#### Benchmarks und Standards

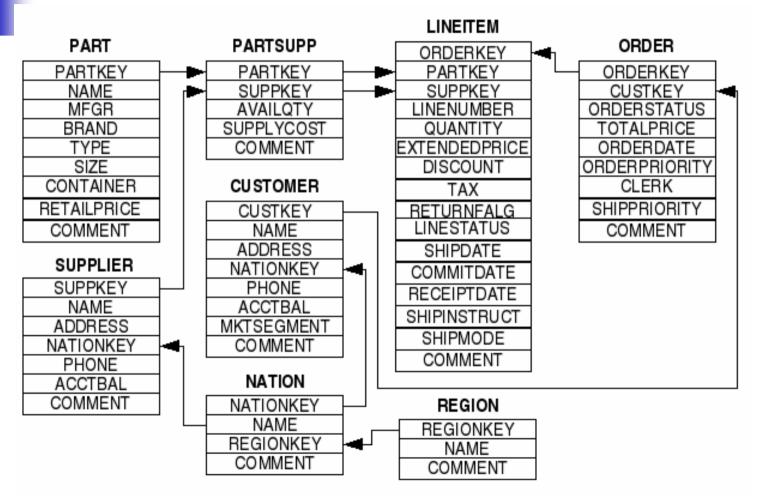
Vortrag im Rahmen des Seminars Business Intelligence Teil I: OLAP und Datawarehousing

Karl-Christian Pammer 18. Juli 2003

## Überblick

- OLAP-Benchmarks
  - Motivation
  - TPC-D
  - APB-1
- Standards zur Datenintegration
  - Motivation
  - Integration von operationalen Daten
    - OLE DB
  - Integration von Metadaten
    - MDIS




### Benchmarking und Benchmarketing

- Hersteller-Benchmarks
  - Unzureichend dokumentiert
  - Wenig repräsentativ
  - Systemorientiert
- Standard-Benchmarks
  - Benchmark-Spezifikation
  - Dokumentationspflichten
  - Auditierung



- Decision Support Benchmark
- Spezifiziert vom Transaction Processing Council
  - 1995: Version 1.0
  - 1998: Version 2.1 (aktuelle Version)
- Systemmodell
  - Multi-user Datenbanksystem
  - Aufteilung in OLTP- und DS-System
  - ACID-Transaktionen
- Datenbasis
  - Unternehmensdaten
  - Datenerzeugung mittels DBGEN

#### TPC-D: Datenbankschema





#### TPC-D: Anwendungsszenario

- Analysen aus 6 Bereichen
  - Preisgestaltung und Marketing
  - Beschaffung
  - Erlösmanagement
  - Kundenzufriedenheit
  - Marktsegmentanalyse
  - Logistik
- Realisierung
  - 22 Analyseabfragen (Q1 bis Q22)
  - 2 Aktualisierungsabfragen (RF1, RF2)
  - Vorgegebene Datenbankgrößen (1GB bis 3.000GB)

### TPC-D: Abfragen

- Q17: "Small-Quantity-Order Revenue Query"
  - Analyse
    - Welche Erlösminderung ergibt sich, wenn keine Bestellungen von Kleinstmengen mehr akzeptiert werden?
  - Realisierung

## 4

### TPC-D: Durchlauf und Leistungsmaße

- Durchlauf
  - "Power Test"
    - Einen Query-Stream
    - Einen Refresh-Stream
    - Maß
      - TPC-D Power@Size (QppD)
  - "Throughput Test"
    - Mehrere Query-Streams
    - Maß
      - TPC-D Throughput@Size (QthD)
- Gesamtmaße:
  - "TPC-D Composite Query-per-Hour (QphD)"
  - "TPC-D Price-per-QphD@Size"



#### **TPC-D:** Dokumentation

- Durchlauf
  - Datenbankgröße
  - Ausführungszeiten (RF1, RF2, Q1 bis Q22)
    - Power Test
    - Throughput Test
- Testumgebung
  - Verwendete Hardware
  - Verwendete Software
  - Systemkosten (inkl. 5 Jahre Wartung)
- Ergebnis der Auditierung



