
1

Middleware for Heterogenous and Distributed Information Systems - WS06/07

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 11
Message-oriented Middleware (MOM)

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
2

© Prof.Dr.-Ing. Stefan Deßloch

Outline

Queues in TP-monitors
asynchronous transaction processing

Stratified transactions
Message Queuing Systems

point-to-point, request-response
Java Messaging Service (JMS)
EJB Message-driven Beans

Message Brokers
Enterprise Application Integration (EAI) – requirements
message routing
publish/subscribe
message broker architecture components
hub-and-spoke topology

Databases and Message Queuing Systems
roles
integration approaches
DBMS/MQS integration example

2

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
3

© Prof.Dr.-Ing. Stefan Deßloch

Short-term Queues for Load Control

Load control (during direct transaction processing)
Handle temporary load peaks
Store request in (temporary) queue to avoid creating new processes
Client-side model: direct, synchronous communication

"exactly-once" has to be guaranteed; concurrent access must preserve
correctness of queue structure

server
1

client
1

server dequeues
first element

client
2

client
3

client
4

server
2

server
3

server
4

client
5

client request is
appended to queue

same server class

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
4

© Prof.Dr.-Ing. Stefan Deßloch

Persistent Queues in TP-Monitors

End-user control
Delivering output (e.g., display information, print ticket, hand out money) is a
critical step in asynchronous processing
Redelivery may be required until user explicitly acknowledges receipt

Recoverable data entry
Some applications are driven by data entry at a high rate, without feedback to the
data source
Optimize for high throughput (instead of short response times)
Input data are taken from queue by running application
Input data must not be lost, even during a crash

Multi-transactional requests
Single request is processed in multiple transactions
Transaction chaining

3

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
5

© Prof.Dr.-Ing. Stefan Deßloch

Asynchronous Transaction Processing

Decoupling Request Entry, Request Processing, and Response Delivery, use
separate TAs for each task

optimize for throughput
avoid resource contention of single-transaction (TRPC) approach
can be generalized to multi-transaction requests

client

BOT;
produce server request;
put request on request queue;

COMMIT

BOT;
take response from resp. queue;
perform response processing;

COMMIT

server

BOT;
pick request from request queue;
process request;
put response on response queue;

COMMIT

TA 1
TA 2

TA 3

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
6

© Prof.Dr.-Ing. Stefan Deßloch

Queues for Asynchronous Transaction Processing

Queues are persistent, transactional
distinguishable, stable objects
can be manipulated through ACID transactions

send, receive operations are part of the respective transactions
queuing system is yet another transactional resource manager

queue operations and operations on other RMs can happen within the same (distributed)
transaction
request will become visible to other TAs only at commit of sending TA
if the receiving TA crashes, the request will be "put back" on the queue by the queuing
system

server can re-process the request after recovery

Client view
ACID request handling: request is executed exactly once
Request-reply matching: for each request there is a reply

request-id for relating requests and responses, provided by the client

At-least once response handling: client sees response at least once
response may have to be presented repeatedly, e.g., after client failure/restart

4

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
7

© Prof.Dr.-Ing. Stefan Deßloch

Multi-transactional Requests

Single request processed in a sequence of multiple transactions
can be scheduled asynchronously for high throughput, as long as no intermediate
user interactions are required

Based on recoverable input data (persistent queues)

Assumption: each transaction in the sequence will finally commit
Complete transaction sequence is no longer serializable

might be
identical

server
1

server
4

server
2

server
3

client
B

client
A

request client A
input server 1

output server 1
input server 2

output server 2
input server 3

output server 3
input server 4

output server 4
response client B

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
8

© Prof.Dr.-Ing. Stefan Deßloch

t4 t7t5

t6

S1 S2 S3

stratum

Stratified Transactions

Generalization of multi-transactional requests
Stratum: set of transactions to be coordinated under 2PC

connected through message queues

Connected strata form a tree structure

t1 t2 t3

Q2 Q3

queue

ti transaction

t8

t9

t10

Q4
S4

5

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
9

© Prof.Dr.-Ing. Stefan Deßloch

Stratified Transactions (2)

