
Middleware for Heterogenous and Distributed Information Systems - WS05/06

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 14 – Web Services
Motivation & Introduction

Basic Web Services Technology
Web Services Support in Middleware Platforms

Service Coordination & Transactions

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
2

© Prof.Dr.-Ing. Stefan Deßloch

What’s a Web Service?

“A Web Service is programmable application logic accessible using standard Internet
protocols…”

Microsoft

“A Web Service is an interface that describes a collection of operations that are network
accessible through standardized XML messaging …”

IBM

"Web services are software components that can be spontaneously discovered,
combined, and recombined to provide a solution to the user’s problem/request. The
Java language and XML are the prominent technologies for Web services”

Sun

"A Web Service is a 'virtual component' that hides 'middleware ideosynchracies' like the
underlying component model, invocation protocol, etc. as far as possible"

Frank Leymann (IBM)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
3

© Prof.Dr.-Ing. Stefan Deßloch

Web Services - Definition

W3C Web Services Architecture WG
produces WS Architecture Specification (working group note, 02/2004)

provide a common definition of a web service
define its place within a larger Web services framework to guide the community

Definition
"A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards."

Earlier, more general definition:
“A Web service is a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered as XML artifacts.
A Web service supports direct interactions with other software agents using XML
based messages exchanged via internet-based protocols.”

(October 2002)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
4

© Prof.Dr.-Ing. Stefan Deßloch

Types of E-Business

• Electronic
organization of
internal business
processes, like
realization within
workflow systems

• Relation between
processes of different
enterprises
• Predominant are
relation to suppliers,
and customer relations
to other enterprises
like industrial
consumers, retailers,
banks

• Relation between
enterprise and
customers
• Sales-related aspects
are predominant,
like product presentation,
advertising, service
advisory, shopping

Intra BusinessBusiness To Business
(B2B)

Business To Consumer
(B2C)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
5

© Prof.Dr.-Ing. Stefan Deßloch

B2B Integration – Conventional Middleware

Middleware itself is (logically) centralized
usually controlled by a single company
now requires agreement on using, managing specific middleware platform across
companies ("third party")
need to implement a "global workflow"
problems

lack of trust
autonomy needs to be preserved
business transactions are confidential

Point-to-point solutions
lack of standardization
many partners involved -> heterogeneity of middleware platforms

Focus on LAN
insufficient support for internet protocols
problems with firewalls
cannot work with multiple trust domains

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
6

© Prof.Dr.-Ing. Stefan Deßloch

B2B Before Web Services

Traditional B2B has focused on well-defined, standard message formats and
protocols (e.g., RosettaNet, cXML)

Ad hoc B2B occurs today via XML over HTTP

How to publish business functions to customers, partners and suppliers?
E.g. access to reservation systems, quote systems
Programmatic access to a service, independent of underlying implementation and
client software

Web technologies are important, but not sufficient

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
7

© Prof.Dr.-Ing. Stefan Deßloch

Web Services

New distributed computing platform built on existing infrastructure including
XML & HTTP

Web services are for B2B what browsers are for B2C
Self-contained, self describing, modular service that can be published, located
and invoked across the web

Refer to open standards and specifications:
component model (WSDL)
inter-component communication (SOAP)
discovery (UDDI)

Platform- and implementation-independent access
Described, searched, and executed based on XML
E.g. credit card validation, airline schedules, rental car.

Enable component-oriented applications
Loose coupling from client to service
Enable to integrate legacy systems into the web
Useful for other distributed computing frameworks such as Corba, DCOM, EJBs
Web services as wrappers for existing IS-functionality

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
8

© Prof.Dr.-Ing. Stefan Deßloch

Web Service System Architecture (Internal)

Web Service

Middleware

Backend/Host Adapter

Client
Site

Firewall

Backend
Site

Database
Systems

SQL Proprietary
Protocols

Legacy
Systems

Business
Partners

PDA Business Partners Web Browser

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
9

© Prof.Dr.-Ing. Stefan Deßloch

Web Services: Examples

Stock information
Current stock value of a particular stock within a portfolio application

Proof reading
Proof reading for a certain document

Order service
Automatic order for a given product ID and quantity

Travel planning and organization
Services for car rental, flight reservation, and hotel booking

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
10

© Prof.Dr.-Ing. Stefan Deßloch

Granularity of Services

Services can be „simple“ and „composite“
check credit card number
raise a mortgage

Simple services are...
...provided as servlets, EJBs, Assembler programs,...

Composite services are...
...provided via „choreography“

Referring to other fine grained services
Scripting fine grained services into business processes

Via workflow technology

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
11

© Prof.Dr.-Ing. Stefan Deßloch

Web Services Today

Web services have matured
Intranet usage is much wider than Internet usage
See http://www.xmethods.net for sample Internet services

Recent extensions or work in progress
Web Services Security
XML Digital Signature
XML Encryption
Authentication
Transaction management
…

Workflows/Business Process Modeling
Orchestration of web services
Vital for B2B integration
Recent specifications proposed by Microsoft, IBM, BEA

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
12

© Prof.Dr.-Ing. Stefan Deßloch

Software Aspect: Web Services

A web service is a piece of software made available on the Web
An architecture is service based iff it focuses on

formats and protocols for communication between services
E.g. RosettaNet, OBI,...