#### TPC-D: Nachfolger

- TPC-H
  - 1999: Version 1.0
  - 2002: Version 2.0.0 (aktuelle Version)
  - Nachfolger des TPC-D
  - Geänderte Leistungsmaße
- TPC-R
  - Basiert auf TPC-H
  - Optimierung der Anfragen



## TPC-D: Ergebnisse

| <b>1</b>     |                       |                   |                                 |                                         |                                 |                        |                        |                   |
|--------------|-----------------------|-------------------|---------------------------------|-----------------------------------------|---------------------------------|------------------------|------------------------|-------------------|
| Com-<br>Pany | System                | TPC-Power<br>QppD | TPC-<br>Through-<br>put<br>QthD | Composite<br>Query-<br>Per-Hour<br>QphD | Price<br>Per<br>QphD<br>[US-\$] | System<br>Availability | Database               | Date<br>Submitted |
| Teradata     | WorldMark<br>5200     | 133,966           | 13,756                          | 42,928                                  | 440                             | 08/10/99               | NCR Teradata<br>V2R3.0 | 02/15/99          |
| HP           | NetServer<br>LXr 8000 | 8,124             | 1,324                           | 3,280                                   | 162                             | 05/18/99               | Oracle8i<br>8.1.5.1.1  | 02/11/99          |
| Sequent      | NUMA-Q<br>2000        | 1,854             | 572                             | 1,030                                   | 3,999                           | 02/27/98               | Oracle8<br>8.0.4       | 01/20/98          |

Datenbankgröße: 300 GB



#### APB-1: Allgemeines

- OLAP Benchmark
- Spezifiziert vom OLAP Council
  - 1996: Release I
  - 1998: Release II (aktuelle Version)
- Systemmodell
  - Client-Server-Modell
  - Datenhaltung und Berechnungen erfolgen serverseitig
- Datenbasis
  - Vertriebs- und Marketingdaten
  - Datenerzeugung mittels APB.EXE

#### APB-1: Datenbankschema

- Kein vorgegebenes Schema
- APB.EXE erzeugt ASCII-Dateien
- 5 hierarchische Objekttypen
  - Product

Customer

Top

Top

Division

Retailer

Line

Store

- Family
- Channel

Group

Top

Class

Base

Code

- Scenario
  - Budget
  - Actual
  - Forecast
- Time
  - Inventory
  - Aggregations
    - Quarterly
    - Yearly



#### APB-1: Anwendungsszenario

- Analysen aus 7 Bereichen
  - Absatzkanal-Analyse (10%)
  - Margen-Analyse (10%)
  - Bestand-Analyse (15%)
  - Zeitreihen-Analyse (3%)
  - Budget-Analyse (30%)
  - Vorhersage-Analyse (30%)
  - Ad Hoc Anfrage (2%)
- Realisierung
  - 10 Abfragen
  - Nur Lesezugriffe

#### APB-1: Abfragen

- Q1: "Channel Sales Analysis"
  - Analyse
    - Absatzmengen und Umsätze für einen Absatzkanal
    - Parameter
      - Artikel (?product)
      - Kunde (?customer)
      - Absatzkanal (?channel)
      - Zeitraum (?time)
  - Formale Beschreibung

```
get UNITS SOLD, DOLLAR SALES, AVERAGE PRICE
```

```
by SCENARIO = "ACTUAL"
```



#### APB-1: Durchlauf und Leistungsmaße

#### 6 Schritte

- Erzeugen der Grunddaten
- 2. Initialisierung der Datenbank
- 3. Erzeugen der inkrementellen Daten
- 4. Laden der inkrementellen Daten / Vorberechnungen
- 5. Erzeugen der Abfragen
- 6. Ausführung der Abfragen
  - Anzahl der Abfragen pro Query-Stream abhängig von der Größe der Channel-Tabelle

#### Leistungsmaß

- "Analytical Queries per Minute"
- Berechnet aus den Zeiten der Schritte 4 bis 6

