Database Caching: Analysis of Constraint-based Approaches
Exemplified by Cache Groups

Andreas Buhmann, Theo Harder

University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
{ buehmann, haerder} @informatik.uni-kl.de

Abstract

Caching is a proven means to improve scalability and availability of software systems as well asto reduce latency of
user requests. In contrast to Web caching where single Web objects are kept ready somewhere in cachesin the user-
to-server path, database caching uses a full-fledged DBMS as a cache to adaptively maintain sets of records from a
remote DB and to evaluate queries on them. We give an introduction to the new class of constraint-based DB caching,
by the example of cache groups. These cache groups are constructed from parameterized cache constraints, and their
use is based on the key concepts of value and domain completeness. We show how cache constraints affect the cor-
rectness of query evauationsin the cache and which optimizations they allow. Finally, once unsafe cache configura-
tions, whose performance is uncontrollable, are identified, the costs of safe ones can be analyzed quantitatively.

1 Motivation

Transactional Web applications (TWAS) dramatically grow in number and complexity. At the same
time, each application is expected to process increasing data volumes. In such situations, caching is a
proven concept to improve response time and scalability of the applications aswell asto minimize com-
munication delays in wide-area networks. Many techniques have therefore emerged in recent years to
keep static Web objects (like XML fragments or images) in caches in the user-to-server path.

Asthe TWAsmust deliver more and more dynamic and frequently updated content, Web caching [6]
should be complemented by techniquesthat are aware of the consistency and compl eteness requirements
of cached data (whose source is updated in abackend DB) and that, at the same time, adaptively respond
to changing workloads. Attempts targeting these objectives are called database caching, for which sev-
era different solutions have been proposed in recent years[1, 2, 3]. Currently many DB vendors are de-
veloping prototype systems or are just extending their current products[e.g., 5, 7].

What is the technical challenge of this approach?

customers

where region = ‘west’ When responses to user requests are assembled
app. from static and dynamic contents somewherein a
server DB C . . .

e Cache o8 Web cache, the dynamic portion is generated by a
server(s) (\ %, SQLY| erver | remote application server (AS), which in turn asks
& %/ the backend DB server for up-to-date information,
el squ (Cache thus causing substantial latency. An obvious reac-
customers tion to this performance problem is the migration

where region = ‘east) .
Web clients application frontend backend OT ASs o data centers closer to the users: But this
logic DB servers DB server - displacement of ASsto the edge of the Web alone

is not sufficient; conversely it would dramatically
degrade the efficiency of DB support because of
the frequent round trips to the then remote backend DB server. As a consequence, primarily used data
should be kept close to the AS in DB caches (Fig. 1). A flexible solution should not only support DB
caching at mid-tier nodes of central enterprise infrastructures|[7], but also at edge servers of content de-
livery networks or remote data centers.

A practical solution should aso feature cache transparency, i.e., the application programming inter-
face must not be modified. This givesthe cache manager the choice at run timeto processaquery locally
or to send it to the backend DB server (e.g., in order to comply with strict consistency requirements).

Fig. 1: Database caching for Web applications

The use of SQL presents another challenge because of its declarative and set-oriented nature: The
cache manager has to guarantee that queries can be processed in the DB cache, i.e., the sets of records
satisfying the corresponding predicates, denoted as predicate extensions, must completely be in the
cache. This completeness condition ensures a query evaluation semantics that is equivalent to the one
provided by the backend.

A federated query facility [1, 5] allows cooperative predicate eval uation by multiple DB servers. This
isimportant for cache use, because local evaluation of some (partial) predicate can be complemented by
the work of the backend DB server on other (partial) predicates whose extensions are not in the cache.
In the following we refer to predicates meaning their portions to be evaluated in the cache.

2 Constraint-based Database Caching

We take alook at the concepts developed in the DBCache project [1] and explore the underlying ideas;
thiswork has lead us to a class of techniques which we term constraint-based database caching [4].
Cache groups are collections of related cache tables; cache constraints defined on and between them
determine which records of the corresponding backend tables to keep in the cache. The technique does
not rely on the specification of static predicates: The constraints are parameterized, which makes this
specification adaptive; it is completed when the parameters are instantiated by values of cache keys. An
“instantiated constraint” then corresponds to a predicate and, when the constraint is satisfied—i.e., all
related records have been |oaded—the predicate extension delivers correct answers to eligible queries.
The key idea of constraint-based caching isto start with ssmple base predicates (here equality predi-
cates) and to extend them by other types of predicates (equi-join predicatesin our case) in aconstructive
way such that cache maintenance can always guarantee the presence of the corresponding predicate ex-
tensionsin the cache. Hence, there are no or only simple decidability problemswhether or not acomplete
predicate evaluation can be performed: Only asimple probe query is required in the cache to determine
the availability of predicate extensions.
For simplicity, the names of tables and columns are identical in the cache and in the backend DB.
Considering acachetable S, we denoteby S itscorresponding backend table, by S.c acolumn ¢ of S.
If we want to be able to evaluate a given predicate in the cache, we must keep a collection of records
in the cache tables such that the completeness condition for the predicate is satisfied; for smple equality
predicates like S.c = v this condition takes the shape of value completeness:

Value completeness (VC). A value v is said to be value complete in a column S.c if and only if all
recordsof o, _ S, arein §.

