
1

Recent Developments for Data Models - WS2006/07

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 9 – XQuery

Recent Developments for Data Models
- WS2006/07

2
© Prof.Dr.-Ing. Stefan Deßloch

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5. Data Analysis in SQL
6. Windowed Tables and Window Functions in SQL
III. XML
7. XML Data Modeling
8. SQL/XML
9. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

2

Recent Developments for Data Models
- WS2006/07

3
© Prof.Dr.-Ing. Stefan Deßloch

Why do we need a new query language?

Relational Data, SQL
flat (rows and columns), use foreign
keys, structured types for hierarchical
data
data is uniform, repetitive

info schema for meta data

uniform query results

rows in a table are unordered

data is usually dense
NULL for missing/inapplicable data

XML
nested, need to search for something at
an arbitrary level (//*[@color = "Red"])

data is highly variable, self-describing
meta data distributed throughout doc
queries may need to access data and
meta data: "tag name equals content"
//*[name(.) = string(.)]

heterogenous query results
severe structural transformations
required

e.g., invert a hierarchy

elements in document are ordered
needs to be preserved
query based on order, position
output order specification at multiple
levels in the hierarchy

data can be sparse
empty or absent elements

Recent Developments for Data Models
- WS2006/07

4
© Prof.Dr.-Ing. Stefan Deßloch

XQuery

XQuery is a general purpose query language for XML data
Standard developed by the World Wide Web Consortium (W3C)

W3C Recommendation since January 23rd, 2007

XQuery is derived from
the Quilt (“Quilt” refers both to the origin of the language and to its use in “knitting ” together heterogeneous
data sources) query language, which itself borrows from
XPath: a concise language for navigating in trees
XML-QL: a powerful language for generating new structures
SQL: a database language based on a series of keyword-clauses: SELECT - FROM
– WHERE
OQL: a functional language in which many kinds of expressions can be nested
with full generality

3

Recent Developments for Data Models
- WS2006/07

5
© Prof.Dr.-Ing. Stefan Deßloch

Tree Model of XML Data

Query and transformation languages are based on a tree model of XML data
An XML document is modeled as a tree, with nodes corresponding to elements,
attributes, text, etc.
Example:

<?xml version = "1.0"?>
<!-- Requires one trained person -->
<procedure title = "Removing a light bulb">
<time unit = "sec">15</time>
<step>Grip bulb.</step>
<step>

Rotate it
<warning>slowly</warning>
counterclockwise.

</step>
</procedure>

D

E AC

T

E EE

ET T T

T

A

procedure

title="Removing a light bulb"

time
unit="sec"

step

warning

counterclockwise.

step

Rotate it

slowly

Grip bulb.15

Recent Developments for Data Models
- WS2006/07

6
© Prof.Dr.-Ing. Stefan Deßloch

XQuery Data Model (XDM)

Builds on a tree-based model, but extends it to support sequences of items
represent collections of documents and complex values
reflect (intermediate) results of query evaluation
closure property

XQuery queries and expressions operate on/produce instances of the XDM

Based on XML Schema for precise type information
XDM instance

ordered sequence of zero or more items
can contain heterogenous values
cannot be nested – all operations on sequences automatically "flatten" sequences

no distinction between an item and a sequence of length 1

may contain duplicate nodes (see below)

An item is a node or an atomic value
Atomic values are typed values

XML Schema simple types
important for representing results of intermediate expressions in the data model

4

Recent Developments for Data Models
- WS2006/07

7
© Prof.Dr.-Ing. Stefan Deßloch

XDM - Nodes

There are seven kinds of nodes
Document, Element, Attribute, Text, Namespace, Comment, Processing Instruction

Nodes form a tree
consisting of

root node
nodes directly or indirectly reachable from the root node via accessors

children
only element, processing instruction, comment and text nodes can be children
only document and element nodes have children

attributes
namespace nodes

trees are called
documents, if the root is a document node
fragments, otherwise

trees have exactly one root
a node belongs to exactly one tree

Recent Developments for Data Models
- WS2006/07

8
© Prof.Dr.-Ing. Stefan Deßloch

XDM – Nodes (cont.)