## APB-1: Dokumentation

- Ähnlich zu TPC-D
- Zusätzlich gefordert
  - Datenbankschema
  - Programmcode / Skripte, die genutzt wurden für:
    - Die Erzeugung der Datenbank
    - Das Laden der Daten in die Datenbank
    - Eventuelle Vorberechnungen
    - Die Ausführung der Abfragen
    - Die Client-Seite
  - Anzahl der simulierten Benutzer

### APB-1: Ergebnisse

|   | Company | System                    | AQM    | Database           | Operating System | Date     |
|---|---------|---------------------------|--------|--------------------|------------------|----------|
| 1 | HP      | 4x HP rp7400 Server       | 85,719 | Oracle 9.2.0.2.0   | HP-UX 11i        | 12/09/02 |
| 2 | Sun     | Sun Enterprise 450 Server | 8,073  | Oracle Express 6.1 | Sun Solaris      | 05/28/98 |

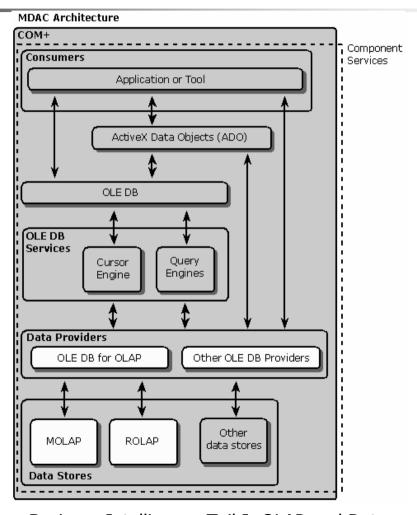


#### Benchmarks: Zusammenfassung

- Versuch Systeme vergleichbar zu machen
- Benchmarks simulieren "Best Practices"
- Kein Ersatz für anwendungsbezogene Evaluation



#### Standards: Motivation


- Klassifizierung der Datenintegration
  - Integration von operationalen Daten
  - Integration von Metadaten
- Probleme der Datenintegration
  - Heterogene Hard- und Software-Systeme
  - Unterschiedliche Erfassung ähnlicher Daten bezogen auf
    - Datentypen
    - Datenformate
    - Datenbankschema



#### Standards: Microsoft OLE DB

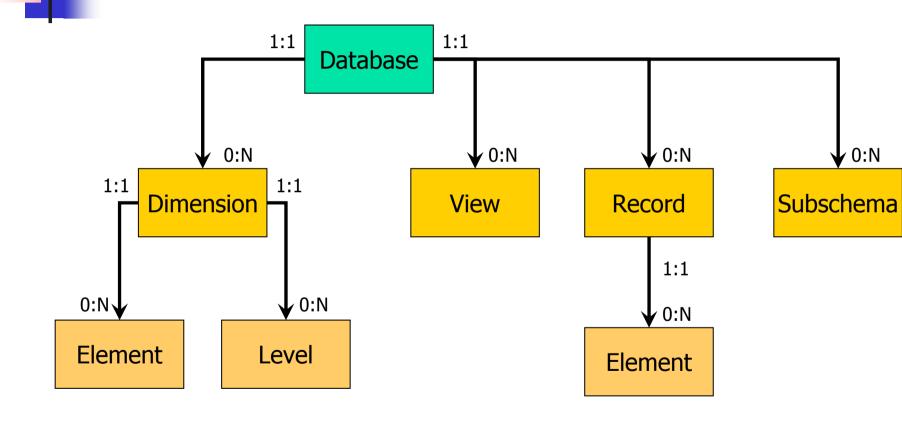
- Erweiterung des "Common Object Model (COM)"
- Teil der "Microsoft Data Access Components (MDAC)"
- "Middleware" zwischen Anwendern und Datenquellen
- Ziele
  - Verknüpfung verschiedenster Arten von Datenquellen
  - Ortstransparenz
  - Standardisierte Zugriffsschnittstellen
    - Mindestfunktionalität
    - Erwünschte Funktionalität
- Version 2.0: Erweiterung um OLAP-Funktionalität ("OLE DB for OLAP")

