Prof. Dr.-Ing. Stefan DeBloch

AG Heterogene Informationssysteme =
Geb. 36, Raum 329 I m Tecunische UNIVERSITAT

Tel. 0631/205 3275 m KAISERSLAUTERN

dessloch@informatik.uni-kl.de

Chapter 6 — Object Persistence, Relationships
and Queries

@ ‘S B Middleware for Heterogenous and Distributed Information Systems - WS06/07

Object Persistence

= Persistent objects
Lifetime of a persistent object may exceed the execution of individual applications

-
= Goals
simplification of programming model for persistent data access and management
no explicit interaction with data source using SQL, JDBC, ...
eliminate "impedance mismatch"
= hide heterogeneity of existing data stores
data model, query language, API

= Basic approach
= application (component) interacts with objects
create, delete
access object state variables
method invocation
persistence infrastructure maps interactions with objects to operations on data sources
e.g., INSERT, UPDATE, SELECT, DELETE

= Variations
= explicit vs. implicit (transparent) persistence
= type-specific vs. orthogonal persistence

@ =S 9 Middleware for Heterogenous and
2 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

CORBA — Persistent Object Service

= Goal: uniform interfaces for realizing object persistence
= POS (Persistent Object Service) components

= PO: Persistent Object

= are associated with persistent state

through a PID (persistent object
identifier)
PID describes data location
= POM: Persistent Object Manager
= mediator between POs and PDS

= realizes interface for persistence
operations

= interprets PIDs
= implementation-independent
= PDS: Persistent Data Service

= mediator between POM/PO and
persistent data store

" CE. Y
(. Client)
P Y.
Persistent Object [PO} PID | Persistent Identifier
A
A
Protocal | POM [PersistentObjectManager

PersistentDatuService

Datastore

= data exchange between object and data store as defined by protocols

= Datastore
= stores persistent object data

= may implement Datastore CL/ (encapsulates ODBC/CLI)

<H§S>

®© Prof.Dr.-Ing. Stefan DeSloch

Middleware for Heterogenous and
Distributed Information Systems -
WS06/07

CORBA Persistence Model

= CORBA object is responsible for realizing its own persistence

= can use PDS services and functions

= implicit persistence control

= client is potentially unaware of object persistence aspects

= explicit persistence control

= persistent object implements PO interface, which can then be used by the client
= Explicit persistence control by CORBA client:
= client creates PID, PO using factory objects

= PO Interface

= connect/disconnect — automatic persistence for the duration of a "connection"
= store/restore/delete — explicit transfer of data

= delegated to POM, PDS

= caution!: CORBA object reference and PID are different concepts
= client can "load" the same CORBA object with data from different persistent object states

<H§S>

®© Prof.Dr.-Ing. Stefan DeSloch

Middleware for Heterogenous and
Distributed Information Systems -
WS06/07

Persistent Object Manager

pid! pid2 pidl
datastore_type=DB2 ‘ datastore_type=0ObijectStore ‘ datastore_type=FS ‘

[I I

/’my SpreadSheet > yourDoc \.

Y POM Y
PDS Registry
protocoll — protocel2 [object_type,datastore_type Ly
document,DE7 —p Pd3
spreadSheet,ObjectStore o pds2
document,FS = pds3
/
/

protocol2

O, _ D
‘ ‘ DB2 ‘ (ObjectStore | ‘ FS
R N N
@ =S 9 Middleware for Heterogenous and
5 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Persistence Protocols

= CORBA Persistence Service defines three protocols

= Direct Access (DA) protocols
= PO stores persistent state using so-called direct access data objects (DADOs)
CORBA objects whose interfaces only have attributes
defined using Data Definition Language (IDL subset)
= DADOs may persistently reference other DADOs, CORBA objects
= ODMG'93 protocols
= similar to DA protocol (is a superset)
own DDL (ODL) for defining POs
= ideal for OODBMS-based persistence
= Dynamic Data Object (DDO) protocols
= "generic", self-describing DO
methods for read/update/add of attributes and values
manipulation of meta data
= used for accessing record-based data sources (e.g. RDBMS) using DataStore CLI interface
SQL CLI for CORBA

= Protocols are employed in the implementation of DOs

@ =S 9 Middleware for Heterogenous and
6 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

CORBA Queries and Relationships

= Query Service
= set-oriented queries for locating CORBA objects
= SQL, OQL
= query results are represented using Collection objects
= iterators
= Relationship Service
= management of object dependencies
= relationship: type, role, cardinality