A node has an identity (preserved by operations on nodes)
Each node has a typed value

sequence of atomic values
type may be unknown (anySimpleType)

Element and attribute nodes have a type annotation
generated by validating the node

Document order of nodes
root < child < namespace < attribute < descendants
children and descendants < following siblings
order of siblings correspon

5

Recent Developments for Data Models
- WS2006/07

9
© Prof.Dr.-Ing. Stefan Deßloch

General XQuery Rules

XQuery is a case-sensitive language
Keywords are in lower-case
Every expression has a value and no side effects
Expressions are fully composable
Expressions can raise errors
Expressions (usually) propagate lower-level errors

Exception: if-then-else

Comments look like this
(: This is an XQuery comment :)

Recent Developments for Data Models
- WS2006/07

10
© Prof.Dr.-Ing. Stefan Deßloch

XQuery Expressions

Literals: "Hello" 47 4.7 4.7E-2
Constructed values: true() false() date("2002-03-15")
Variables: $x
Constructed sequences

$a, $b is the same as ($a, $b)
(1, (2, 3), (), (4)) is the same as 1, 2, 3, 4
5 to 8 is the same as 5, 6, 7, 8

6

Recent Developments for Data Models
- WS2006/07

11
© Prof.Dr.-Ing. Stefan Deßloch

Path Expressions in XQuery

An XPath expression maps a node (the context node) into a sequence of
nodes

consists of one or more steps separated by “/”
e.g.: return the names of all customers in bank
/child::bank/child::customer/child::name

Evaluation of path expression
step by step, from left to right
starting from an externally provided context node, or from document root
each step works on a sequence of nodes

for each node in the sequence, look up other nodes based on step expression
eliminate duplicates from result sequence
sort nodes in document order

empty result sequence does not result in an error

D bank

customer

customer customer-name
Joe

customer-name
Mary

Recent Developments for Data Models
- WS2006/07

12
© Prof.Dr.-Ing. Stefan Deßloch

Path Expressions (cont.)

The initial “/” denotes root of the document (above the top-level tag)
In general, a step has three parts:

The axis (direction of movement: child, descendant, parent, ancestor, following,
preceding, attribute, … - 13 axes in all -)
A node test (type and/or name of qualifying nodes)
Optional predicates (refine the set of qualifying nodes)

Selection predicates may appear in any step in a path, in []
Evaluated for each node qualified by axis/node test
E.g. /child::bank-2/child::account[child::balance > 400]

returns account elements with a balance value greater than 400

Alternative: filter step
instead of axis::node-test, an expression can be used that locates nodes based
on the context

7

Recent Developments for Data Models
- WS2006/07

13
© Prof.Dr.-Ing. Stefan Deßloch

Axis

Result given in document order (exception: positional predicates)
Axis for attributes and namespaces are available in addition to the ones listed
below
child axis includes elements,
text node, pis, comments

self::

parent::

ancestor::

ancestor-or-self::

preceding-sibling:: following-sibling::

following::preceding::

child::

descendant::

descendant-or-self::

Recent Developments for Data Models
- WS2006/07

14
© Prof.Dr.-Ing. Stefan Deßloch

XPath Axes Supported in XQuery

Supported:
child
descendant
attribute
self
descendant-or-self
parent

Optionally supported (full axis feature):
ancestor
ancestor-or-self
preceding
preceding-sibling
following
following-sibling
namespace

8

Recent Developments for Data Models
- WS2006/07

15
© Prof.Dr.-Ing. Stefan Deßloch

Node Tests

Name test
Element, attribute name

child::name, name – Matches <name> element nodes
child::*, * - Matches any element node
attribute::name, attribute::*, @* for matching based on attribute name

namespace:name – Matches <name> element nodes in the specified namespace
namespace:* - Matches any element node in the specified namespace

child::bank:* - Matches any element node whose name is defined in bank namespace

Node type test to match nodes of a specific type
document-node()
comment()
text()
processing-instruction()
element(), element(name), element(name, type)
attribute(), attribute(name), attribute(name, type)
node() – matches any node

Recent Developments for Data Models
- WS2006/07

16
© Prof.Dr.-Ing. Stefan Deßloch

Node Test – Examples

Find the names of all customers in bank
/child::bank/child::customer/child::name
Find all the element children of customers in bank
/child::bank/child::customer/child::*

