine is completely implemented by ourselves supporting
exactly the functionality needed without introducing a possibly oversized engine
like the WfMS.

These hand-made solutions do not seem suitable for several reasons. First, we
have to process data, no matter if accessed via SQL or functions, and we believe
that a DBMS represents the best solution for processing data in a fast, reliable,
and secure way. Second, we want to integrate data and functions providing a
flexible and generic interface supporting references to data and functions. Third,
it is not desirable at all to implement the integration logic by ourselves, since
maintenance as well as further development is quite difficult. Instead, we want

2 PSM stored procedures are defined by SQL99 and are also supported by DB2.



to use existing technologies and products that can be adapted or extended if
necessary.

In the following sections, we concentrate on the WfMS approach (Fig. 3)
and the enhanced SQL UDTF architecture (Fig. 4), since they best meet our
requirements described above. Moreover, the workflow architecture is quite a new
solution which has to be compared with more ’traditional’ solutions regarding
mapping complexity and performance.

3 Supported Mapping Complexity

In this section, we compare the enhanced SQL UDTF and the WfMS approach
w.r.t. their mapping complexity. This complexity is mainly caused by the het-
erogeneity gap to be overcome when mapping federated functions to local func-
tions. In the following, we classify the different forms of heterogeneity, listed by
increasing complexity:

– Trivial case: One federated function is mapped to exactly one local function
and their signatures are identical. Only the names of the functions and the
parameters may differ.

– Simple case: In contrast to the trivial case, the signatures may be different,
i. e., the number and data type of parameters do not match.

– Independent case: A federated function is mapped to more than one local
function. Since the local functions are independent of each other, they can
be processed in parallel.

– Dependent case: The next step allows dependencies between the local
functions including linear, (1:n), (n:1), and cyclic dependencies.

– General case: Different forms of dependencies may occur and have to be
handled together when more than one federated function has to be mapped
to a set of local functions.

In the following, we examine to what extent these cases can be implemented
by means of the UDTF and WfMS approach. For this purpose, we introduce
suitable examples to illustrate the separate cases. In our sample scenario, three
application systems are used. A stock-keeping system provides information about
the components in stock, the corresponding supplier as well as their quality. A
product management system stores the bill of material, whereas a purchasing
system keeps information about the suppliers and their reliability. The data of
these systems can be accessed by local functions.

Trivial Case
In the trivial case, a federated function GibKompNr represents a German version
of an English local function GetCompNo. In this case, different function and pa-
rameter names have to be resolved by the mapping. Using the UDTF approach,
this mapping is achieved by hiding the local function’s signature behind that of
the federated function.



The same concept is implemented by the WfMS approach where the signa-
ture of the connecting UDTF hides the names of the functions and parameters
handled by the workflow process.

Simple Case
For the simple case, we demonstrate a type cast by changing the output param-
eter’s data type. In addition, we have to cope with differing numbers of parame-
ters in the function signatures. Assume a federated function GetNumberSupp1234
that returns the stock-keeping number of a given component number for supplier
1234. It is mapped to the local function GetNumber which asks for two input
parameter values. Since the federated function provides only one (CompNo), we
have to specify a constant value for the second input parameter. This constant
is defined by the federated function which returns information about supplier
1234. In addition, the resulting data type has to be converted from INT to LONG.
As a result, the following federated function may be composed:

CREATE FUNCTION GetNumberSupp1234 (CompNo INT)

RETURNS TABLE (Number INT)

LANGUAGE SQL RETURN

SELECT BIGINT(GN.Number)

FROM TABLE (GetNumber(1234, GetNumberSupp1234.CompNo)) AS GN

The WfMS approach introduces so-called helper functions which are defined
as additional activities in the workflow process and which implement the required
type conversions. Comparable to the UDTF approach, the workflow solution can
supply a constant value when calling the local function.