@ =S 9 Middleware for Heterogenous and
7 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

EJB — Entity Beans

= Follows transparent persistence approach

= persistence-related operations (e.g., synchronizing object state with DB contents)
are hidden from the client

= Persistence logic is implemented separately from business logic
= entity bean "implements" call-back methods for persistence
= ejbCreate — insert object state into DB
= ejbLoad - retrieve persistent state from DB
= ejbStore — update DB to reflect (modified) object state
= ejbRemove — remove persistent object state

@ =S 9 Middleware for Heterogenous and
8 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Entity Beans - Client-Perspective

= Persistence aspects are hidden from client object.businessMethody...)
throws NoSuchObjectException or
NoSuchObjectLocalException

does not exist
and
referenced

does not exist
and
not referenced

A

release rejerence

home.create<METHOD>(...)

object.remove()

; : or
direct direct delete home.remove
insert or ome.remove(...)

or

home.remove(...)
direct delete

home.findy...)

exists
and
referenced

exists
and
not referenced

release reference

A A

home.businessMethody...} object.businessMethody...)

@ > S 9 Middleware for Heterogenous and
Distributed Information Systems -

®© Prof.Dr.-Ing. Stefan DelSloch 9 WS06/07

Container-Managed Persistence (CMP)

= Bean developer defines an abstract persistence schema in the deployment
descriptor
= persistent attributes (CMP field’s)
= relationships
= Mapping of CMP fields to DB-structures (e.g., columns) in deployment phase
= depends on DB, data model
= tool support
= lop-down, bottom-up, meet-in-the-middle
= Container saves object state, maintains relationships
= bean does not worry about persistence mechanism
= call-back methods don't contain DB access operations
= Manipulation of CMP fields through access methods (getfie/d(), setfield(...))
= access within methods of the same EB
= client access can be supported by including access methods in the remote interface
= provides additional flexibility for container implementation
= lazy loading of individual attributes
= individual updates for modified attributes

@ > S 9 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DelSloch 10 WS06/07

Container-managed Relationships

= Relationships can be defined in deployment descriptor
= part of abstract persistence schema
= Relationships may be
= uni-directional (“reference™)
= bi-directional
= Relationship types
= 1:1, 1:n,n:m
= Access methods for accessing objects participating in a relationship
= like CMP field methods
= Java Collection interface for set-valued reference attributes
= Container generates code for
= relationship maintenance
= persistent storage
= cascading delete (optional)

@ =S 9 Middleware for Heterogenous and
11 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

EJB Query Language

= Query language for CMP EntityBeans
= used in the definition of user-defined Finder methods of an EJB Home interface
= no arbitrary (embedded or dynamic) object query capabilities!
= uses abstract persistence schema as its schema basis
= SQL-like
= Example:
SELECT DISTINCT OBJECT(0)
FROM Order o, IN(o.lineltems) |
WHERE I.product.product_type C “Order

= ‘office_supplies’ lly \
f \ _

Praduct
-~ Shl.pp:lng E‘\& H]]]Jng -
S Address _Address A4
@ > S 9 Middleware for Heterogenous and
12 Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Bean-Managed Persistence (BMP)

= Callback-methods contain explicit DB access operations

= useful for interfacing with legacy systems or for realizing complex DB-mappings

(not supported directly by container or CMP tooling)
= No support for container-managed relationships
= Finder-methods
= have to be implemented in Java
= no support for EJB-QL

<H§S>

®© Prof.Dr.-Ing. Stefan DeSloch

13

Middleware for Heterogenous and
Distributed Information Systems -
WS06/07

Entity Beans

= Problems
= distributed component vs. persistent object
= granularity
= potential overhead (and possible performance problems)

solution in EJB 2.0: local interfaces
but: semantic differences (call-by-value vs. call-by-reference)

= complexity of development process
= missing support for class hierarchies with inheritance

= Alternatives?

= use JDBC, stored procedures
= complex development

= use O/R Mapping product
= proprietary

= implement own persistence framework
= complex

= JDO

<H§S>

®© Prof.Dr.-Ing. Stefan DeSloch

14

Middleware for Heterogenous and
Distributed Information Systems -
WS06/07

JDO - Java Data Objects

= JDO developed as new standard for persistence in Java-based applications

= first JDO specification 1.0 released in March 2002 (after ~ 3 years) through Suns
JCP (Java Community Process)

= > 10 vendor implementations plus open-source projects
= manaatory features and optional features in the specification (i.e., some optional
features are ,standardised” - promises better portability).