Find all attributes of customer elements anywhere in the document
/descendant::customer/attribute::*
Find all attributes of customer elements having the type xs:string
/descendant::customer/attribute::attribute(*, xs:string)
Find all text nodes of the document
/descendant::text()

9

Recent Developments for Data Models
- WS2006/07

17
© Prof.Dr.-Ing. Stefan Deßloch

Path Expressions – Abbreviated Notation

Abbreviations
"."

current context node

".."
"parent::node()"

"//"
"/descendant-or-self::node()/"

"@"
"attribute::"

axis missing
"child::"
(or "attribute::" with an attribute node
type test)

The following examples use the
abbreviated notation:

Find the names of all customers in bank
/bank/customer/name
Find all the element children of
customers in bank
/bank/customer/*

Find all attributes of customer elements
anywhere in the document
//customer/@*
Find all attributes of customer elements
having the type xs:string
//customer/attribute(*, xs:string)
Find all text nodes of the document
//text()

Recent Developments for Data Models
- WS2006/07

18
© Prof.Dr.-Ing. Stefan Deßloch

Predicates

Predicates can be used to apply additional filter conditions for the resulting
nodes

Boolean expressions: selects all nodes for which expression returns "true"
book[author = "Mark Twain"]
Numeric expressions: selects all nodes whose position is equal to the resulting
value
chapter[2]
Existence tests: selects nodes where expression does not result in empty sequence
book[appendix]
person[@married] (Tests existence, not value!)

Predicates can be used in path expressions:
//book[author = "Mark Twain"]/chapter[2]

...and in other kinds of expressions:
(1 to 100)[. mod 5 = 0]

10

Recent Developments for Data Models
- WS2006/07

19
© Prof.Dr.-Ing. Stefan Deßloch

Functions

Context functions, e.g.
fn:last() returns the number of items in the current sequence

Find the last paragraph-child of the context node
para[fn:last()]

fn:position() returns the position of the current item within the current sequence
Find the laste paragraph-child of the context node (alternative query)
para[fn:position()=fn:last()]

fn:current-date() returns the current date
Find names of customers who have an order with today’s date

//customer[order/date=fn:current-date()]/name

Functions on nodes/items, e.g.
fn:string() returns the string value of an item

element nodes: concatenation of all descendant text nodes, in document order

Functions and operators on sequences, e.g.
concatenation, distinct-values, subsequence
(deep) equal, union, intersect, except

Recent Developments for Data Models
- WS2006/07

20
© Prof.Dr.-Ing. Stefan Deßloch

Functions (cont.)

IDREFs can be de-referenced using function fn:id()
fn:id() can also be applied to sets of references such as IDREFS and even to
strings containing multiple references separated by blanks
E.g. /bank-2/account/fn:id(@owners)
returns all customers referenced by the owners attribute of account elements

The function fn:doc(name) returns the root of the named document
E.g. fn:doc(“bank.xml”)/bank/account

The function fn:collection(name) returns a sequence of nodes
E.g. fn:collection(“myBankCollection”)/bank/account

11

Recent Developments for Data Models
- WS2006/07

21
© Prof.Dr.-Ing. Stefan Deßloch

More Expressions

Arithmetic operators: + - * div idiv mod
Extract typed value from node
Multiple values => error
If operand is (), return ()
Supported for numeric and date/time types

Comparison operators
eq ne gt ge lt le compare single atomic values
= != > >= < <= implied existential semantics
is is not compare two nodes based on identity
<< >> compare two nodes based on document order

Recent Developments for Data Models
- WS2006/07

22
© Prof.Dr.-Ing. Stefan Deßloch

Logical Expressions

Operators: and or
Function: not()
Return TRUE or FALSE (2-valued logic)
"Early-out" semantics (need not evaluate both operands)
Result depends on Effective Boolean Value of operands

If operand is of type boolean, it serves as its own EBV
If operand is (), zero, or empty string, EBV is FALSE
In any other case, EBV is TRUE

Note that EBV of a node is TRUE, regardless of its content (even if the
content is FALSE)!