Independent Case
A federated function GetSubCompDiscounts returns the sub-components and
the related supplier for a given component number which can be purchased with
a given discount by calling the local functions GetSubCompNo and GetCompSupp4-
Discount. This operation requires the composition of the single result sets of
the local functions to a common abstract table:

CREATE FUNCTION GetSubCompDiscounts (CompNo INT, Discount INT)

RETURNS TABLE (SubCompNo INT, SupplierNo INT)

LANGUAGE SQL RETURN

SELECT GSCD.SubCompNo, GCS4D.SupplierNo

FROM TABLE (GetSupCompNo(GetSubCompDiscounts.CompNo)) AS GSCD,

TABLE (GetCompSupp4Discount(GetSubCompDiscounts.Discount)) AS GCS4D

WHERE GSCD.SubCompNo=GCS4D.CompNo

The local functions return separate result tables for which the join predicate
is used to select the tuples relevant for our query. For instance, result tuples
of GetCompSupp4Discount representing component numbers that are not sub-
components of the given component are removed.

Using the WfMS approach, the independent case is still a rather simple task
to be accomplished. The independent, i. e. parallel execution of functions is im-
plemented by defining parallel activities whose results are combined by a helper
function.



Dependent Case
The local functions are dependent on each other resulting in a precedence struc-
ture among the function calls, i.e., the output value of one local function is
used as the input value of a subsequent local function. We have identified four
different cases of dependency: linear, (1:n), (n:1), and cyclic dependency.

Linear dependency: Two local functions have to be composed for a federated
function GetSuppQual which returns the quality of a supplier for a given sup-
plier name. Since the local function GetQuality returns the quality for a given
supplier number, the local function GetSupplierNo has to be called first to get
the corresponding number. Its result is then used as input for GetQuality. This
is the point where the UDTF approach encounters limiting factors the first time.
Since SQL is a declarative language, there is no way to specify a particular order
of function calls within a query. One possible workaround would be to nest the
function calls like, for instance, GetQuality(GetSupplierNo(SupplierName)).
Unfortunately, nesting of functions is not supported. Nevertheless, the DBMS
we used for our prototype supports another implementation. In our case, we
are able to reference two types of parameters as input of a local function: input
parameters of the federated function as well as output parameters of other local
function. In this way, we can model a kind of dependency between two func-
tions. In our example, the input parameter of GetQuality references the output
parameter of GetSupplierNo and, therefore, is dependent of GetSupplierNo
and its result. This, in turn, implies that GetQuality cannot be processed be-
fore GetSupplierNo. We implement this solution by performing a cross prod-
uct between the result values of our local functions. GetSupplierNo gets the
input value of the federated function and, therefore, can be executed immedi-
ately. In contrast, the input of GetQuality is specified as the output value of
GetSupplierNo. But this value is only available after GetSupplierNo has been
executed.

CREATE FUNCTION GetSuppQual (SupplierName VARCHAR)

RETURNS TABLE (Qual INT)

LANGUAGE SQL RETURN

SELECT GQ.Qual

FROM TABLE (GetSupplierNo(GetSuppQual.SupplierName)) AS GSN,

TABLE (GetQuality(GSN.SupplierNo)) AS GQ

Please note that this solution is supported by the product we used. There is
no guarantee that other products also enable such a proceeding. Moreover, one
should keep in mind that SQL actually is not intended for such a procedural
use3. There is no further selection required if the local functions return single
values. However, if the result consists of tables, a selection has to be specified in
the WHERE clause.

Considering the WFMS approach, a simple sequential order has to be defined
by the control flow.

3 Except for the procedural extensions for SQL stored procedures.



(1:n) dependency: Assume a federated function is mapped to three local func-
tions where one local function is dependent on the other two local functions.
This case is a combination of the independent case and the linear dependent
case. Consequently, the implementation is comparable, because the dependency
of the one local function is realized by using the output values of the other local
functions which, in turn, get the input values of the federated function.

With a WfMS, a workflow process is defined in which two function calls are
specified as parallel activities. The control flow specifies that the third function
has to be processed after the first two functions have finished.

