Prof. Dr.-Ing. Stefan DeBloch

AG Heterogene Informationssysteme -.
Geb. 36, Raum 329 I m Tecunische UNIVERSITAT
Tel. 0631/205 3275 m KAISERSLAUTERN

dessloch@informatik.uni-kl.de

Chapter 7 — XML Data Modeling

@ ‘S B Recent Developments for Data Models - WS06/07

Qutline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
1. Online Analytic Processing
5. Data Analysis in SQL
6. Windowed Tables and Window Functions in SQL
1. XML

7. XML Data Modeling
8. SQL/XML
9. XQuery

IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, ...

@ 5 2 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

XML Origin and Usages

= Defined by the WWW Consortium (W3C)
= Originally intended as a document markup language, not a database
language
= Documents have tags giving extra information about sections of the document
= For example:
. <title> XML </title>
= <slide> XML Origin and Usages </slide>
= Derived from SGML (Standard Generalized Markup Language)
= standard for document description
= enables document interchange in publishing, office, engineering, ...
= main idea: separate form from structure
= XML is simpler to use than SGML
= roughly 20% complexity achieves 80% functionality
= XML (like SGML) is a meta-language
= a language for the definition of languages (vocabularies)
= examples
« SGML -> HTML
= XML -> XHTML

@ .S 5 3 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

XML — Data and Metadata

= XML documents are to some extent self-describing
= Tags (markup) represent metadata about specific parts/data items of a document
= metadata provided at the ‘instance'-level

= Example
<bank>
<account>
<account-number> A-101 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>
</account>
<depositor>
<account-number> A-101 </account-number>
<customer-name> Johnson </customer-name>
</depositor>
</bank>

= Schema provides 'global' metadata (optionall)
= defines the vocabulary, rules for document structure, permitted or default content
= associated with/referenced by the document

@ .S 5 4 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

Forces Driving XML

= Document Processing
= Goal: use document in various, evolving systems
= structure — content — layout
= grammer: markup vocabulary for mixed content
= Data Bases and Data Exchange
= Goal: data independence
= structured, typed data — schema-driven — integrity constraints
= Semi-structured Data and Information Integration
= Goal: integrate autonomous data sources
= data source schema not known in detail — schemata are dynamic
= schema might be revealed through analysis only after data processing

@ 5 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

XML Documents

= XML documents are text (unicode)
= markup (always starts with '<' or '&")
= start/end tags
= references (e.g., <, &, ...)
= declarations, comments, processing instructions, ...
= data (character data)
= characters '<' and '&' need to be indicated using references (e.g., <) or using the
character code
= alternative syntax: <![CDATA[(a<b)&(c<d)]]>
= XML documents are well-formed
= logical structure:
[<declaration>] [<dtd>] [<comment-or-PI>] <element> [<comment-or-PI>]
= (optional) XML declaration (XML version, encoding, ...)
= (optional) schema (DTD)
= single root element (possibly nested)
= comments
= processing instructions
example: reference to a stylesheet, used by a browser
= additional requirements on the structure and content of <element>

@ 5 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

XML Documents: Elements

= Tag: label for a section of data
= Element:
= start tag <tagname>
= content: text and/or nested element(s)
= may be empty, alternative syntax: <tagname/>
= end tag </tagname>
= Elements must be properly nested for the document to be well-formed
= Formally: every start tag must have a unique matching end tag, that is in the context of the
same parent element.
= Mixture of text with sub-elements (mixed content) is legal in XML
= Example:

<account>
This account is seldom used any more.
<account-number> A-102</account-number>
<branch-name> Perryridge</branch-name>
<balance>400 </balance>

</account>

= Useful for document markup, but discouraged for data representation
= Element content (i.e., text and nested elements) is ordered!

@ -S 5 7 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

XML Element Structure

= Arbitrary levels of nesting

= Same element tag can appear multiple times
= at the same level
<bank-1>
<customer>
<customer-name> Hayes </customer-name>
<account>
<account-number> A-102 </account-number>
<balance> 400 </balance>
</account>
<account> ... </account>
</customer>

</bank-1>
= at different levels
<product>
<prodName> ... </prodName>
<part>
<id> ... </id>
<part> ... </part>
<part> ... </part>
</part>