12

Recent Developments for Data Models
- WS2006/07

23
© Prof.Dr.-Ing. Stefan Deßloch

Constructors

To construct an element with a known name and content, use XML-like
syntax:
<book isbn = "12345">

<title>Huckleberry Finn</title>
</book>

If the content of an element or attribute must be computed, use a nested
expression enclosed in { }
<book isbn = "{$x}">

{$b/title }
</book>

If both the name and the content must be computed, use a computed
constructor:
element {name-expr} {content-expr}
attribute {name-expr} {content-expr}

Recent Developments for Data Models
- WS2006/07

24
© Prof.Dr.-Ing. Stefan Deßloch

Validation of Constructed Elements

An element constructor automatically validates the new element against "in-
scope schema definitions"

Results in a type annotation
Can be generic: xs:anyType

Validation mode (default = lax)
Strict: element must be defined in schema
Lax: element must match schema definition if it exists
Skip: ignore this element
Mode is set in Prolog or by explicit Validate expression

Validation context:
Schema path inside which current node is validated
Each constructed element adds its name to the context
Can be overridden by an explicit Validate expression

13

Recent Developments for Data Models
- WS2006/07

25
© Prof.Dr.-Ing. Stefan Deßloch

RETURN_clauseFOR_clause

LET_clause WHERE_clause

XQuery: The General Syntax Expression FLWOR

FOR clause, LET clause generate list of tuples of bound variables (order preserving) by
iterating over a set of nodes (possibly specified by a path expression), or
binding a variable to the result of an expression

WHERE clause applies a predicate to filter the tuples produced by FOR/LET
ORDER BY clause imposes order on the surviving tuples
RETURN clause is executed for each surviving tuple, generates ordered list of outputs
Associations to SQL query expressions

for SQL from
where SQL where
order by SQL order by
return SQL select
let allows temporary variables, and has no equivalent in SQL

ORDER_BY_clause

Recent Developments for Data Models
- WS2006/07

26
© Prof.Dr.-Ing. Stefan Deßloch

Evaluating FLWOR Expressions

…

………

zy$x

input sequence tuple stream

………

zy$x

ok!

ok!

X

………

zy$x

…

ouput sequence

FOR $X,$Y ..
LET $Z .. WHERE ..

ORDER
BY ..

RETURN ..

14

Recent Developments for Data Models
- WS2006/07

27
© Prof.Dr.-Ing. Stefan Deßloch

FLWOR - Examples

Simple FLWR expression in XQuery
Find all accounts with balance > 400, with each result enclosed in an <account-
number> .. </account-number> tag

for $x in /bank-2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> {$acctno} </account-number>

Let and Where clause not really needed in this query, and selection can be
done in XPath.

Query can be written as:
for $x in /bank-2/account[balance>400]
return <account-number> {$x/@account-number}

</account-number>

Recent Developments for Data Models
- WS2006/07

28
© Prof.Dr.-Ing. Stefan Deßloch

Eliminating Duplicates

Equality of elements
element name, attributes, content are identical
example: average price of books per publisher

FOR $p IN distinct-values(doc("bib.xml")//publisher)
LET $a := avg(doc("bib.xml")//book[publisher = $p]/price)
RETURN

<publisher>
<name> {$p/text()} </name>
<avgprice> {$a} </avgprice>

</publisher>

15

Recent Developments for Data Models
- WS2006/07

29
© Prof.Dr.-Ing. Stefan Deßloch

Nesting of Expressions

Here: nesting inside the return clause
Example: inversion of a hierarchy

<book>
<title>
<author>
<author>

</book>
<book>

<title>
<author>
<author>

</book>

<author>
<name>
<title>
<title>

</author>
<author>

<name>
<title>
<title>

</author>

FOR $a IN distinct-values(//author)
ORDER BY $a/name
RETURN

<author>
<name> { $a/text() } </name>
{ FOR $b IN //book[author = $a]

RETURN $b/title }
</author>

Recent Developments for Data Models
- WS2006/07

30
© Prof.Dr.-Ing. Stefan Deßloch

Sorting of Results

ORDER BY
Example: Sort the expensive books by first author name, book title
LET $b = doc("bib.xml")//book[price > 100]
ORDER BY $b/author[1], $b/title
RETURN <expensive_books> $b </expensive_books>

Ordering at various levels of nesting
Example: For all publishers, sorted by publisher name, list the title and price of all their books,
sorted by price descending
<publisher_list>
{FOR $p IN distinct-values(doc("bib.xml")//publisher)