(n:1) dependency: In contrast to the (1:n) dependency, several local functions
are dependent on a single local function. This mapping is solved in the same way
as in the dependent cases above.

The WfMS approach can handle this case by the appropriate forks in the
control flow.

Cyclic dependency: This kind of dependency cannot be implemented by the
UDTF approach, since there are no control structures like a loop which are
needed to iterate the cycle. At the moment, such control structures are only
supported in PSM stored procedures. But when we use stored procedures repre-
senting federated functions, we are not able to combine them with other function
or table references. On the other hand, the WfMS approach provides such control
structures. The cyclic case is implemented by defining sub-workflows containing
activities to be invoked several times. Such a sub-workflow is then activated in
a do-until-loop which realizes the cycle.

Finally, we want to return to our sample introduced in Sect. 1 to demonstrate
the difference between the UDTF and workflow approaches by a more complex
example including several of the introduced heterogeneity cases. The resulting
I-UDTF for the enhanced SQL UDTF architecture solution is illustrated once
again below:

CREATE FUNCTION BuySuppComp (SupplierNo INT, CompName VARCHAR)

RETURNS TABLE (Decision VARCHAR) LANGUAGE SQL RETURN

SELECT DP.Answer

FROM TABLE (GetQuality(BuySuppComp.SupplierNo)) AS GQ,

TABLE (GetReliability(BuySuppComp.SupplierNo)) AS GR,

TABLE (GetGrade(GQ.Qual, GR.Relia)) AS GG,

TABLE (GetCompNo(BuySuppComp.CompName)) AS GCN,

TABLE (DecidePurchase(GG.Grade, GCN.No)) AS DP

Comparing this function definition to the mapping graph resp. workflow pro-
cess shown in Fig. 1, it is obvious that it is quite difficult to identify the relations
and dependencies among the local functions in the CREATE FUNCTION statement.
In contrast, the workflow solution in Fig. 1 is much clearer. Moreover, we would
like to point out again that this solution is supported by the product we used,
but cannot be taken for granted in general.

The following table summarizes our results:



Case UDTF approach WfMS approach

trivial hidden behind the federated
function’s signature

hidden behind the federated func-
tion’s signature

simple cast functions, supply of con-
stant parameters

helper functions

independent join with selection parallel execution of activities

dependent: linear join with selection; execution
order defined by input param-
etersa

sequential execution of activities

dependent: (1:n)
and (n:1)

join with selection; execution
order defined by input param-
etersa

parallel and sequential execution
of activities

dependent: cyclic not supported loop construct with sub-workflow

a
Not supported in general.

Obviously, the UDTF approach is able to support many of the cases we exam-
ined, going a long way towards a restricted but lightweight workflow technology.
However, the WfMS supports still more functionality like conditions, that can-
not be expressed by SQL. The examples show that it is easier to specify and
implement the mappings by means of workflows. Moreover, with an increasing
number of local functions involved, the SQL statements become more and more
complex and confusing. Nevertheless, the UDTF approach can be beneficial for
simple applications that do not need a full-flegded WfMS.

4 Performance

In the following, we will explore the performance of our reference architectures.
For this reason, we have implemented the workflow as well as the enhanced
SQL UDTF architecture and have built a test and measurement environment
for several examples representing the different cases introduced in Sect. 3. The
processing time, i. e. the elapsed time, for these examples has been measured
for each solution and compared to each other. The implementation is based on
IBM’s DB2 UDB v7.1 and MQ Series Workflow v3.2.2.