If we know that a value v is value complete in a column S.c, we can correctly evaluate S.c = v,
because all rows from the corresponding backend table S, that carry that value are in the cache. But
how do weknow that v isvalue complete? Thisiseasy if we maintain domain completeness of columns.

Domain completeness (DC). A column S.c is said to be domain complete (DC) if and only if all
values v in S.c arevalue complete.

Given aDC column S.c, if a probe query confirmsthat value v isin S.c (asingle record suffices),
we can be sure that v is value complete and thus evaluate S.c = v in the cache. Note that unique (U)
cache table columns (defined by SQL constraints in the backend DB schema) are DC per se (implicit
DC); non-unique (NU) columnsin contrast need extra enforcement of DC.

So far, we can evaluate only equality predicatesin the cache. To enhance such queries with equi-join
predicates, we introduce referential cache constraints.

Referential cache constraint (RCC). RCC S.a - T.b between a source column S.a and a target col-
umn 7.5 issatisfied if and only if all values v in S.a are value completein 7.5 .

AnRCC S.a - T.b ensures that, whenever we find arecord s in S, al join partners of s with re-
spectto S.a = T.b arein T. Note, the RCC alone does not allow usto correctly perform thisjoinin the
cache: Many rows of S, that have join partnersin 7, may be missing from §. But using an equality
predicate on aDC column S.c asan “anchor”, we can restrict thisjoin to records that exist in the cache:
(S.c = x and S.a = T.b). Inthisway DC columns serve as entry pointsfor queries. Domain compl ete-

ness of acolumn S.c isequivaent to asaf-RCC S.c - S.c; by specifying such a self-RCC the DBA
can enforce domain completeness of S.c and thus create an entry point for query evaluation explicitly.

How do the records constituting a predicate extension get into the cache? And how are these predicate
extensions actually chosen? For these tasks, we introduce a second kind of cache constraint:

Cachekey. A cache key column S.k is always kept domain complete. Only values in 11,.S; initiate
cache loading when they are referenced by user queries.

Y ou can imagine that a cache key includes a self-RCC,; it can always be used as an entry point. (The
columns get explicitly DC in both cases.) But in addition, a cache key serves as afilling point for aroot
table R and—viathe RCCs between R and related cache tables—for the member tables of the cache
group: Whenever aquery references aparticular cache key value v that isnot in the cache, the query has
to be evaluated by the backend DB; but the cache manager satisfies the value completenessfor the miss-
ing value v by fetching all required records from the backend and loading them into the cache table R .
To satisfy the RCCs, the member tables of the cache group are loaded in a similar way (for details see
[1]). Hence, areference to a cache key value v serves as something like an indicator that, in the imme-
diate future, locality of reference is expected on the predicate extension determined by v .

Assume a cache group G with cache tables C, O, and P a t n d
(customer, order, product), formed by Ca - O.b and ¢ | U | | NU| | U | | p
O.c - Pd, where Ca, and P.d are Ucolumns and O.b
and O.c are NU columns (Fig. 2). Aswe know, if a probing op-
eration on some domain-complete column 7.c¢ identifiesvalue x ,
wecanuse T.c asanentry point for evaluating 7.c = x.Any en-
hancement of this predicate with equi-join predicates is alowed
if these predicates correspond to RCCs reachable from cache ta-
ble T.

Assume, wefind ‘gold’ in C.¢ (of cachegroup G), thenthe predicate (C.t = ‘gold’ and C.a = O.b
and O.c = P.d) can be processed in the cache correctly. Because the predicate extension (with al col-
umns of all cache tables) is completely accessible, any column may be specified for output. Of course,
acorrect predicate can be refined by “and-ing” additional selection terms (referring to cache table col-
umns) toit; e.g., (C.t = ‘gold” and C.n like‘Smi%’ and O.e >42 and ...).

o[uNy[[NU[|
e b c
Fig. 2: Cachegroup G

3 Cache Group Design and Analysis

At this point, we know how to configure a cache group by specifying the participating tables, the RCCs
connecting them, and the cache keys initiating the population of the cache group. We can use domain-
complete columns as entry points to obtain correct query results for eligible query predicates. Isthis all
we need to know to design and to effectively make use of cache groups?