ORDER BY $p/name
RETURN

<publisher>
<name> {$p/text()} </name>
{FOR $b IN doc("bib.xml")//book[publisher = $p]
ORDER BY $b/price DESCENDING
RETURN

<book>
{$b/title}
{$b/price}

</book>
}

</publisher>
}
</publisher_list>

16

Recent Developments for Data Models
- WS2006/07

31
© Prof.Dr.-Ing. Stefan Deßloch

Order Insignificance

Indicate that the document order is insignificant
provides an opportunity for the optimizer

Example:
fn:unordered(

FOR $b IN doc("bib.xml")//book,
$a IN doc("authors.xml")//author

WHERE $b/author_id = $a/id
RETURN

<ps>
{ $b/titel, $a/name }

</ps>)

Recent Developments for Data Models
- WS2006/07

32
© Prof.Dr.-Ing. Stefan Deßloch

Nesting and Aggregation

Aggregation
Function over a sequence of elements

count(), avg(), min(), max(), sum()

Example: List all publishers with more than 100 books
<BIG_PUBLISHERS>

{
FOR $p IN distinct(doc("bib.xml")//publisher)
LET $b := doc("bib.xml")//book[publisher = $p]
WHERE count($b) > 100
RETURN $p

}
</BIG_PUBLISHERS>
LET clause binds $b to a sequence of books

17

Recent Developments for Data Models
- WS2006/07

33
© Prof.Dr.-Ing. Stefan Deßloch

XQuery: Joins

Joins are specified in a manner very similar to SQL
for $a in /bank/account,

$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct>{ $c $a }</cust-acct>

The same query can be expressed with the selections specified as XPath
selections:
for $a in /bank/account

$c in /bank/customer
$d in /bank/depositor[

account-number =$a/account-number and
customer-name = $c/customer-name]

return <cust-acct>{ $c $a }</cust-acct>

Recent Developments for Data Models
- WS2006/07

34
© Prof.Dr.-Ing. Stefan Deßloch

XQuery: Outer Join

Example: List all suppliers. If a supplier offers medical items, list the
descriptions of the items

FOR $s IN doc("suppliers.xml")//supplier
ORDER BY $s/name
RETURN

<supplier>
{ $s/name,
FOR $ci IN doc("catalog.xml")//item[supp_no = $s/number],

$mi IN doc("medical_items.xml")//item[number = $ci/item_no]
RETURN $mi/description

}
</supplier>

Problem with full outer join: nesting forces asymmetric representation
produce a two-part document, enclosed by a <master_list> element
query needs a separate expression for computing the "orphan" items

18

Recent Developments for Data Models
- WS2006/07

35
© Prof.Dr.-Ing. Stefan Deßloch

Quantified Expressions

Existential Quantification
Give me all books where "Sailing" and "Windsurfing" appear at least once in the
same paragraph

FOR $b IN //book
WHERE SOME $p IN $b//para SATISFIES (contains($p, "Sailing")

AND contains($p, "Windsurfing"))
RETURN $b/title

Universal Quantification
Give me all books where "Sailing" appears in every paragraph

FOR $b IN //book
WHERE EVERY $p IN $b//para SATISFIES contains($p, "Sailing")
RETURN $b/title

Recent Developments for Data Models
- WS2006/07

36
© Prof.Dr.-Ing. Stefan Deßloch

Defining and Using Functions

Predefined Functions
XPath/XQuery function library, e.g., doc()
aggregation functions: avg, sum, count, max, min
additional functions: distinct-values(), empty(), …

User-defined Functions
Example: compute maximal path length in "bib.xml"
DECLARE FUNCTION local:depth($e AS node()) AS xs:integer
{

(: A node with no children has depth 1 :)
(: Otherwise, add 1 to max depth of children :)
IF (empty($e/*))

THEN 1
ELSE 1 + fn:max(FOR $c IN $e/* RETURN local:depth($c))

};
LET $h := doc("bib.xml")
RETURN

<depth>{ local:depth($h) }</depth>

19

Recent Developments for Data Models
- WS2006/07

37
© Prof.Dr.-Ing. Stefan Deßloch

Function Definitions

Function definitions may not be overloaded in Version 1
Much XML data is untyped
XQuery attempts to cast arguments to the expected type
Example: abs($x) expects a numeric argument

If $x is a number, return its absolute value
If $x is untyped, cast it to a number
If $x is a node, extract its value and treat as above

This "argument conditioning" conflicts with function overloading
XML Schema substitution rules are already very complex

two kinds of inheritance; substitution groups; etc.