Because of security restrictions in DB2 UDB, we had to modify our architec-
ture slightly by introducing a so-called controller. This controller is needed to
connect a UDTF to a database on the same server (which is the case in our test
implementation). It ensures that the UDTF process and the connection to the
database are two different processes. The same process isolation is implemented
in the workflow architecture in order to separate the UDTF process from the
process invoking the workflow. In addition, the controller is started only once at
the beginning when the whole environment is booted. It calls the WfMS provid-
ing the connect information and keeps the WfMS active. If these tasks would not
be performed by the controller, each single integration UDTF would have to re-
peat it each time it calls the WfMS. Hence, we optimize the WfMS access, since
the execution time for a federated function is reduced by the time needed for



connecting the workflow engine. Since these modifications have the same impact
on both solutions, we can likewise compare the alternative implementations.

First of all, we consider the processing time for function calls in three differ-
ent situations: right after the entire system has been booted, after some other
function has been invoked, and after the same function has been processed. Of
course, the initial function calls are the slowest, since all underlying processes
have to be started and memory as well as caches are empty. As expected, the
repeated function call is the fastest. Please note, that the cyclic dependent case
is not implemented and, therefore, not measured for the UDTF approach. More-
over, we note that the function GetSuppQualRelia based on parallel activities
is processed faster than the function GetSuppQual with a sequential processing
order in the workflow architecture. In contrast, the UDTF approach achieves pro-
cessing times which show a contrary result. Obviously, the workflow approach
can process parallel function calls in a more efficient way.

The following measurement results are based on repeated function calls. First,
we directly compare the measured processing times to each other. Fig. 5 shows
that the WfMS approach is up to three times slower than the UDTF solution.
Furthermore, we can observe that the processing times do not rise as intensely for
the UDTF approach as for the workflow approach when the number of functions
increases. Taking the facts into account that the WfMS approach implies the
use of a second, very big engine and that the time scale remains in the expected
range, the gap between the processing times measured is acceptable.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ms

G
ib
K
om

pN
r_

tri
vi
al

G
i b

Ko
m
pN

r_
si
m
pl

e

G
et

Su
p pQ

ua
lR

el
i a

G
e tS

up
p
Q
ual

G
et

N
oS

u
pp

C
om

p

G
e tS

up
pQ

ua
lR

el
ia
2

Workflow architecture

Enhanced SQL UDTF architecture

Fig. 5. Comparison of the results for the workflow and the enhanced UDTF approach.

Another interesting aspect is the question about the single actions the overall
processing time consists of. Fig. 6 shows how much time the single steps consume
when running the federated function GetNoSuppComp.



Workflow approach

Step Time

Start UDTF 9%
Process UDTF 11%
RMI call 3%
Start workflows and Java en-
vironment

10%

Process activities 51%
Workflow 9%
Controller 5%
RMI return 0%
Finish UDTF 2%

UDTF approach

Step Time

Start I-UDTF 11%
Prepare 3 A-UDTFs 28%
3 RMI calls 24%
3 controller runs 0%
Process activities 6%
Finish 3 A-UDTFs 21%
3 RMI returns 1%
Finish I-UDTF 9%

Fig. 6. Time portions of the overall function calls in the WfMS and UDTF approach.

Considering the workflow architecture we observe that the processing of ac-
tivities takes the lion share of the time with 51% of the overall processing time.
23% of the time is needed for preparing actions like calling and processing the
UDTF and the controller until the workflow system is involved. Another 19%
is consumed by the workflow environment and the remaining time is needed for
the controller (5%), the result return, and finishing the UDTF (2%). Starting
the workflow process instances and the Java environment for the Java API of
the WfMS seem to take up a lot of time with 10%. But this share will be smaller
when the number of activities is increasing since it will always take the same
constant time, irrespective of how many activities have to be executed. The
introduction of the controller makes a difference with a total of 8%.

Looking at the UDTF architecture, the time is divided in other propor-
tions. Starting and finishing the integration UDTF requires 20% of the overall
time. This relative time portion is comparable to that of the workflow approach4

with 22% for starting (9%), processing (11%), and finishing (2%) the integra-
tion UDTF. The overall processing time of the three access UDTFs consumes
about 49% of the time. The processing of the local functions requires only 6%.
Hence, the time portion corresponding to the activities in the workflow approach
accounts for 55% (49% + 6%) and, thus, represents a bigger part of the over-
all elapsed time than the activities in the workflow. The controller consumes a
rather big percentage of the time with a total of 25%.