Structure
some ti should commit at the same time
disjoint, complete partitioning of T into sets of transactions S1, … Sm

transactions in Si are synchronized by 2PC
set of transactions Si is called stratum
each Si receives requests in a request queue Qi

a queue Qi does NOT associate more than 2 Si

Behavior
requests for stratum is only visible in input queue, if parent stratum commits

queues are transactional

all strata eventually commit if their respective parent stratum commits
stratified TA commits if root stratum commits

if stratum fails repeatedly, then this is an exception that requires manual
intervention, compensation

U
m

1j
jjiii TS und jifür SS undSmitTS

=

=≠∅=∩∅≠⊆

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
10

© Prof.Dr.-Ing. Stefan Deßloch

Stratified Transactions (3)

Advantages compared to single, global TA for T:
early commit of individual strata; implies less resource contention, higher
throughput
reduced observed end user response time (commit of root stratum)
if all transactions in a stratum execute on the same node:

no network traffic for executing 2PC
TA-Manager coordinating global TA on respective nodes don't need to support external
coordinator

Requirements
all resources manipulated by transactions (including messages) need to be
recoverable
resource managers need to be able to participate in 2PC

6

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
11

© Prof.Dr.-Ing. Stefan Deßloch

Client Variations

Non-transactional client
transaction support may not be available on the client
client still needs to be implemented in a fault-tolerant manner

make sure that the same request is not sent more than once
make sure that replies are delivered to the end user (at least) once

queuing infrastructure can help by
guaranteeing that message is stably stored when "enqueue message" operation returns to
client
providing information (message-ids) about the last request submitted, last reply received
when client reconnects after failure
allowing a client to

explicitly acknowledge receiving a reply
re-receive the unacknowledged replies

reply is deleted only when explicitly or implicitly acknowledged by the client

One-way messaging
client requires no reply for a request

Multiple clients submitting requests
one reply queue per client, identified as part of the request

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
12

© Prof.Dr.-Ing. Stefan Deßloch

Message Queuing Systems (MQS)

Have evolved from queuing systems in TP-monitors
Message-oriented interoperability

programming model: message exchange

Loosely-coupled systems/components
"client" is not blocked during request processing
"server"

can flexibly chose processing time
can release resources/locks early

components don't need to be running/active at the same time

Provide persistent message queues
reliable message buffer for asynchronous communication
"store and forward" behavior

Transactional MQS ("reliable MQS")
persistent MQS
guaranteed "exactly-once" semantics
transactional enqueue/dequeue operations

7

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
13

© Prof.Dr.-Ing. Stefan Deßloch

Interacting with MQS

Point-to-point messaging
Application explicitly interacts with message queues
Request/reply model needs to be built "on top"

Basic operations:
Connect/Disconnect to/from MQS
Send or Enqueue: appends a message to a MQ

usually multiple producers can send/enqueue in the same queue

Receive or Dequeue: reads and removes message from a MQ

Variations
Shared Queues

support for multiple consumers per queue
example: load balancing by using multiple "server" components
but a particular message only has a single consumer

Additional properties for messages
priority, time-out, …

Enhanced flexibility for "receive"
beyond FIFO

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
14

© Prof.Dr.-Ing. Stefan Deßloch

JMS – Standardized Interaction with MQS

Connections
connect to JMS server
start/stop messaging service

Session
execution context for sending and receiving
messages by creating messages, producers,
consumers
may be transactional

Message
Message producer

sends messages to queue
Message consumer

receives messages from queue
synchronous receive()
asynchronous using onMessage() method of
Message Listener

Message queues
administered objects, set up by
administrative capabilities
registered/bound through JNDI

Connection
Factory

Connection

Session

Message

Message
Producer

Message
Consumer

Queue Queue

create

create

create

sendreceive

8

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
15

© Prof.Dr.-Ing. Stefan Deßloch

Messaging Model

Message delivery modes
PERSISTENT – exactly-once
NON_PERSISTENT – at-most-once

non-persistent messages may be lost in case of a provider failure

Message order
messages sent by a single session are received in the order in which they are sent

order is not defined across multiple queues or multiple session sending to the same queue

the sending order is affected by the following
message priority – messages with higher priority may jump ahead
order is only guaranteed within a delivery mode (persistent/non-persistent), if both are
used
a transaction's order of messages

the receiving order may further be influenced by the receiver (see subsequent
chart)