A function can simulate overloading by branching on the type of its argument,
using a typeswitch expression

Recent Developments for Data Models
- WS2006/07

38
© Prof.Dr.-Ing. Stefan Deßloch

Two Phases in Query Processing

Static analysis (compile-time; optional)
Depends only on the query itself
Infers result type of each expression, based on types of operands
Raises error if operand types don't match operators
Purpose: catch errors early, guarantee result type
May be helpful in query optimization

Dynamic evaluation (run-time)
Depends on input data
Computes the result value based on the operand values

If a query passes static analysis, it may still raise an error at evaluation time
It may divide by zero
Casts may fail. Example:
cast as integer($x) where value of $x is "garbage"

If a query fails static type checking, it may still evaluate successfully and return a useful
result.

Example (with no schema):
$emp/salary + 1000
Static semantics says this is a type error
Dynamic semantics executes it successfully if $emp has exactly one salary subelement with a
numeric value

20

Recent Developments for Data Models
- WS2006/07

39
© Prof.Dr.-Ing. Stefan Deßloch

XQuery - Status

XQuery is a w3c recommendation since January 2007
Ongoing and Future Work

Full-text support
Insert, Update, Delete
View definitions, DDL
Host language bindings, APIs

JSR 225: XQuery API for JavaTM (XQJ)
problem to overcome: tradtional XML processing API is based on well-defined documents

Recent Developments for Data Models
- WS2006/07

40
© Prof.Dr.-Ing. Stefan Deßloch

XQuery Update Facility

Introduces so-called updating expressions
potentially modify the state of an existing node
may occur on their own or nested inside other expressions

e.g., in the return clause of a FLWOR expression

Update model: snapshot semantics
during query evaluation, updates are collected in a pending update list

contains update primitives, which have not been applied yet
update primitive identifies a target node, update operation

only after the outermost expression has been evaluated, the updates in the list are
applied

21

Recent Developments for Data Models
- WS2006/07

41
© Prof.Dr.-Ing. Stefan Deßloch

Insert and Delete Expression

Insert copies of one or more nodes into designated position wrt. the target
node

Syntax: do insert <source-expression>
([as (first | last)] into | after | before) <target-expression>

target expression identifies a single element (or document) node
attribute nodes in source expression result sequence have to appear before other nodes

before/after cause insertion as a preceding/following sibling of the target
into causes insertion as a child (or children) of the target
Example: insert a year element after the publisher of the first book
do insert <year>2005</year> after fn:doc("bib.xml")/books/book[1]/publisher

Delete zero or more nodes
Syntax: do delete <target-expression>
Example: delete the last author of the first book
do delete fn:doc("bib.xml")/books/book[1]/author[last()]

Recent Developments for Data Models
- WS2006/07

42
© Prof.Dr.-Ing. Stefan Deßloch

Replace and Rename Expressions

Replacing nodes or values
Syntax: do replace [value of] <target-expression> with <new-expression>
can replace a node with a new sequence of nodes

node types must match (e.g., attribute can only be replaced by attribute(s))
Example: replace publisher of first book with publisher of second book
do replace fn:doc("bib.xml")/books/book[1]/publisher
with fn:doc("bib.xml")/books/book[2]/publisher

can replace the value of a node using the 'value of' clause
replace attribute value or element content (text node)
Example: increase the price of the first book by 10 percent
do replace value of fn:doc("bib.xml")/books/book[1]/price
with fn:doc("bib.xml")/books/book[1]/price * 1.1

Rename an XDM node
Syntax: do rename <target-expression> as <new-name-expr>

new-name-expr has to return an XML qualified name

Example: rename the first author element of the first book to 'principal-author'
do rename fn:doc("bib.xml")/books/book[1]/author[1] as "principal-author"

22

Recent Developments for Data Models
- WS2006/07

43
© Prof.Dr.-Ing. Stefan Deßloch

Transform Expression

Creates modified copy of existing nodes
Syntax: transform

copy <var> := <expr> {, <var> := <expr>}*
modify <updating-expression>
return <return-expression>

copy clause binds variable(s) to copied node sequence(s)
modify clause specifies updates to be performed on the copied nodes
return clause defines the result fo the transform expression

updates specified in the update clause have been performed, are visible

Example: return copies of all XML books with their price deleted
for $b in fn:doc("bib.xml")/books/book[contains(title, "XQuery")]
return

transform
copy $xb := $b
modify do delete $xb/price
return $xb

Transform does not modify any existing nodes, is not an updating expression!