</-;5roduct>

@ -S 5 8 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

XML Documents: Attributes

= Attributes: can be used to further describe elements

= attributes are specified by name="value" pairs inside the starting tag of
an element
= value is a text string
= no further structuring of attribute values
= attributes are not ordered
= Example:
<account acct-type = "checking" >
<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>
</account>
= Well-formed documents:
= attribute names must be unique within the element
= attribute values are enclosed in single or double quotation marks

@ .S 5 9 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Attributes vs. Subelements

= Distinction between subelement and attribute
= In the context of documents, attributes are part of markup, while subelement
contents are part of the basic document content
= markup used to interpret the content, influence layout for printing, etc.
= In the context of data representation, the difference is unclear and may be
confusing

= Same information can be represented in two ways
<account account-number = “A-101"> ... </account>

<account>
<account-number>A-101</account-number> ...
</account>

= Limitations of attributes
= single occurrence within element
= no further attribute value structure, no ordering

@ .S 5 10 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

Namespaces

different vocabularies
= Motivated by modularization considerations, for example

= Name collisions have to be avoided
= Example:

= A BookOrder vocabulary uses both vocabularies

<Hgs>

®© Prof.Dr.-Ing. Stefan DeSloch

11

= A single XML document may contain elements and attributes defined by

= A Book vocabulary contains a Title element for the title of a book
= A Person vocabulary contains a Title element for an honorary title of a person

= Namespaces specifies how to construct universally uniqgue names

Recent Developments for Data Models
- WS06/07

Namespaces (cont.)

= Namespace is a collection of names identified by a URI
= Namespaces are declared via a set of special attributes

= These attributes are prefixed by xmlIns - Example:
<BookOrder xmlIns:Customer="http://mySite.com/Person”
xmlns:Item="http://yourSite.com/Book">

content
= unless overridden

document
= ...Customer:Title='Dr'...
= ...Item:Title="Introduction to XML'...

= Example:
<BookOrder xmIns="http://mySite.com/Person”
xmins:Item="http://yourSite.com/Book">

<Hgs>

®© Prof.Dr.-Ing. Stefan DeSloch

12

= Namespace applies to the element where it is declared, and all elements within its

= Elements/attributes from a particular namespace are prefixed by the name
assigned to the namespace in the corresponding declaration of the using XML

= Default namespace declaration for fixing the namespace of unqualified names

Recent Developments for Data Models
- WS06/07

Prof. Dr.-Ing. Stefan Del3loch

XML Document Schema

= XML documents may optionally have a schema
= standardized data exchange, ...
= Schema restricts the structures and data types allowed in a document
= document is valid, if it follows the restrictions defined by the schema
= Two important mechanisms for specifying an XML schema
= Document Type Definition (DTD)
= XML Schema

@ 5 13 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Document Type Definition - DTD

= Original mechanism to specify type and structure of an XML document
= What elements can occur
= What attributes can/must an element have
= What subelements can/must occur inside each element, and how many times.
= DTD does not constrain data types
= All values represented as strings in XML
= Special DTD syntax
= <!IELEMENT element (subelements-specification) >
= <IATTLIST element (attributes) >
= DTDis
= contained in the document, or
= stored separately, referenced in the document
= DTD clause in XML document specifies the root element type, supplies or
references the DTD
= <IDOCTYPE bank [... 1>

@ 5 14 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

Element Specification in DTD

= Subelements can be specified as
= hames of elements, or
= #PCDATA (parsed character data), i.e., character strings

= EMPTY (no subelements) or ANY (anything defined in the DTD can be a
subelement)

= Structure is defined using regular expressions
= sequence (subel, subel, ...), alternative (subel | subel| ...)
= number of occurences

= “?” - 0or1loccurrence
= “+” - 1 or more occurrences
“*” - 0 or more occurrences
= Example

<IELEMENT depositor (customer-name, account-number)>
<IELEMENT customer-name(#PCDATA)>

<IELEMENT account-number (#PCDATA)>

<!ELEMENT bank ((account | customer | depositor)+)>

@ » 15 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Attribute Specification in DTD

= Attribute list of an element defines for each attribute
= nName
= type of attribute (as relevant for data modeling)
= character data (CDATA)
« identifiers (ID) or references to an identifier attribute (IDREF, IDREFS)
see next chart for details
= XML name tokens (NMTOKEN, NMTOKENS)
= enumeration type
= whether
= mandatory (#REQUIRED)
» default value (value)
= optional without default (#IMPLIED), or
= the value, if present, must not differ from the given one (#FIXED value)
= Examples
= <IATTLIST account acct-type CDATA “checking”>
= <IATTLIST customer

customer-id 1D #REQUIRED

accounts IDREFS #REQUIRED >
@ » 16 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