#### Standards: MDAC Architektur





- Implementierung einer Metadaten-Management-Strategie
  - Definition eines Metadaten-Modells
    - z. B. "Metadata Interchange Specification (MDIS)" der Metadata Coalition
  - Software-Auswahl
    - Werkzeuge zur Verwaltung, Verteilung etc.
  - Definition und Umsetzung von Richtlinien
    - Kompetenzen und Verantwortlichkeiten
    - Ansprechpartner
    - Dokumentationspflichten
    - Weitere unternehmensinterne Aspekte




- Herausgegeben von der "Metadata Coalition"
  - 1995: Version 1.0
  - 1997: Version 1.1
  - Mittlerweile Teil des "Common Warehouse Models (CWM) der "Object Management Group (OMG)"
  - ASCII-Dateien-basiertes Austauschformat
- Prämissen
  - Keine allumfassender Standard angestrebt
  - Einfach zu implementieren



- Metadaten-Modell
  - Application Metamodel
    - Datenstruktur zur Speicherung der Metadaten
  - Metadata Metamodel
    - Modellierung der Gemeinsamkeiten von Werkzeugklassen (discovery tools, extraction tools, replication tools, ...)
    - Fehlermodell
    - Unabhängig vom Application Metamodell

# Standards: MetaObjects des MDIS Application Metamodel



Seminar Business Intelligence Teil I: OLAP und Datawarehousing Vortrag 7: Benchmarks und Standards

Contains/Contained By

# Standards: MetaObjects des MDIS Application Metamodell

- Database
  - Alle Arten von Datenquellen
    - Relationale-DB
    - Netzwerk-DB
    - Objekt-DB
    - Hierachische-DB
    - Dateien
- Subschema
  - Logische Gruppe von
    - Tabellen
    - Records
    - Objekten
    - Segmenten
    - Dateien

- Record
  - Physische Gruppierung von Elementen
    - Tabelle
    - Segmente
    - Objekte
- Element
  - Beschreibung der physischen Repräsentation
    - Spalten einer Tabelle
    - Attribute und Klassenmethoden
- Dimension
  - Menge von Daten
  - Zugriff über "HyperCube-Koordinaten"

## Standards: MDIS Beispiel

- Datenbank für Abteilungen und Mitarbeiter
  - ABT(A\_ID, A\_NAME, A\_CHEF)
  - MIT(M\_ID, M\_NAME, ...)

#### **BEGIN DATABASE**

Identifier "001"

ServerName "Zentralserver1"

OwnerName "DB-Admins"

DatabaseName "Firma"

DatabaseExtendedType "IBM DB2 6.1"

DatabaseType "Relational"



### Standards: MDIS Beispiel

```
BEGIN RECORD
Identifier "002"
RecordName "Abt"
RecordType "Table"
BEGIN ELEMENT
     Identifier "003"
     ElementName "A ID"
     ElementDataType "UNSIGNED-
       INTFGFR"
     ElementKeyPosition "1"
     ElementNulls "F"
     ElementOrdinality "1"
END ELEMENT
```

weitere Identifier:

A\_NAME: "004"

A\_CHEF: "005"

Tabelle MIT: "006"

M\_ID: "007"

**BEGIN RELATIONSHIP** 

Identifier "008"

SourceObjectIndentifier "005

TargetObjectIdentifier "007"

RelationShipType "EQUIVALENT"

RelationOrdinality "1:1"

**END RELATIONSHIP** 

**END DATABASE** 

**END RECORD** 



- Datenintegration ist zentrale Aufgabe
- Integration von Metadaten
  - Bis jetzt nur erste Ansätze
  - Offene Punkte u. a.
    - Definition verschiedener Abstraktionsebenen
    - Herstellerunabhängige Modellierung von Spielregeln
- Integration von operationale Daten
  - Realisierung über Middleware-Mechanismen
  - Stärkere Kopplung mit Metadatenintegration wünschenswert