Recent Developments for Data Models
- WS2006/07

44
© Prof.Dr.-Ing. Stefan Deßloch

Evaluating Multiple Updating Expressions

Compatibility
Within a given snapshot, a node may not be the target of

more than one rename expression
more than one replace expression
more than one replace value of expression

A replace value of $a expression wins over replace expressions of children of $a

Update primitives in the pending update list identify nodes by their id
Well-defined order of performing update primitives

1. insertInto, insertAttributes, replaceValue, rename, delete (mark for deletion only!)
2. insertBefore, insertAfter, insertIntoAsFirst, insertIntoAsLast
3. replaceNode
4. replaceElementContent
5. delete (remove marked nodes)

23

Recent Developments for Data Models
- WS2006/07

45
© Prof.Dr.-Ing. Stefan Deßloch

XQuery Full-Text (XQFT) Extensions

XQuery
focuses on querying the structure of XML documents
provides only rudimentary support for querying text content

function fn:contains(<stringexpr1>, <stringexpr2>)
returns true, iff <stringexpr1> contains the substring <stringexpr2>

XQFT
extends XQuery with text search/retrieval capabilities

ftcontains expression supports boolean full-text search
enhancements of FLWOR expressions to support scoring (ranking)

Recent Developments for Data Models
- WS2006/07

46
© Prof.Dr.-Ing. Stefan Deßloch

Boolean Full-Text Search (in one chart)

Full-text search in general
perceives text not as a character string, but as a series of words/tokens

may recognize further well-defined units such as sentences, paragraphs
search identifies text in which tokens occur that match a search condition

goes beyond string equality, allows for variations
case insensitive, stemmed forms, sounds-like, fuzzy matching, regular expressions
may be language-sensitive

may employ measures of 'similarity' of a retrieved document with a search pattern or
document

different retrieval models
quality of search capabilities defined by precision, recall measures
scoring/ranking of results

Boolean FT Search
simple retrieval model based on set theory and boolean algebra

queries specified as boolean expressions
utilize basic search predicates for keyword/phrase search including numerous variations
may also involve proximity search to retieve documents where certain tokens appear

in the same sentence/paragraph
within a certain range of each other (e.g., at most 5 words apart)

variations for introducing scoring, generalizing the semantics of boolean search
patterns

24

Recent Developments for Data Models
- WS2006/07

47
© Prof.Dr.-Ing. Stefan Deßloch

XQFT FTContains Expression

Syntax:
<expression> ftcontains <FTSelection> [without content <ignoreExpr>]

<expression>, <ignoreExpr> define the scope of the full-text search
a sequence of nodes over which the search is performed

<FTSelection> specifies a full-text search condition to be evaluated over the scope
example: give me all books containing "XQuery FullText", ignoring footnotes
/books/book[. ftcontains "XQuery FullText" without content .//footnote]/title

FTSelections may again contain nested XQuery expressions
example: give me all books having at least one section containing all words in the
book title
/books/book[.//section ftcontains {title} all words]/title

Nodes returned by the scope expressions are tokenized in an implementation-
defined manner

usually based on the text content (string value) of an element
attributes, tags of nested elements may be ignored

returns a sequence of tokens (with positional information)
can exploit structure to group tokens into logical units (e.g., sentence, paragraph)

Recent Developments for Data Models
- WS2006/07

48
© Prof.Dr.-Ing. Stefan Deßloch

FTSelection Expressions

Word and phrase matching (see previous examples)
additional options allow to specify whether to search for individual words or for
phrases, and whether all or some words need to be found to have a successful
match

Boolean operators
or ("||"), and ("&&"), not ("!")
weak not: not in

example: find books about "Mexico", not "New Mexico"
//book[. ftcontains "Mexico" not in "New Mexico"]/title