An architecture is service oriented iff it focuses on
How to support the dynamic discovery of appropriate services at runtime: Find!
How services are organized: Understand!
How services are described: Invoke!

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
13

© Prof.Dr.-Ing. Stefan Deßloch

Service-Oriented Architecture (SOA)

Service Requestor
Finds required services
via Service Broker
Binds to services
via Service Provider

Service Provider
Provides e-business services
Publishes availability of these
services through a registry

Service Registry
Provides support for publishing
and locating services
Like telephone yellow pages

Service
Provider

Service
Registry

Service
Requestor

Publish

Find

Bind

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
14

© Prof.Dr.-Ing. Stefan Deßloch

Web Service Model

Registry

Firewall

User

Web Service Description

Provides

1. Publish/register

2. find/localize

3. Bind/execute

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
15

© Prof.Dr.-Ing. Stefan Deßloch

Standards

UDDI
Universal Description, Discovery and Integration
Registry of and search for web services
Predefined schemas

SOAP
Simple Object Access Protocol
Communication protocol

WSDL
Web Services Description Language
Description of a service’s functionality

XML
eXtensible Markup Language
Underlying basic representation approach

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
16

© Prof.Dr.-Ing. Stefan Deßloch

Web Service Model (cont.)

Firewall

User
Registry

Web Service Description
(WSDL)Provides

1. Publish/register

2. find/localize

3. Bind/executeSOAP
UDDI

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
17

© Prof.Dr.-Ing. Stefan Deßloch

Technologies: Service Description & Discovery

Service Description
Common Base Language (XML)
Interfaces (WSDL)

extend "traditional" IDLs
interaction mode
address/transport protocol info

Business Protocols (WSCL, BPEL)
describe possible conversations

order of interactions

Properties and Semantics
(UDDI, WS-Policy)

descriptions to facilitate binding in a
loosely-coupled, autonomous setting

e.g., non-functional properties (cost,
transactional & security support)
textual descriptions

organize this information

Vertical Standards
interfaces, protocols, etc. specific to
application domains

Service Discovery
Directory/Repository for WS descriptions
APIs and protocols for directory
interaction

at design-time or run-time

common base language

interfaces

business protocols

properties and semantics

vertical standards
directories

Service Description and Discovery Stack

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
18

© Prof.Dr.-Ing. Stefan Deßloch

Technologies: Service Interaction & Composition

Service Interaction
Transport

lots of possibilities
HTTP most common

Basic and Secure Messaging
standardize how format/package
information to be exchanged (SOAP)
define how to extend basic mechanism to
achieve additional capabilities (WS-
Security)

Protocol Infrastructure (meta-protocols)
general infrastructure for business
interactions

maintain state of conversation
meta-protocols

which protocols do we use?
who is coordinating?

Middleware Properties (horizontal
protocols)

properties similar to those of
conventional middleware

reliability, transactions, …

Service Composition
Implement web service by invoking
other web services
Similar to workflow management, only
for web services

transport

basic and secure messaging

protocol infrastructure

middleware properties

Service Interaction Stack

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
19

© Prof.Dr.-Ing. Stefan Deßloch

External Web Services Architecture

web services
client

internal
middleware

other tiers

web service

internal
middleware

other tiers

transaction
management

other protocol
infrastructure

composition
engine

transaction
management

other protocol
infrastructure

composition
engine

service
descriptionsservice

descriptionsservice
descriptions

Directory Service Provider

Service ProviderService Requestor
external middleware

Middleware for Heterogenous and Distributed Information Systems - WS05/06

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Basic Web Services Technology

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
21

© Prof.Dr.-Ing. Stefan Deßloch

SOAP – Simple Object Access Protocol

Defines how to format information in XML so that it can be exchanged
between peers

message format for one-way communication
conventions for interaction patterns (RPC)
processing rules for SOAP messages
how to transport SOAP messages on top of HTTP, SMTP

transport

basic and secure messaging

protocol infrastructure

middleware properties

Service Interaction Stack

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
22

© Prof.Dr.-Ing. Stefan Deßloch

Sample SOAP Message

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>

<m:reservation xmlns:m="http://travelcompany.example.org/reservation"
env:role="http://www.w3.org/2003/05/soap-envelope/role/next "
env:mustUnderstand="true">

<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>

</m:reservation>
<n:passenger xmlns:n="http://mycompany.example.com/employees"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<n:name>Åke Jógvan Øyvind</n:name>
</n:passenger>