## Vielen Dank für die Aufmerksamkeit

### Maßberechnung

- TPC-D
  - Power Test  $Power @ Size = \frac{3600 * SF}{24 \sqrt{\prod_{i=1}^{22} T(Q_i) * \prod_{j=1}^{2} T(RF_j)}}$
  - Throughput Test  $Throughput @ Size = \frac{|QueryStreams| * 22 * 3600}{T(Q_{1,...,22}, RF_{1,2})}$
  - Composite Query-per-Hour  $QphD = \sqrt{Power @Size*Throughput @Size}$
- APB-1  $AQM = \frac{|Queries| * 60}{T(Load) + T(Sort, Calc) + T(Queries)}$

# TPC-H: Ergebnisse nach Leistung für 300 GB Datenbankgröße

|   | Com-<br>pany | System                                             | QphH   | Price<br>per<br>QphH | System<br>Availability | Database                                                      | Operating System                                      | Date<br>Submitted |  |
|---|--------------|----------------------------------------------------|--------|----------------------|------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------------|--|
| 1 | HP           | Compaq Proliant<br>DL760 x900-64P                  | 12,995 | 203<br>US-\$         | 06/20/02               | IBM DB2 UDB 7.2                                               | Microsoft Windows<br>2000 Advanced<br>Server          | 04/09/02          |  |
| 2 | HP           | HP AlphaServer<br>ES45 Model<br>68/100             | 5,976  | 401<br>US-\$         | 06/01/02               | Oracle 9i R2<br>Enterprise Edition                            | Compaq Tru64 Unix<br>V5.1A/IPK                        | 11/18/02          |  |
| 3 | Unisys       | Unisys ES7000<br>Orion 130<br>Enterprise<br>Server | 4,774  | 208<br>US-\$         | 03/31/03               | Microsoft SQL-<br>Server 2000<br>Enterprise Edition<br>64-bit | Microsoft Windows<br>.NET Datacenter<br>Server        | 10/29/02          |  |
| 4 | HP           | HP Proliant<br>DL760G2 8P                          | 3,334  | 71<br>US-\$          | 05/28/03               | Microsoft SQL-<br>Server 2000<br>Enterprise Edition           | Microsoft Windows<br>Server 2003<br>Enterprise Server | 05/28/03          |  |
| 5 | Sun          | Sunfire V240                                       | 1,026  | 49<br>US-\$          | 06/23/03               | Sybase Sybase<br>IQ 12.5                                      | Sun Solaris 9                                         | 06/23/03          |  |

# TPC-H: Ergebnisse nach Kosten für 300 GB Datenbankgröße

|   | Com-<br>pany | System                                             | QphH   | Price<br>per<br>QphH | System<br>Availability | Database                                                      | Operating System                                      | Date<br>Submitted |  |  |
|---|--------------|----------------------------------------------------|--------|----------------------|------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------------|--|--|
| 1 | Sun          | Sunfire V240                                       | 1,026  | 49<br>US-\$          | 06/23/03               | Sybase Sybase<br>IQ 12.5                                      | Sun Solaris 9                                         | 06/23/03          |  |  |
| 2 | HP           | HP Proliant<br>DL760G2 8P                          | 3,334  | 71<br>US-\$          | 05/28/03               | Microsoft SQL-<br>Server 2000<br>Enterprise Edition           | Microsoft Windows<br>Server 2003<br>Enterprise Server | 05/28/03          |  |  |
| 3 | HP           | Compaq Proliant<br>DL760 x900-64P                  | 12,995 | 203<br>US-\$         | 06/20/02               | IBM DB2 UDB 7.2                                               | Microsoft Windows<br>2000 Advanced<br>Server          | 04/09/02          |  |  |
| 4 | Unisys       | Unisys ES7000<br>Orion 130<br>Enterprise<br>Server | 4,774  | 208<br>US-\$         | 03/31/03               | Microsoft SQL-<br>Server 2000<br>Enterprise Edition<br>64-bit | Microsoft Windows<br>.NET Datacenter<br>Server        | 10/29/02          |  |  |
| 5 | HP           | HP AlphaServer<br>ES45 Model<br>68/100             | 5,976  | 401<br>US-\$         | 06/01/02               | Oracle 9i R2<br>Enterprise Edition                            | Compaq Tru64 Unix<br>V5.1A/IPK                        | 11/18/02          |  |  |