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
16

© Prof.Dr.-Ing. Stefan Deßloch

Transactions and Message Acknowledgement

Transactions
MQ interactions may occur in context of a transactional session

distributed TA-support based on JTS/JTA
session object provides commit/rollback methods with the obvious semantics on queues

Message acknowledgement
messages need to be acknowledged after receiving them

are removed from the queue
queues can be recovered, resulting in redelivery of unacknowledged messages

messages are flagged as redelivered

Transactional sessions
messages are automatically acknowledged at TA commit
queues are recovered automatically at rollback

Non-transactional sessions
acknowledgement options

lazy acknowledgement – is likely to result in duplicate messages after a JMS failure
auto-acknowledge – automatically after a successful receive
client acknowledge – explicit by calling Message.acknowledge()

automatically acknowledges all messages that have been delivered by its session

recover-method of a session will stop a session and restart it with its first unacknowledged
message

9

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
17

© Prof.Dr.-Ing. Stefan Deßloch

Message Structure

Header
standard message attributes set by JMS provider or message producer
message-id, correlation-id, delivery mode (persistent/not persistent), destination
(queue), priority, redelivered, reply-to, timestamp

Properties (optional)
application-specific, vendor-specific, and optional properties

Body
actual message content
support for multiple content types (bytes, text, Java object, ...)
format of the method body is up to the applications

implicit agreement
no meta-data available

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
18

© Prof.Dr.-Ing. Stefan Deßloch

Message Selectors

Message processing applications may implement components only interested
in a subset of messages on a queue
Queue receiver may specify a selector

messages that are not selected remain in the queue
message order is not guaranteed anymore

Selector syntax
logical conditions based on a subset of SQL92 conditional expression syntax

literals, identifiers (field/property names)
logical connectors, comparison operators, arithmetic expressions

can reference message header fields and properties
no references to message body allowed

10

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
19

© Prof.Dr.-Ing. Stefan Deßloch

EJB Message-Driven Beans (MDB)

Entity and session beans can use JMS to send asynchronous messages
receiving messages would be difficult, requires explicit client invocation to invoke a
bean method "listening" on a queue

may block the thread until message becomes available

Message-driven beans should be used to receive and process messages
stateless

no conversational state
can be pooled like stateless session beans

not invocable through RMI
don't have component interfaces (home, remote)

concurrent processing of messages
container can execute multiple instances, handles multi-threading

Deployment
descriptor includes additional attributes mapping to JMS processing properties

acknowledge-mode
message-selector

the queue from which a MDB should receive messages is fixed at deployment time

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
20

© Prof.Dr.-Ing. Stefan Deßloch

Message Queuing and Application Integration

Message queuing characteristics
explicit definition, agreement regarding message destination
point-to-point, request-response
fixed message structure (content)
a particular message is always consumed by a single receiver

Enterprise Application Integration (EAI)
Goal: bring together disparate application systems to exchange data and requests
Example: Supply Chain Automation

supplier/customer management, quotation, order processing, procurement, shipping, …

Involves for each application
definition of a message set representing data/requests
developing an adapter that maps messages to invocation of application functions

front-end vs. back-end adapter

Using plain message queuing for EAI
messaging application/adapter has to perform complex routing logic and required
message transformations for every application to be integrated
hard to maintain, extend

11

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
21

© Prof.Dr.-Ing. Stefan Deßloch

Message Routing

Idea: separate the routing and transformation logic from the applications
script defines sequences of application invocations and message transformation
steps

transformations are program components invoked by the message router

application
1

application
2

application
3

application
4

Message Router

send request

pass request to applications 2&3
after transforming them into
application-specific formats

send response

combine responses and send to
application 4

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
22

© Prof.Dr.-Ing. Stefan Deßloch

Publish/Subscribe Paradigm

Publish and Subscribe
further generalizes message routing aspects
applications may simply publish a message by submitting it to the message broker
interested applications subscribe to messages of a given type/topic
message broker delivers copies of messages to all interested subscribers

