
1

Middleware for Heterogenous and Distributed Information Systems - WS06/07

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 10 - Data Replication and 
Materialized Integration

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
2

© Prof.Dr.-Ing. Stefan Deßloch

Motivation

Replication: controlled redundancy of data to
improve performance (query response time)
increase availability

Replication is a common concept in
(homogeneous) distributed DBMS
centralized DBMS in the form of materialized views
mobile DBMS environments
data/information integration middleware

Materialized integration: data warehouses
synchronous/asynchronous replication of data from multiple sources into a central 
data warehouse

avoid performance problems of virtual integration solutions
diverts query load away from operational data sources
enables complex and powerful data analysis (business intelligence)

Major drawback
potential for stale (out-of-date) data



2

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
3

© Prof.Dr.-Ing. Stefan Deßloch

Challenges

Integration of replication with transaction processing
Enforcing consistency of replica in the presence of updates

possible model: update of replicated data becomes a distributed transaction that 
updates all copies

Detecting and resolving conflicts
reconciling "versions" of replicated data elements that have evolved independently 
(e.g., because of a communication failure)

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
4

© Prof.Dr.-Ing. Stefan Deßloch

Eager Replication

Transaction synchronizes with copies 
of replicated elements before commit

guarantees globally serializable 
execution

locking

avoids inconsistencies

Potential problems
deadlocks
update overhead

reduced update performance
increased transaction response time

lack of scalability
cannot be used if nodes are 
disconnected (e.g., mobile databases)

TA ER1 ER2

writeA
writeA

writeA
writeB

writeB
writeB

writeC
writeC

writeC
commit

commit
commit



3

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
5

© Prof.Dr.-Ing. Stefan Deßloch

Lazy Replication

Changes introduced at one site are propagated (as 
separate transactions) to other sites only after 
commit

minimal update overhead (i.e., improved response 
times over eager replication)
works also if sites are not connected (e.g., mobile 
environments) or temporarily unavailable

Potential problems
stale (out-of-date) data

update of a completed transaction is "in-transit", i.e., has 
not been reflected in all replicas
new transaction operating on a replica sees an old version 
of the data

conflicting updates can cause inconsistencies between 
the copies

concept for detecting inconsistencies
reconcile conflicting transactions

rollback of (committed) transactions not possible

potential for "system delusion" (Gray, Reuter)
inconsistent database, with no obvious way to repair it

TA LR1 LR2

writeA
writeB
writeC
commit

writeA
writeB
writeC
commit

writeA
writeB
writeC
commit

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
6

© Prof.Dr.-Ing. Stefan Deßloch

Replication Middleware

Source table data is replicated to a target table
Scenarios and uses

data distribution
data from one source table is replicated to more than one (read-only) target table

data consolidation/integration
data from more than one source table is replicated to a single target table (union view)

bidirectional replication allows updates on target tables to be replicated back to the 
source table

master/slave replication: all updates flow back to a designated master, are then 
distributed to other targets
peer-to-peer replication: each location exchanges data with all other locations

combination of the above
Multi-tier replication

introduction of staging area(s)
changes are copied to another system
then copied from staging area to multiple targets

minimizes impact on source systems
Lazy replication techniques are widely used



4

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
7

© Prof.Dr.-Ing. Stefan Deßloch

Replication methods

Target table refresh
at intervals, target table is replaced by a fresh copy of the source table
no requirement to capture individual changes
only makes sense if 

uni-directional replication is used (i.e., updates only occur on the source table)
target table is small or replication occurs infrequently

Change-capture replication
committed changes to source table are captured and replicated to the target table
replication activity

continuous (near-real-time)
interval-based (e.g., during off-peak hours)
triggered by DB-events
one-time snapshot

need to compare snapshots of tables to determine the updates

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
8

© Prof.Dr.-Ing. Stefan Deßloch

Change-Capture Replication

source table target table

committed
change
datacapture

apply

update



5

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
9

© Prof.Dr.-Ing. Stefan Deßloch

Capturing Changes

Source table registration to define
which parts of the table changes should be captured
when replication should occur

Capture logic
responsible for detecting the changes to the source table
make committed change data available to the apply logic
realization approaches

capture program analyzes the database log files
use database triggers

Committed Change Data
needs to (at least) include

type of change (insert, update, delete)
new values of updated data items, plus data item identifier (keys)
(optional) before-image information

can be provided using
(relational) staging table at the source location

each change is reflected as a row in the staging table
message-oriented middleware

changes are provided as message on a queue

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
10

© Prof.Dr.-Ing. Stefan Deßloch

Applying Changes

Apply logic is responsible for
initializing target table from source table
applying captured changes to the target table

preserve order of dependent transactions

Needs access to
the captured changes stored in staging tables or change message queues
the target table
(the source table)

Enhanced capabilities
filtering, joins, aggregation, transformation of data for the target



6

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
11

© Prof.Dr.-Ing. Stefan Deßloch

Replication Conflicts

Two nodes may concurrently update replicas of the same object
"race" each other to propagate the update to all the other nodes
potential for lost updates