On the one hand, acache group should enable as flexible use for predicate evaluation as possible: We
should not leave any entry point or RCC unexploited. This requires that we know about all of them, not
just about those we specified explicitly. On the other hand, RCC cyclesare easily constructed, which can
lead to excessive population of cache groups. Such “dangerous’ load behavior must clearly be prevent-
ed.

3.1 Entry pointsfor query evaluation

We have argued that a cache table column can be tested and used correctly by an equality predicate only
if it is domain complete. But how do we know that? Of course, cache table columns that carry either a
self-RCC or acachekey (i.e., at least dl filling points) are explicitly domain complete; unigue columns
are implicitly domain complete. Cache-supported query evaluation gains much more flexibility and
power, if we can correctly decide that other cache table columns are domain complete as well.

Let usrefer againto G . Because C.a — O.b istheonly RCC that inducesfilling of O, we know that
0.b isdomain complete (induced domain completeness). Hence, we can correctly evaluate the query
predicate (0.6 = y and O.c = P.d) if we encounter value y in O.b . Note, additional RCCsending in
0.b would not destroy the DC of 0.5, though any additional RCC ending in a column different from

3

0.b would do*: Assume an additional RCC ending in O.e induces a new value v, which implies the
insertion of o, _ O, into O—just asinglerecord o. Now anew value w of o.b, so far not present in
0.b, may appear, but al other records of g, _ O, fail to do so. For thisreason, acache table filled by
RCCs (or cache keys) on more than one column cannot have an induced DC column. This means that
induced DC is context dependent; in contrast to explicit or implicit DC it can be lost when a cache group
configuration is modified.

Analogous to extra DC columns, one can discover optimization RCCs in a cache group, i.e., RCCs
that have not been specified, but hold in agiven context. For example, in G theRCC O.h - C.a dlows
an additional join direction.

3.2 Safeness of cache groups

It is unreasonable to accept al conceivable cache group configurations, because cache misses on cache
key columns may provoke unforeseeable load operations. Although the cache can be populated asyn-
chronously to the transaction observing the cache miss (avoiding a burden on its response time), this ex-
trawork will influence the transaction throughput in heavy workload situations.

Specific cache group configurations may even exhibit arecursive loading behavior. Once cache fill-
ingisinitiated, the enforcement of cache constraints may require multiple phases of record loading. Such
behavior typically occurs, when two NU-DC columns a and b of a cache table X must be maintained.
A set of values appearsin a, for which X is loaded with the corresponding records of X , to keep a
domain complete. These records, in turn, populate » with a set of (new) values; all records having one
of thesevaluesin » must then be loaded into X, possibly introducing new valuesinto a . Asaresult, a
and b may receive new valuesin arecursive way.

Cache groups are called safe if such recursive loading behavior cannot occur: Upon a cache key miss,
the initiated cache loading always stops after a single filling pass through the cache group. Obviousdly,
recursive loading requires acyclic structure among the specified RCCs (remember, every cache key also
contains an RCC). Simple examples show that there are not only unsafe RCC cycles, but also safe ones
(consider a homogeneous cycle involving only one column per table). We analyzed cycles in detail and
derived safeness conditions for cache group configurations. These conditions are more sophisticated
than a ssimple exclusion of pairs of NU-DC columns (as sketched above), because the mutual introduc-
tion of new values can span several tables and can also be neutralized by compensating effects. Never-
thel ess the safeness conditions can be stated as a single rule that requires the designer of a cache group
to inspect all contained cycles for certain patterns of U and NU columns.

4 Evaluation of Quantitative Aspects

Having identified unsafe cache configurations, whose performance is unpredictable, we must compare
the safe onesin terms of cost and benefit. The resulting knowledge could lead to a design tool that pro-
poses promising cache configurations.

A first step towards a cost mode! for cache groupsisto answer, how many records »,. of which types
T areloaded after areferenceto acachekey value. Even if one makesthe standard assumptions of query
optimization (i.e., uniform value distribution in each column, stochastically independent of other col-
umns), difficulties arise: The sets of records dependent on different cache key values can intersect (e.g.
many customersin Fig. 2 may have ordered the same products); therefore, with an increasing number of
cache key valuesin the cache, the number of records to be loaded for anew one decreases in such situ-
ations. Accordingly, we will gain only an upper bound for #, if we assume an empty cache.