= Features, elements

= orthogonal persistence

= hative Java objects (inheritance)

= byte code enhancement

= mapping to persistence layer using XML-metadata

= transaction support

= JDO Query Language

= JDO API

= JDO identity

= JDO life cycle

= integration in application server standard (J2EE)

@ «S 2 Middleware for Heterogenous and
15 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Orthogonal Persistence in JDO

= Object-based persistence, independent of type/class
= Java class supports (optional) persistence (implements PersistenceCapable)

= not all instances of the class need to be persistent
= application can explicitly turn a transient object into a persistent object (and vice versa)

= Persistence logic is transparent for application
= interacting with transient and persistent objects is the same
= "persistence by reachability”

@ «S 2 Middleware for Heterogenous and
16 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Persistence by Reachability

= all PersistenceCapable objects reachable from persistent object within
an object graph are made persistent, too
= cascading delete? optional in JDO

If Authorl is made
Authort persistent, then all object

reachable (e.g., books
and chapters) are made

persistent, too!
[Chapterl] [Chapter2 } [Chapterl }

@ - S 9 Middleware for Heterogenous and
Distributed Information Systems -

®© Prof.Dr.-Ing. Stefan DelSloch 17 WS06/07

Byte-Code-Enhancement

= Java bytecode (*.class) and metadata (*.jdo)
= Same object class (now implements PersistenceCapable)
= O/R-mapping specification is vendor-specific

f Java : JDO .
MyClass.java ::> Compiler ::> MyClass.java ::> Enhancer ::> MyClass.java
ﬁ

D provided by application

developer 0 oo
D provided by JDO meta data run time environment
vendor
Java Virtual Machine
@ : S B Middleware for Heterogenous and
18 Distributed Information Systems -
WS06/07

®© Prof.Dr.-Ing. Stefan DeSloch

JDO API

PersistenceManagerFactory 1 Transaction
= Manages connection to persistence layer = realizes transactional behavior
= manages PersistenceManager pool together with persistence layer
1
0..n | Query
= helps locate persistent objects

o.n 1 use

PersistenceManager

1 Extent

= has connection to persistence layer

) = represents all instances of a class
= manages JDO instance cache 1 0.n

@ S 2 Middleware for Heterogenous and
19 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

PersistenceManager API - Example

Author authorl = new Author(""John", "Doe");
PersistenceManager pm1 = pmf.getPersistenceManager();
pm1l.currentTransaction.begin();
pml.makePersistent(authorl);

Object jdoID = pm1.getObjectld(authorl);
pm1.currentTransaction.commit();

pm1.close();

~NOoO O~ WN -

oo

/I Application decides that authorl

9 /[must be deleted

10 PersistenceManager pm2 = pmf.getPersistenceManager();
11 pm2.currentTransaction.begin();

12 Author author2 = (Author)pm2.getObjectByld(jdoID);

13 pm2.deletePersistent(author2);

14 pm2.currentTransaction.commit();

15 pm2.close();

@ S 2 Middleware for Heterogenous and
20 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Transactions

= JDO transactions supported at the object level
= Datastore Transaction Management (standard):
= JDO synchronises transaction with the persistence layer
= transaction strategy of persistence layer is used
= Optimistic Transaction Management (optional):
= JDO progresses object transaction at object level
= at commit time, transaction is synchronized with persistence layer
= Transactions and object persistence are orthogonal

object . .
o transactional non-transactional
characteristics

persistent standard optional

transient optional standard (JVM)
@ L S 2 Middleware for Heterogenous and

21 Distributed Information Systems -

®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

JDO Query Language

= A JDOQL query has 3 parts

= candidate class: class(es) of expected result objects
- restriction at the class level

= candidate collection: collection/extent to search over
-> (optional) restriction at the object extent level

= filter. boolean expression with JDOQL (optional: other query language)
= JDOQL characteristics

= read-only (no INSERT, DELETE, UPDATE)

= returns JDO objects (no projection, join)

= query submitted as string parameter - dynamic processing at run-time

= logical operators, comparison operators: e.g. |,==,>=

= JDOQL-specific operators: type cast using "()", navigation using "."