Detecting conflicts
usually based on timestamps (or before-image data)

object carries timestamp of most recent update
replica update carries new value and old object timestamp

each node compares old object timestamp of incoming replica updates with its own 
object timestamp

if timestamps are the same, then the update is accepted
if not, then the incoming update transaction is rejected, submitted for reconciliation

rollback of transaction is not possible anymore, has been committed at the originating site

wait situations in eager replication <-> reconciliation in lazy replication

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
12

© Prof.Dr.-Ing. Stefan Deßloch

Ownership of Replicas

Group
"update anywhere" update model
any node/site with a replica can update it

may cause conflicts, need for reconciliation

Master
"primary copy" update model
each object has a master node
only the master can update the primary copy

other replicas are read-only
other nodes request the master node to perform an update (e.g., using RPC)

eliminates reconciliation failures with lazy replication
results in waits, potential deadlocks for updates initiated by non-master node

does not work for mobile, disconnected databases



7

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
13

© Prof.Dr.-Ing. Stefan Deßloch

Reconciliation

Approaches
automatically, based on rules

site, time or value priority, merging of updates, …

manually
conflict situations are reported in a conflicts table or queue

Non-transactional replication schemes
abandon serializability for convergence

all nodes converge to the same replicated state, which may not correspond to a serial 
transaction execution

tolerate lost updates

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
14

© Prof.Dr.-Ing. Stefan Deßloch

Alternatives for Conflict Detection, Avoidance

Semantic synchronization
permit commutative transactions

requires capturing update semantics at a logical level
performing the transaction update may yield different results, but still be semantically 
correct

example: processing checks at a bank

provide acceptance criteria for detecting conflicts
incoming replica transaction updates are tentatively accepted and performed, but need to 
pass the acceptance test
replaces/augments the generic conflict detection mechanisms

Avoid conflicts by implementing update strategies in the application
fragmentation by key

a site can update only rows whose keys are in a fixed range
no range overlaps

fragmentation by time
disjoint "time windows" for each site to perform updates



8

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
15

© Prof.Dr.-Ing. Stefan Deßloch

Data Warehousing

Main goal: materialized integration of data from numerous heterogeneous 
sources to enable powerful strategic data analysis

OLAP – online analytical processing
data mining
often provided through (application-specific) data marts

data derived from a data warehouse through pre-aggregation 
usually employ materialized views

High-level architecture

data source 1

data source n

: Data
Warehouse

data mart 

data mart 

:

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
16

© Prof.Dr.-Ing. Stefan Deßloch

Multidimensional View of OLAP Data

Facts
central relation or collection of data in an OLAP application
represents events or objects of interest

e.g., a sales event, with information about the product sold, the store, the sales date and 
price

Dimensions
objects can often be thought of as arranged in a multi-dimensional space, or cube

e.g., sales events have store, product, and time period dimensions
each point is a single sales event, dimensions represent properties of the sale

hierarchical nature of dimensions
time: year, quarter, month, week, day
store: country, state, region, city

product

store

period



9

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
17

© Prof.Dr.-Ing. Stefan Deßloch

period_desc
description
Per_year
Per_quarter
Per_month
Per_day

Period 
dimension table

dimensions

measures

store_id
product_id
period_desc

dollars
units
price
sales_date

Detailed_Sales
fact table

store_id
name
city
region
sales_mgr

Store 
dimension table

product_id
brand
size
producer
caselot

Product 
dimension table

(Relational) OLAP Schema

Typically uses a Star structure
Dimension tables (linked to fact table) tend to be small 
Fact table tends to be huge
Measures (dependent attributes)

Snowflake schema
"normalized" dimensions
multiple tables to avoid
redundancy
requires additional
joins for OLAP queries

OLAP queries usually
GROUP BY the
dimensions
compute
aggregate values
of measures

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
18

© Prof.Dr.-Ing. Stefan Deßloch

Data Warehousing Architecture

data source 1

data source n

: main data
warehouse

data mart 

data mart 

:

Monitor

Extract Transform Load

staging area

Data Warehouse
Manager

metadata
repository

data flow
control flow

Analysis – Reporting - Mining
Tools



10

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
19

© Prof.Dr.-Ing. Stefan Deßloch

Data Warehouse Manager

Central component of the architecture
Responsible for controlling and supervising the overall process

initiate data preparation, loading
implement error recovery routines
manage ETL scripts or process descriptions
schedule and control analysis actions

Directs data warehouse refresh
full load vs. incremental load
periodic (e.g., every night, weekend), driven by source updates (e.g., after n 
changes), or on request

Utilizes metadata repository
Monitors the overall DW environment

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
20

© Prof.Dr.-Ing. Stefan Deßloch

Data Preparation Components

Data preparation steps (ETL) are conducted in a staging area
Monitor discovers and reports changes in data sources

replication-based (staging tables may be directly used by extractors)
timestamp-based

intermediate changes may be lost

Extractors select and transport data from data sources into the staging area
DBMS or file system for managing the staging area

Transformers perform standardization and integration of data
responsible for "implementing" an integrated schema
integrated data requires data quality!

data migration, data cleaning
entity identification, duplicate elimination

may happen SQL-based or based on external data processing operators

Loaders insert the data from the staging area into the main warehouse
usually employ bulk load utilities of DBMS for performance reasons



11

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
21

© Prof.Dr.-Ing. Stefan Deßloch

Sample ETL Processes (IBM DataStage)

Middleware for Heterogenous and 
Distributed Information Systems -

WS06/07
22

© Prof.Dr.-Ing. Stefan Deßloch

Summary

Replication middleware 
usages

data distribution and consolidation
improve performance, availability
materialized information integration

architecture
capture and apply
committed change data

change propagation and ownership 
strategies

eager vs. lazy
group vs. master

conflict detection and reconciliation 
approaches are required for lazy group 
replication!

Data Warehousing
materialized integration approach

avoids problems and restrictions of 
virtual integration architectures

integrated schema for mult-dimensional 
data analysis, OLAP

facts, dimensions, (hyper-)cubes
star and snowflake schema

architectures
central role of data warehouse manager
extract/transform/load (ETL) for data 
preparation
transformation implements schema and 
data integration logic
data quality requirements

potential problem: stale data
requires real-time data warehousing