Wedenote by ¢, thecardinaity of acolumn Sz.a (the number of different valuesin acolumn) and
by Ng the number of recordsintable S, . Let usnow calculate n, for all tables 7" in our cache group
example G ; we assume all cache tables to be empty and insert asingle value v into C.¢. Vaue com-

1 We must distinguish between RCCs that only reach a column and RCCs that also fill it: There are RCCs that never cause
the loading of any record (e.qg., aself-RCC on aU column) and thus cannot disturb induced DC. How to effectively classify an
arbitrary RCC is still an open issue.

pleteness of C.t requires n. = N/ c., records; the same number of values appearsin C.a . Each of
these values is made value complete in O.b, which forces n, = n-(N,/c,,) recordsinto O. The
number d, . of different values expectedin O.c isnot aseasily calculated as d -, , because O.c isNU;
the derivation requires stochastic considerations not shown here. The next step (RCC O.c - P.d) is
simple again: Column P.d isU, sothat n, = d, recordsare expectedin P .

Cache group G has alinear structure, which is reflected in the calculation: Each n, is determined
by at most one other ng, and there is one that is directly known (here ».); this also appliesto all trees
among possible configurations. In acyclic graphs, we can proceed in asimilar way, following a topolog-
ical order; to calculate n,, we need only away to merge the influences of the immediate predecessors
of 7. New ways of approximating the number of records loaded must be found in the case of an RCC
cycle, where mutual influences occur.

The maintenance costs of cache groups deliver an important building block for amodel determining
the setup costs of a cache group which, in turn, is essential for estimating the savings of evaluating a
predicate in the cache. To achieve the required precision of the loading costs, we need to develop a DB
model characterizing the cardinalities of the backend tables, the selectivities of their columns, and the
distribution of their values. On the other hand, a workload model essentially governs the actual cache
group design, because type and frequency of given queries identify the cache keys (controlled by stop-
word lists) and RCCs. Hence, sufficiently accurate models for workload, cache group, and DB are vital
for aquantitative justification of acache groupina TWA environment. To validate these results, various
kinds of measurements are needed in areal DB cache setting.

5 Conclusions

We have introduced constraint-based database caching using as an example the specific kind of cache
groups proposed in the DBCache project. Cache groups provide predicate completeness for predicates
built constructively from simple base predicates, which are specified as parameterized constraints on
cache tables. This use of parameters gives cache groups a ssimple kind of adaptability. In the future we
want to explore, how the idea of constraint-based caching can be extended to other types of predicates
(e.g., range or aggregation predicates). Perhapsit isalso possibleto |et evolve cache group specifications
themselves (e.g., by adding or dropping RCCs, when changed join patterns are observed in the work-
load), thus reaching a higher level of adaptability.

The analysis of the basic type of cache groups has shown that one must be aware of the consequences
of aset of specified cache constraints: On the one hand, performance problems due to uncontrolled cache
loading must be prevented; on the other hand, one must know which kinds of predicates can be evaluated
correctly in the cache and must have efficient probe operations to check the availability of predicate ex-
tensions. Furthermore, for each variation of constraint-based caching quantitative analyses must help to
understand which cache configurations are worth the effort.

There are many other issues that wait to be resolved: For example, we have not said anything about
theinvalidation of predicates, about the removal of overlapping predicates extensions from the cache, or
about different strategies how updates can be applied to cache and backend.

References

[1] M. Altinel, C. Bornhévd, S. Krishnamurthy, C. Mohan, H. Pirahesh, B. Reinwald: Cache Tables: Paving the Way for an
Adaptive Database Cache. VLDB Conference 2003: 718-729

[2] K.Amiri, S. Park, R. Tewari, S. Padmanabhan: DBProxy: A Dynamic Data Cache for Web Applications. ICDE Confer-
ence 2003: 821831

[3] R.G. Bédllo, K. Dias, A. Downing, J.J. Feenan Jr., J.L. Finnerty, W.D. Norcott, H. Sun, A. Witkowski, M. Ziauddin: Ma-
terialized Viewsin Oracle. VLDB Conference 1998: 659-664

[4] T.Hérder, A. Biihmann: Datenbank-Caching: Eine systematische Analyse mdglicher Verfahren, Informatik — Forschung
und Entwicklung, Springer (2004)

[5] P.-A. Larson, J. Goldstein, J. Zhou: MTCache: Mid-Tier Database Caching in SQL Server. ICDE Conference 2004

[6] S. Podlipinig, L. Boszérmenyi: A Survey of Web Cache Replacement Strategies. ACM Computing Surveys 35:4, 374-398
(2003)

[7] The TimesTen Team: Mid-tier Caching: The TimesTen Approach. SSIGMOD Conference 2002: 588-593