IDs and IDREFs

= An element can have at most one attribute of type ID
= The ID attribute value of each element in an XML document must be distinct
=> ID attribute (value) is an object identifier
= An attribute of type IDREF must contain the ID value of an element in the
same document
= An attribute of type IDREFS contains a set of (0 or more) ID values. Each ID
value must contain the ID value of an element in the same document
= IDs and IDREFs are untyped, unfortunately
= Example below: The owners attribute of an account may contain a reference to

another account, which is meaningless;
owners attribute should ideally be constrained to refer to customer elements

@ » 17 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Example: Extended Bank DTD

= Bank DTD with ID and IDREF attribute types

<IDOCTYPE bank [
<IELEMENT account (branch-name, balance)>
<IATTLIST account
account-number 1D #REQUIRED
owners IDREFS #REQUIRED>
<!ELEMENT customer(customer-name, customer-street,
customer-city)>
<IATTLIST customer
customer-id 1D #REQUIRED
accounts IDREFS #REQUIRED>

... declarations for bank, branch-name, balance, customer-name,
customer-street and customer-city

1=

@ » 18 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

XML data with ID and IDREF attributes

<bank>
<account account-number=“A-401" owners=“C100 C102">
<branch-name> Downtown </branch-name>
<balance>500 </balance>
</account>

<customer customer-id=“C100” accounts="“A-401">
<customer-name>Joe</customer-name=>
<customer-street>Monroe</customer-street>
<customer-city>Madison</customer-city>

</customer>

<customer customer-id=“C102” accounts=“A-401 A-402">
<customer-name> Mary</customer-name=>
<customer-street> Erin</customer-street>
<customer-city> Newark </customer-city>

</customer>

</bank>

@ is 5 19 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Schema Definition with XML Schema

= XML Schema is closer to the general understanding of a (database) schema
= XML Schema (unlike DTD) supports
= Typing of values
= E.g. integer, string, etc
= Constraints on min/max values
= Typed references
= User defined types
= Schema specification in XML syntax
= schema is a well-formed and valid XML document
= Integration with namespaces
= Many more features
= List types, uniqueness and foreign key constraints, inheritance ..

= BUT: significantly more complicated than DTDs

@ is 5 20 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

10

Types in XML Schema

= Simple vs. complex types
= Simple types
= no further structure, does not contain child elements or attributes
= can be used as a type for both attribute values and element content
= broad repertoire of pre-defined simple types
= facets of simple types provide additional characteristics
e.g., pattern, length
= Complex types
= consists of attribute declarations (optional) and a content model
= content model defines possible child elements, content based on simple types, mixed content
= Primitive vs. derived types
= Primitive types
= subset of the simple types that are not defined in terms of other types
Examples: string, decimal
= Derived types
= defined in terms of other (derived or primitive) base types

= different derivation mechanisms
by restriction — derived type permits only subset of value or literal space of the base type
by list, union — similar to composite types
by extension — similar to subtyping

= Built-in vs. user-derived types

@ 5 21 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

XML Schema Built-in Types

Built-in Datatype Hierarchy ur types

———————— e e — l:‘ huilt-in priwitive types
i : 3 3 D built-in derived types

complex types

derived by restriction

________ derived by list

—-=— deriwved by extension or
restriction

integer is derived from decimal by

restriction:

[ponPositiveInteger | « decimal.fractionDigits = 0

= decimal point in the lexical
representation is disallowed

[EMTOKEN | [negativeInteger | [tnsignediong |[positiveInteger |

|
NMTOKENS

unsignedshort

@ 5 22 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

11

Derivation By Restriction

= Based on the following facets "
= upper/lower bounds for value domain
= minExclusive, mininclusive
= maxExclusive, maxInclusive
= length for strings, names, URIs or lists
= length
= maxLength
= minLength
= length restrictions for decimal
= totalDigits
= fractionDigits
= value enumeration
= enumeration
= regular expression limiting the lexical
space
= pattern

<Hgs>

2
®© Prof.Dr.-Ing. Stefan DeSloch 3

Examples
= <xs:simpleType name="MoneyAmnt">
<xs:restriction base="xs:decimal">
<xs:totalDigits value="10"/>
<xs:fractionDigits value="2"/>
</xs:restriction>
</xs:simpleType>