Distance/proximity predicates
search for words appearing in the same/in a different sentence/paragraph

example:
//book[. ftcontains ("web" && "site" && "usability") same sentence]/title

can involve maximum distance in terms of words, sentences, paragraphs
can be based on a (sliding) window

Order of words, number of occurrences can be specified as well

25

Recent Developments for Data Models
- WS2006/07

49
© Prof.Dr.-Ing. Stefan Deßloch

Match Options

Stemming/linguistic search (e.g., "use" vs. "used" vs. "using")
search for exact work appearance or word variations/inflections

Character case variations
case insensitive (default) or sensitive, lowercase, uppercase

Diacritics (e.g., "naïve" vs. "naive")
insensitive, sensitive, with, without

Character wildcards
single, optional, zero or more, one or more, between n and m characters

Thesaurus expansion (e.g., "canine" vs. "dog" vs. "poodle")
expands query terms based on relationships defined in a thesaurus

synonym, boader term, narrower term, related term, …

thesaurus option can identify the thesaurus to use, the expansion relationship, and
for hierarchical relationships the number of levels to expand

Control which words are regarded as stopwords (e.g., "but", "if", …)
without stopwords, or with the default or a specific stopword list

Language used in documents or query

Recent Developments for Data Models
- WS2006/07

50
© Prof.Dr.-Ing. Stefan Deßloch

Scoring

FTContainsExpr returns a boolean value
no indication about how well the search context nodes match the query
a node with a single occurrence of one of the search words is rated the same as a
word with many occurrences of all the search words

Score values reflect the relevance of the context nodes regarding the search
value in the range [0 1]
higher value (for value > 0) means higher relevance

Numerous scoring algorithms have been proposed
standard approach involves term frequency (tf) and inverse document frequency
(idf) measures, i.e., the score will be higher if

the number of matches for a search term is higher,
the search term matches fewer documents overall

XQFT does not prescribe a specific scoring algorithm
A result "false" for ftcontains does not imply "score = 0", and vice versa

Example: "XML" && "FullText"
ftcontains returns false, if the context node does not contain both terms
score may be >0, if the node contains one of the terms

26

Recent Developments for Data Models
- WS2006/07

51
© Prof.Dr.-Ing. Stefan Deßloch

XQFT Score Variables

Score variables
can be bound to the score values of full-text matches
are special variables introduced in the for/let-clauses of XQuery
no impact on binding of other variables

Score variables in the for-clause
Example:
for $b score $s in /books/book[content ftcontains "web site" && "usability"]
where $s > 0.5
order by $s descending
return <result>

<title> {$b//title} </title>
<score> {$s} </score>

</result>
for each item bound to a "regular" variable in the for clause (e.g., $b), the score is
determined and bound to the score variable (e.g., $s)

"dual" purpose of the in-clause: filtering and scoring

Recent Developments for Data Models
- WS2006/07

52
© Prof.Dr.-Ing. Stefan Deßloch

XQFT Score Variables (cont.)

Score variables in the let-clause
allows to separate filtering from scoring aspects
Example:
for $b in /books/book[.//chapter/title ftcontains "testing"]
let score $s := $b/content ftcontains "web site" && "usability"
order by $s descending
return <result score="{$s}">{$b}</result>
The above query performs scoring (in the let clause) on different match criteria
than filtering (in the for clause)

Score values may be fine-tuned using weights
allow to (de-)emphasize certain parts of the search condition
Example:
for $b in /books/book[.//chapter/title ftcontains "testing"]
let score $s := $b/content ftcontains ("web site" weight 0.2)

&& ("usability" weight 0.8)
order by $s descending
return <result score="{$s}">{$b}</result>

27

Recent Developments for Data Models
- WS2006/07

53
© Prof.Dr.-Ing. Stefan Deßloch

Summary

Characteristics of XML (from a data modeling perspective)
data/meta-data integration, schema flexibility, heterogeneity, nesting, ordering, …

XQuery provides a powerful initial step towards an XML query language that
reflect the above characteristics
XQuery Data Model (XDM)

builds on XML tree structure, introduces sequences and atomic values
basis for XQuery processing, supports closure property

Major query language constructs
path expressions
constructors
FLWOR expressions

Problem: lack of an algebraic foundation
Ongoing work

update operations
full-text queries