= no method calls supported in JDOQL query

= sort order (ascending/descending)

= variable declarations

@ S 2 Middleware for Heterogenous and
22 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Query

JDO-Query with JDOQL for locating JDO instances:

P OO~NOOUTDhWNPRE

String searchname = '"'Doe';
Query q = pm.newQuery();
g.setClass(Author.class);
g.setFilter(*name == \""" + searchname +"\'""");
Collection results =(Collection)q.execute();
Iterator it = results.iterator();
while (it.hasNext()){

// iterate over result objects

b
0 g.close(it);

@ S 5 Middleware for Heterogenous and
23 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

JDOQL Examples

W N P =

a s~ WONPRE =

Sorting:

Query query = pm.newQuery(Author.class);
query.setOrdering(“'name ascending, Tirstname ascending™);
Collection results = (Collection) query.execute();

Variable declaration

String filter = "books.contains(myBook) && ™ +

"(mYBOOk.name == \"Core JDO\")";

Query query = pm.newQuery(Author.class, filter);
query.declareVariables("'Book myBook™);
Collection results = (Collection) query.execute();

@ S 5 Middleware for Heterogenous and
24 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

12

Java Persistence API

= Result of a major ‘overhaul' of EJB specification for persistence, relationships,
and query support
= simplified programming model
= standardized object-to-relational mapping
= inheritance, polymorphism, “polymorphic queries"
= enhanced query capabilities for static and dynamic queries
= APl usage
= from within an EJB environment/container
= outside EJB, e.g., within a standard Java SE application
= Support for pluggable, third-party persistence providers

@ «S 2 Middleware for Heterogenous and
25 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Entities

s "An entity is a lightweight persistent domain object”
= entities are not remotely accessible (i.e., they are local objects)
= no relationship with the EntityBeans concept, but co-existence
= Simplified programming model for EJB entities
= entity is a POJO (plain old Java object)

= no additional local or home interfaces required
= no implementation of generic EntityBean methods needed

= entity state (instance variables) is encapsulated, client access only through accessor or other
methods

= use of annotations for persistence and relationship aspects
= no XML deployment descriptor required
= Requirements on Entity Class
= public, parameterless constructor
= top-level class, not final, methods and persistent instance variables must not be final

= entity state is made accessible to the persistence provider runtime
= either via instance variables (protected or package visible)
= orvia (bean) properties (getProperty/setProperty methods)
= consistently throughout the entity class hierarchy

= collection-valued state variables have to be based on (generics of) specific classes in java.util

@ «S 2 Middleware for Heterogenous and
2 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

13

Mapping to RDBMS

= Entity mapping
= default table/column names for entity classes and persistent fields
= can be customized using annotations, deployment descriptor
= mapping may defines a primary table and one or more secondary tables for an
entity
= state of an entity/object may be distributed across multiple tables
= Relationship mapping
= represented using primary key/foreign key relationships
= table for the "owning" side of the relationship contains the foreign key
= N:M-relationships represented using a relationship table

= Addition capabilities for constraints, column properties

@ S 2 Middleware for Heterogenous and
27 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Entity Inheritance

= Entities and inheritance
= abstract and concrete classes can be entities
= entities may extend both non-entity and entity classes, and vice versa

= Polymorphism and query support
= references can refer to instances of subclasses
= querying a class will return instances of subclasses
= Inheritance mapping strategies supported for the mapping
= single table with discriminator column (default)
= table has columns for all attributes of any class in the hierarchy
= tables stores all instances of the class hierarchy
= horizontal partitioning
= one table per entity class, with columns for all attributes (incl. inherited)
= table stores only the direct instances of the class
= vertical partitioning
= one table per entity class, with columns for newly defined attributes (i.e., attributes
specific to the class)
= table stores information about all (i.e., transitive) instances of the class

@ S 2 Middleware for Heterogenous and
28 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

14

Entity Identity and Embeddable Classes

= Entities must have primary keys
= defined at the root, exactly once per class hierarchy
= may be simple or composite
= must not be modified by the application
= more strict than primary key in the RM
= Embeddable classes
= "fine-grained" classes used by an entity to represent state
= instances are seen as embedded objects, do not have a persistent identity
= mapped with the containing entities
= not sharable across persistent entities

= current version of the specification requires/defines only basic support for
embedding
= only one level
= no support for collections of embedded objects
= inheritance and polymorphism of embedded classes is not required

@ =S 9 Middleware for Heterogenous and
29 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Entity Life Cycle and Persistence

= Orthogonal persistence
= instances of entity classes may be transient or persistent
= persistence property controlled by application/client (e.g., a SessionBean)

= selective persistence-by-reachability
= defined using CASCADE options on relationships

no persistent

ID yet new()

persist()

refresh()

remove() entities are

‘ > associated with
managed | | removed

a persistence
persist() P

persistence context context
ends

merge()

@ =S 9 Middleware for Heterogenous and
30 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

15

Entity Manager

= Manages entity state and lifecycle within persistence context

= persist(obj) -> INSERT
= merge(obj) -> UPDATE
= remove(obj) -> DELETE
= find(class, pKey) -> SELECT
= getReference(class, pKey) -> (lazy) SELECT
= Entity state is reflected in the database at TA commit
= includes

= effects of persist, merge, remove operations
= modifications of object state
= may also happen before commit time
= explicit invocation of flush()
= implicitly if automatic flush mode is in effect (default)
e.g., to guarantee correct query results
= immediately when state modification occurs (proprietary!)