= <xs:simpleType name="Phone"
<xs:restriction base="xs:string">
<xs:pattern
value="0[1-9][0-9]+\-[1-9][0-9]+"/>
</xs:restriction>
</xs:simpleType>

Recent Developments for Data Models
- WS06/07

Complex Types

content

= <xs:complexType name="Money">
<xs:simpleContent>
<xs:extension base="MoneyAmt">

</xs:extension>
</xs:simpleContent>
</xs:complexType>

<Hgs>

24
®© Prof.Dr.-Ing. Stefan DeSloch

= Needed for modeling attributes and content model of elements
= defines the type of the element, but not the element tag name
= Simple content: no child elements, extends/restricts a simple type for element

<xs:attribute name="currency" type="xs:string" use="required"/>

Recent Developments for Data Models
- WS06/07

Prof. Dr.-Ing. Stefan Del3loch

12

Complex Types (cont.)

= Complex content

= three types of content models (may be nested arbitrarily)
= sequence — subelements have to occur in the specified order
= choice — only one of the subelements may occur
= all — each subelement can appear at most once, in arbitrary order
<xs:complexType name="AccountT">
<xs:sequence>
<xs:element name="account-number” type="xs:string”/>
<xs:element name="branch-name” type="“xs:string”/>
<xs:element name="balance” type=“Money”/>
</xsd:sequence>
</xs:complexType>

= Specifying the number of occurences

= minOccurs, maxOccurs attributes can be used in element and content model
definitions
= <xs:element name="account" type="AccountT minOccurs="0" maxOccurs="10"/>
= <xs:choice minOccurs="2" maxOccurs="unbounded"> ... </xs:choice>

@ -S 5 25 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Restricting And Extending Complex Types

= Derivation by restriction
= derived type has the same content model as the base type in terms of valid
attributes, elements

= restrictions possible by
= limiting the number of occurrences by chosing a larger min or smaller max value
= supplying a default or fixed attribute value
= remove an optional component
= replacing a simple type with a derivation of the simple type

= Derivation by extension

= hew attributes and elements can be added to the type definition inherited from the
base type
= append-only for elements, implying a sequence model
<xs:complexType name="SavingsAccountT">
<xs:complexContent>
<xs:extension base="AccountT">
<xs:sequence>
<xs:element name="interest-rate” type="xs:decimal”/>
</xsd:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

@ -S 5 26 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

13

Derived Types and "Substitutability"

= Derived types can be explicitly used in schema definitions

= At the document (i.e., "instance") level
= an instance of a derived type may appear instead of an instance of its base type
= derivation by extension or by restriction
= may be explicitly blocked for a base type in the schema definition
= the derived type has to be indicated using xsi:type
= example (assuming that element account has type AccountT):
<account xsi:type="SavingsAccountT">
<account-number>1234</account-number>
<branch-name>Kaiserslautern</branch-name>
<balance currency="Euro">3245.78</balance>
<interest-rate>3.5</interest-rate>
</account>

= the element name is not affected, only the content

= Substitution groups
= extends the concept to the element level
= anamed head element may be substituted by any element in the substitution
group
= group elements have to be derived from head element

= Elements and types may be declared as "abstract"

@ 5 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch 27 - WS06/07

Namespaces and XML Schema

= XML-Schema elements and data types are imported from the XML-Schema
namespace http://www/w3/org/2001/XMLSchema
= Xsd is generally used as a prefix
= The vocabulary defined in an XML Schema file belongs to a target namespace
= declared using the targetNamespace attribute

= declaring a target namespace is optional
= if none is provided, the vocabulary does not belong to a namespace
= required for creating XML schemas for validating (pre-namespace) XML1.0 documents

= XML document using an XML schema
= declares namespace, refers to the target namespace of the underlying schema
= can provide additional hints where an XML schema (xsd) file for the namespace is

located
= schemalocation attribute

@ 5 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch 28 - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

XML Schema Version of Bank DTD

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.banks.org"
xmlins ="http://www.banks.org" >
<xsd:element name="bank” type="BankType"/>
<xsd:element name="account”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="account-number” type="xsd:string”/>
<xsd:element name="branch-name” type="“xsd:string”/>
<xsd:element name="balance” type="“xsd:decimal”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element> ... definitions of customer and depositor ...
<xsd:complexType name="BankType”>
<xsd:element ref="account”/>
<xsd:element ref="customer”/>
<xsd:element ref="depositor’/>
</xsd:choice>
</xsd:complexType>
</xsd:schema>