Comparing the two time portions, we observe the extreme difference regard-
ing the various process activities. This is mainly due to the start of the Java
programs. In the UDTF solution, the activities are processed within the con-
troller which is already running, whereas the workflow architecture requires the
start of a new Java program for each single activity including the booting of the
Java virtual machine. Moreover, the workflow activities have the additional task
of handling the input and output containers.

4 However, the ratio for the absolute elapsed time is still 1:3.



Assume, we can implement our prototypes without the controller. Then, the
total time of the WfMS solution would decrease by 8%, whereas the UDTF
solution would decrease by even 25%. As a result, the overall processing time
ratio between workflow and UDTF approach would increase from 3 to 3.7.

Moreover, we have used the cyclic dependent case in the workflow solution to
get an impression how the number of functions influences the overall processing
time. The federated function AllCompNames is realized by means of a do-until
loop. We have used this loop structure to measure the impact of an increasing
number of calls of the same local function within a single federated function.
This scenario shows that the overall processing time rises linearly to the number
of function calls. Of course, this is only true, if we always call the identical
function. Several measurements have shown that it is pretty difficult to define a
formula for the overall time based on the number of functions integrated, since
the elapsed time to execute a local function can differ immensely. So we can
state that, currently, the parallel execution of functions is the only action we
can make an assumption about: activities that are defined as parallel activities
in a control flow actually are processed in parallel and, therefore, reduce the
time consumed. Our examples GetSuppQualRelia and GetSuppQual show that
the UDTF approach is unable to exploit the advantage of parallelism to such an
extent since the execution of the parallel case takes more time than that of the
sequential case.

In summary, our evaluated scenario indicates that a workflow system in the
middleware does not produce such an overhead that the resulting processing
times are not acceptable anymore.

5 Related Work

Most approaches dealing with the integration of heterogeneous data sources focus
on the capability to combine different data models and heterogeneous systems
providing an interface which is not as powerful as SQL. Approaches like Garlic
[7], Information Manifold [8], or TSIMMIS [9] embody mediator- or wrapper-
based solutions where missing functionality of the data sources is compensated
by the integration server. In contrast to our work, these approaches provide gen-
eral solutions and algorithms for accessing any kind of data source. In our case,
all non-SQL sources are integrated by the WfMS (or the use of UDTFs) and the
SQL sources are managed by the FDBS. As a consequence, the FDBS has to
communicate with a single non-SQL source only: the WfMS. Hence, we can con-
centrate on a specific solution supporting the interoperability between the FDBS
and the workflow system (on the assumption that the access to heterogeneous
SQL sources is already provided by the FDBS).

Furthermore, we focus on the integration of a functional interface on the
FDBS side. Chaudhuri at al. [10] have discussed this topic very early thereby
demonstrating how references to foreign functions can be expressed in a query
language. But they did not address the problem of limited access patterns. In
such cases, for example, a particular function input must be stated similar to spe-



cific selection criterias in the WHERE clause of an SQL statement. Approaches
like [11] and [12] propose solutions for this limitation by binding attributes in
order to support queries on such data sources.

The approaches mentioned above mainly obtain their solutions by fully-
fledged implementations whereas our intention is to use existing technologies
and products. Reinwald et al. [13] present a solution based on user-defined table
functions to access non-SQL data sources. But these table functions are limited
to Windows sources, since they implement them by means of OLE DB.

6 Summary

In this paper, we have introduced an approach for the integration of heteroge-
neous data sources accessible via a generic query language or predefined func-
tions. We have described the components of our integration architecture intro-
ducing the FDBS and the WfMS connected via standardized SQL/MED wrap-
pers. Since there is no product available yet supporting such wrappers, we have
decided to implement a first prototype with so-called user-defined table func-
tions. These table functions support read access to any kind of data source
returning the result as tables and, therefore, can be referenced in the FROM
clause of a select statement. Since the workflow engine may be considered as
a component too big for the middleware, we have described several alternative
architectures which realize the function integration via direct access to the local
functions by means of table functions.