@ «S 2 Middleware for Heterogenous and
31 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Entity Manager (cont.)

= Entity state is read from the database using the following model
= persistent properties may be marked as
= eager (default for properties) — read when object is accessed
= lazy (default for relationships) — read when object property is accessed
= Objects access occurs in the following cases
= invocation of find methods
= Object returned as a query result
= object is reference through an eager relationship property, and the referencing object has
been accessed
= explicit refresh(obj) invocation
= will refresh the object state from the database
= updates to the object that are not (yet) reflected in the database are lost

= What happens at transaction roll-back?

= state of entities in the application is not guaranteed to be rolled back, only the
persistent state

@ «S 2 Middleware for Heterogenous and
32 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

16

Optimistic Locking and Concurrency

= Note: most DBMSs don't support optimistic concurrency control
= Optimistic locking is assumed, with the following requirements for application
portability
= isolation level "read committed" or equivalent for data access

= declaration of a version attribute for all entities to be enabled for optimistic locking
= persistence provider uses the attribute to detect and prevent lost updates

= inconsistencies may arise if entities are not protected by a version attribute
= Alternative: enforce pessimistic locking semantics by choosing the appropriate

isolation level
@ «S 2 Middleware for Heterogenous and
33 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Persistence Context Lifetime

= Entity manager provides a persistence context for managed objects

= transaction-scoped persistence context (default in EJB containers)
= scope implicitly begins and ends with transaction
= after TA (and persistence context) ends, persistent objects become detached
eager state can still be accessed and modified

entity needs to be explicitly merged into a new persistence context again to make changes
persistent or to refresh the object state

= appropriate for stateless session beans

= extended persistence context
= scope begins when entity manager is created, ends when entity manager is closed
e.g., when a stateful session bean instance using an EM is created/removed
= may span multiple TAs and non-transactional invocations
context is automatically associated with a TA, if the session bean is
= persist, remove, merge operations and object state modifications may occur outside the
scope of a transaction
effects are made persistent when the next transaction commits
= objects are not automatically refreshed when a new transaction begins!

@ «S 2 Middleware for Heterogenous and
34 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

17

Java Persistence Query Language

= Extension of EJB-QL
= hamed (static) and dynamic queries
= range across the class extensions including subclasses
= a persistence unitis a logical grouping of entity classes, all to be mapped to the same DB
= queries can not span across persistence units
= includes support for
= bulk updates and delete
= outer join
= projection
= subqueries
= group-by/having
= Prefetching based on outer joins
= Example:
SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

@ =S 9 Middleware for Heterogenous and
35 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

Summary

= Object persistence supported at various levels of abstraction
= CORBA
= standardised "low-level" APls
= powerful, flexible, but no uniform model for component developer
various persistence protocols
= explicit vs. implicit (transparent) persistence
= EJB/J2EE Entity Beans
= persistent components
CMP: container responsible for persistence, maintenance of relationships
= uniform programming model
= transparent persistence
= JDO
= persistent Java objects
= orthogonal persistence
= Java Persistence API
= successor of EJB entity beans
= standardized mapping of objects to relational data stores
= influenced partly by JDO
= can be used outside the EJB context as well

@ =S 9 Middleware for Heterogenous and
36 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DelSloch WS06/07

18

Summary (2)

= Query Support

= CORBA: queries over object collections

= no uniform query language
uses SQL, OQL

= persistent object schema?

= EJB-QL: queries over abstract persistence schema
= limited functionality, only for definition of Finder methods
= more or less a small SQL subset

= JDO: queries over collections, extents
= limited functionality
= proprietary query language

= Java Persistence Query Language
= based on EJB-QL (and therefore on SQL)
= numerous language extensions for query, bulk update
= static and dynamic queries

= Queries over multiple, distributed data sources are not mandated by the above
approaches!

@ .S 9 Middleware for Heterogenous and

37 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DelSloch WS06/07