@ is 5 29 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

XML Document Using Bank Schema

<bank xmlIns="http://www.banks.org"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.banks.org Bank.xsd">

<account>
<account-number> ... </account-number>
<branch-name> ... </branch-name>
<balance> ... </balance>

</account>

</bank>

@ is 5 30 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

Assertions in XML-Schema

= Uniqueness: UNIQUE-Element, KEY-Element
= forces uniqueness of attribute or element values
= <field> element(s)
= can be applied to/declared for specific parts of the XML document
= <selector> element
= Example: within a bank element, all accounts should have a unique account
number
= <xs:element name="bank" type="bankType">
<xs:unique name="uniqueAcctNo">
<xs:selector xpath="/account"/>
<xs:field xpath="account-number"/>
</xs:unique>
</xs:element>
= Some remarks
= NULL value semantics: nillable at the schema level, nil in the document
= <key>equivalent to <unique> and nillable="false"

= composite keys/unique elements

@ » 31 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Mapping ER-Model -> XML Schema

= Mapping Entities

= 1:1 mapping to XML elements @ @
= use <key> to represent ER key attributes

ABT

<element name="ABT">
<complexType>
<attribute name="anr” type="string” />
<attribute name="street” type="string” />
<attribute name="name” type="string” />
</complexType>
</element>

<key name="abt_pk”>
<selector xpath=".//ABT/” />
<field xpath="@anr” />
</key>

@ » 32 Recent Developments for Data Models
© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

16

Mapping 1:N Relationships

= Mapping alternative: nesting

= using local element definition
<element name="ABT">
<complexType>
<sequence>
<element name="ANG">
<complexType>
<attribute name="name" type="string"/>
<attribute name="office" type="string"/>
</complexType>
</element>
</sequence>
<attribute name="street" type="string"/>
<attribute name="name" type="string"/>
</complexType>
</element>

= using global element definition
<element name="ABT">
<complexType>
<sequence>
<element ref="ANG”>
</sequence>
<attribute name="street” type="string” />
<attribute name="name” type="string” />
</complexType>
</element>

<Hgs>

®© Prof.Dr.-Ing. Stefan DeSloch

33

<element name="ANG">

<complexType>
<attribute name="name" type="string” />
<attribute name="office” type="string” />
</complexType>

</element>

Recent Developments for Data Models
- WS06/07

Primary/Foreign Keys

= Problem
= nesting alone is not sufficient for modeling a 1:n relationship
= element identity is required to avoid duplicate entries
= Foreign Keys
= guarantee referential integrity: <key> / <keyref> elements
<element name="ABT">
<complexType>
<sequence>
<element name="ANG">
<complexType
<attriute name="pnr" type="string"/>
<attrilpute name="name" type="string"/>
<attripute name="office" type="string"/>
<attripute name="abtid" type="string"/>
</complexTypep>
</element>
</sequence>
<attribute name="anr" type="string"/>
<attribute name="name" type="string"/>
<attribute name="street" type="string"/>
</complexType>
</element>

<Hgs>

®© Prof.Dr.-Ing. Stefan DeSloch

34

<key name="abt_pk”>
<selector xpath=".//ABT" />
<field xpath="@anr” />
</key>

<key name="ang_uniq”>
<selector xpath=".//ABT/ANG” />
<field xpath="@pnr” />
</unique>

<keyref name="abt_fk” refer="abt_pk”>
<selector xpath=".//ABT/ANG” />
<field xpath="@abtid” />
</key>

Recent Developments for Data Models
- WS06/07

Prof. Dr.-Ing. Stefan Del3loch

17

Primary/Foreign Keys

= Advantages over ID/IDREF
= based on equality of data types
= composite keys
= locality, restricting scope to parts of the
XML document
= Mapping of N:M — relationships
= use <key>/<keyref> elements
= flat modeling plus "pointers"

= addition of helper element similar to
mapping to relational model

<element name="PROJ_ANG">
<complexType>
<attribute name="pnr” type="string” />
<attribute name="jnr” type="string” />
</complexType>
</element>

@ .S 5 35 Recent Developments for Data Models

© Prof.Dr.-Ing. Stefan DelSloch - WS06/07

Prof. Dr.-Ing. Stefan Del3loch