In order to assess the function mapping capabilities, we have compared the
workflow architecture and a table function architecture regarding their mapping
complexity. The comparison has shown that the workflow approach is able to
realize all possible scenarios whereas the table function approach has some limi-
tations. Moreover, we have implemented two prototypes and have measured the
performance for each solution. With a workload of increasing mapping complex-
ity, the measurement results revealed a factor of 3 in favor of the UDTF solution.
However, when the overall effort for implementing a foreign function integration
is considered, the workflow approach represents a solution, easy to implement
and to use, which is not as slow as many readers may expect.

Not all questions could be answered concerning the suitability of an architec-
ture for data and function integration where the data sources are autonomous,
distributed, and heterogeneous. To the best of our knowledge, empirical studies
on their related issues are missing so far. Therefore, an initial study cannot be
exhaustive. Further questions to be considered include, for instance, the mapping
between the data model and the functional model and how it can be realized ab-
solutely transparently to the application. Moreover, the functionality provided
by the wrapper is interesting including the discussion of wrapper-internal op-
erations for requested functionality not natively supported by the WfMS [14].
Further research has to clarify issues of query optimization, scalability, access
control, ease of administration and evolution, and so on.



References

1. Härder, T., Sauter, G., Thomas, J.: The Intrinsic Problems of Structural Hetero-
geneity and an Approach to their Solution. VLDB Journal 8:1 (1999) 25–43

2. Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22:3 (1990)
183–236

3. SAP AG: SAP R/3. (2001). www.sap.com/solutions/r3/
4. Hergula, K., Härder, T.: A Middleware Approach for Combining Heterogeneous

Data Sources – Integration of Generic Queries and Predefined Function Access.
Proc. 1st Int. Conf. on Web Information Systems Engineering, Hongkong (2000)
22–29

5. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques, Prentice
Hall (2000)

6. ISO & ANSI: Database Languages – SQL – Part 9: Management of External Data,
Working Draft (2000)

7. M.Tork Roth, P. Schwarz: Don’t Scrap It, Wrap It! A Wrapper Architecture for
Legacy Data Sources. Proc. 23rd Int. Conf. on Very Large Data Bases, Athens
(1997) 266–275

8. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information
Sources Using Source Descriptions. Proc. 22nd Int. Conf. on Very Large Data Bases,
Bombay (1996) 251–262

9. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange Across Het-
erogeneous Information Sources. Proc. 11th Int. Conf. on Data Engineering, Taipei
(1995) 251–260

10. Chaudhuri, S., Shim, K.: Query Optimization in the Presence of Foreign Functions.
Proc. 19th Int. Conf. on Very Large Data Bases, Dublin (1993) 529–542

11. Florescu, D., Levy, A., Manolescu, I., Suciu, D.: Query Optimization in the Pres-
ence of Limited Access Patterns. Proc. ACM SIGMOD Int. Conf. on Management
of Data, Philadelphia (1999) 311–322

12. Garcia-Molina, H., Labio, W., Yerneni, R.: Capability-Sensitive Query Processing
on Internet Sources. Proc. 15th Int. Conf. on Data Engineering, Sidney (1999) 50–59

13. Reinwald, B., Pirahesh, H., Krishnamoorthy, G., Lapis, G., Tran, B., Vora, S.:
Heterogeneous Query Processing through SQL Table Functions. Proc. 15th Int.
Conf. on Data Engineering, Sidney (1999) 366–373

14. Hergula, K., Härder, T.: How Foreign Function Integration Conquers Heteroge-
neous Query Processing. Proc. 10th Int. Conf. on Information and Knowledge Man-
agement, Atlanta (2001) 215–222