Subscription
can be static (fixed at deployment or configuration time) or dynamic (by application at run-
time)
type-based subscription

based on defined message types
type namespace may be flat or hierarchical (e.g., SupplyChain.newPurchaseOrder)

also identified by the publisher
parameter-based subscription

boolean subscription condition identifying the messages a subscriber is interested in
example: type = "new PO" AND customer = "ACME" AND quantity > 1000

condition refers to message fields
non-durable subscription: published messages are not delivered if the subscriber is not active
durable subscription: messages are delivered until subscription expires

JMS supports Publish/Subscribe
Publishers send messaged to topics instead of queues
Subscribers create a special kind of receiver (topic subscriber) for a topic

12

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
23

© Prof.Dr.-Ing. Stefan Deßloch

Message Brokering

Message Transformations
restructuring (schema conversion)
data conversion, data cleaning (see data warehousing)
based on a neutral message format to reduce transformation complexity

Message Routing and Transport
employs queues as input/output infrastructure

asynchronous communication, store-and-forward

performs message flow control (intelligent routing)
dynamic, based on message content

Rules-based processing and distribution of messages based on message fields
Message annotation

message can be combined with data from a database, from other messages, or
both
annotations are defined in routing scripts or subscription requests

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
24

© Prof.Dr.-Ing. Stefan Deßloch

Message Brokering (2)

Message repository
definition of message structure (of all message sets)
mapping rules
special transformation functions
routing scripts
subscription requests

Message warehouse
implements message persistence
can be used to permanently store messages of predefined types

may be retrieved, annotated, projected on demand
basis for further analytical processing of messages

message archiving, auditing

13

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
25

© Prof.Dr.-Ing. Stefan Deßloch

Message Broker Topologies

Hub-and-spoke
message broker as a neutral hub for message processing
applications connected to broker in a "star" architecture

Multi-hub
simple extension of hub-and-spoke for scalability
multiple message brokers are linked together
applications can be connected to any of the participating brokers

Federation
generalizes multi-hub topology
heterogeneous message brokers

need to interact based on a common interchange format (e.g., XML)

applications are connected/bound to specific broker

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
26

© Prof.Dr.-Ing. Stefan Deßloch

Databases and Messaging Systems

Roles of DBMS in a messaging world
persistence manager for messaging systems

store/retrieve messaging data and state information
reliable, transactional

provide advanced DBMS capabilities to achieve a DBMS/MQS synergy
querying messaging data

S. Doraiswamy, M. Altinel, L. Shrinivas, S.L. Palmer, F.N. Parr, B. Reinwald, C. Mohan: Reweaving
the Tapestry: Integrating Database and Messaging Systems in the Wake of New Middleware
Technologies, in T. Härder, W. Lehner (Eds.): Data Management in a Connected World, LNCS
3551, Springer 2005: 91-110

14

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
27

© Prof.Dr.-Ing. Stefan Deßloch

Database as a Message Store

Database serves as a backing store
Messaging systems can exploit integral database features, such as

storage definition, management, and underlying media/fabric exploitation
single DB table for storing similar messages of a single/few queues
administrator can configure the tables appropriately

buffer, cache, spill management
DB cache allows for quick access during timely message consumption

index creation, management, reorganization
on (unique) message ids, sequence numbers, subscription topics, …

latching and lock management
avoid consumer/producers blocking on each other
row-level locking
lower isolation levels (skip over locked messages, etc.)

transaction management and coordination
synchronous or asynchronous message store/commit in local TAs, based on QoS
requirements
global TA support

high-speed and scalable logging services

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
28

© Prof.Dr.-Ing. Stefan Deßloch

Improved Database and Messaging Synergy

DBMS helps accessing messaging data and destinations, possibly in
combination with operational data

requires closer cooperation in terms of message schema and typing information

Potential DBMS features
mapping message payloads structure to table structure

exploit object-relational and XML data capabilities of DBMS

message warehousing and replay functionality
tracking and analysis of message data

enabling the database for asynchronous operations
messaging triggers

use of SQL, SQL/XML, XQuery with MQS
publishing to message destinations as reaction to updates

triggers, messaging functions
replication

storing durable subscriptions
consume-with-wait support

instead of continued polling

15

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
29

© Prof.Dr.-Ing. Stefan Deßloch

Integration Strategies

Database System using/integration messaging capabilities
database-specific messaging and queuing

queuing support added to the DBMS engine

interfacing with message engines
"light integration"
messaging data lives in DBMS, new built-in or user-defined routines to interface with a
(co-located) messaging system

Messaging system using/integrating DBMS
message-system-specific persistence, transactions logging

messaging engine implements all of the above by itself

database as a persistent message store

Integrated Database Messaging
leverage the strengths of both DBMS and MQS, without reimplementation
potentially utilize additional middleware to achieve the integration

example: leverage (information integration) wrapper technology

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
30

© Prof.Dr.-Ing. Stefan Deßloch

Integrated Database Messaging – Example

IBM research prototype based on DB2 Universal Database, WebSphere
Platform Messaging (WPM)

Parser

Compiler

Runtime

Msg Wrapper

WPM Engine
(Websphere AS)

DB2
Engine

remote
destinations

SEND/RECEIVE/SELECT
Mapping SEND/RECEIVE to SQL

Query rewrite for complex predicates

2PC optimization for transactional integration

"Virtual table" representing sets of messages

16

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
31

© Prof.Dr.-Ing. Stefan Deßloch

SQL Language Extensions

SEND statement
creates and puts a message into specific destination
example:

SEND TO stockdisplay ($body)
SELECT n.name || '#' || CHAR(q.price)
FROM quotes q, stocknames n
WHERE q.symbol = n.symbol

WPM initializes message properties
can be accessed by the sending application using additional syntax

internally represented as SELECT -> INSERT into virtual table

RECEIVE statement
destructively reads a message from a destination
example:

RECEIVE $body
FROM stockdisplay
WHERE MINUTEDIFF (CURRENT TIMESTAMP – TIMESTAMP($timestamp)) < 60

internally represented as DELETE -> SELECT from virtual table

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
32

© Prof.Dr.-Ing. Stefan Deßloch

Message Wrapper

Message wrapper provides a relational view of a JMS message destination
"virtual" table (see chapter on wrappers)
structure

each standard header field -> column
all application-defined properties -> single column
message body -> column

operations
maps DML operations and filter predicates to appropriate operations on message
destinations
implements set-oriented semantics

WPM does not support complex filter conditions
DB2 needs to compensate for lack of capabilities
requires two-step interaction to preserve semantics of message destination
operations

step one
browse all messages that fulfill subset of search criteria supported by WPM
evaluate additional search conditions in DB2 engine

step two
destructively read only the qualifying messages from the destination

17

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
33

© Prof.Dr.-Ing. Stefan Deßloch

2PC Optimization

DB2 and WPM are located on the same machine, can use the same DB for
operational data and (local) message storage
2PC semantics may have to be enforced, but can be optimized

DB and WPM interactions with DB still occur through separate DB connections
tight coupling possible based on XA join/suspend behavior

transaction context passed along to messaging system
then back to DB during message interactions
DB2 TA-Mgr recognizes context, avoids full 2PC

Middleware for Heterogenous and
Distributed Information Systems -

WS06/07
34

© Prof.Dr.-Ing. Stefan Deßloch

Summary

Message Queuing
asynchronous interactions,
communication
persistent and transactional message
queues
asynchronous transaction processing
supported by

TP monitors
Workflow Management Systems
Message Queuing Middleware

Message Broker
focus on application integration
message routing, pub/sub
neutral message hub
rule-based processing, routing,
transformation of messages

Databases and Messaging Systems
database as a message store
DBMS/MQS synergy
different integration strategies

DBMS-extension, MQS-extension,
integration

integration example
SQL extensions for messaging
messaging wrapper
2PC integration