</env:Header>
<env:Body>

<p:itinerary xmlns:p="http://travelcompany.example.org/reservation/travel">
<p:departure>

<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-14</p:departureDate>

</p:departure>
<p:return>

<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12-20</p:departureDate>

</p:return>
</p:itinerary>

<q:lodging xmlns:q="http://travelcompany.example.org/reservation/hotels">
<q:preference>none</q:preference>

</q:lodging>
</env:Body>

</env:Envelope>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
23

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Envelope Framework

Defines mechanism for identifying
What information is in the message
Who should deal with the information
Whether this is optional or mandatory

Envelope element is the root element of the SOAP message, contains
Optional header elements
Mandatory body element

Body element
Contains arbitrary XML

application-specific
Child elements are called body entries (or bodies)

Some consequences
Message body cannot contain XML document, only elements
Validation of application data requires separation from the surrounding SOAP-
specific XML

Many web service engines support that

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
24

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Headers

Primary extensibility mechanism in SOAP
Additional facets can be added to SOAP-based protocols
Mechanism to pass information that is orthogonal to the specific information to
execute the request
Any number of headers can appear in a SOAP envelope

Usage areas
Authentication, authorization, transaction management, payment processing,
tracing, auditing

Header content
Arbitrary XML
Determined by the schema of the header element

Processing of a header by recipient may be
Mandatory (attribute mustUnderstand=“true”)
Optional

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
25

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Header - Example

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Header>

<t:Transaction xmlns:t="some-URI, SOAP-ENV:mustUnderstand="true">
5

</t:Transaction>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DEF</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Protocol
Extension

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
26

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Terminology

node
Processing logic necessary to transmit, receive, process and/or relay a SOAP
message, according to the set of conventions defined by this recommendation.
Responsible for enforcing the rules that govern the exchange of SOAP messages.
Accesses the services provided by the underlying protocols through one or more
SOAP bindings.

role
A SOAP receiver's expected function in processing a message. A SOAP receiver can
act in multiple roles.

binding
Formal set of rules for carrying a SOAP message within or on top of another
protocol (underlying protocol) for the purpose of exchange.

feature
Extension of the SOAP messaging framework. Examples of features include
"reliability", "security", "correlation", "routing", and "Message Exchange Patterns"
(MEPs).

message exchange pattern (MEP)
Template for the exchange of SOAP messages between SOAP nodes.

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
27

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Terminology (cont.)

sender
Node that transmits a SOAP message.

receiver
Node that accepts a SOAP message.

message path
Set of SOAP nodes through which a single SOAP message passes. This includes the initial SOAP
sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver.

initial sender
Sender that originates a SOAP message at the starting point of a SOAP message path.

intermediary
Both a receiver and a sender. Targetable from within a SOAP message. Processes the SOAP
header blocks targeted at it and acts to forward a SOAP message towards an ultimate
receiver.

ultimate receiver
Final destination of a SOAP message. Responsible for processing the contents of the SOAP
body and any SOAP header blocks targeted at it. Cannot also be an intermediary for the same
SOAP message

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
28

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Processing Model

Describes logical actions taken by a node when receiving a SOAP message
Every node has to

check message for syntactical correctness
analyze SOAP-specific parts

envelope, header, body elements

Role attribute (optional)
governs further processing of header blocks
node assumes one or more roles, selects headers targeted at these roles
predefined roles ("next", "ultimate_receiver", …) vs. user-defined roles

MustUnderstand attribute (optional)
if set to "true" for a selected header, node MUST understand and be able to
process it

generate fault if header cannot be processed, before any processing is started

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
29

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Intermediaries

SOAP intermediaries
SOAP message can travel through multiple SOAP nodes

Sender [-> Intermediary …] -> ultimate Receiver

Intermediaries process one or more SOAP headers
Header is removed from the message after processing (default behavior)

can be reinserted by the intermediary, possibly with modified values

Example: separate authentication/authorization from service implementation
Intermediary does not need to understand message body

Relay attribute (optional)
relayable headers that were targeted at the intermediary but were not processed
have to be forwarded
non-relayable headers that were targeted at the intermediary but were not
processed have to be removed

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
30

© Prof.Dr.-Ing. Stefan Deßloch

Error Handling in SOAP

SOAP Fault element
Returned as the single element inside the body of the response

Fault element indicates which error occurred and provides diagnostic
information through child elements

Faultcode element (required)
Hierarchical namespace of faultcode values

E.g., Client.AuthenticationFailure
Top level codes:

VersionMismatch
MustUnderstand – a required header was not understood
Client – likely cause is content or formatting of the SOAP message
Server

Faultstring element contains human-readable message
Faultactor element: where in the message path did the fault occur?

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
31

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Data Encoding

Encoding simple data types (e.g., strings, integers, booleans, …) is easy
Use the corresponding XML Schema representation
The xsi:type can be used to further describe the data type passed in the message

Example:
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol xsi:type=“xsd:string”>DEF</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

For more complex types (e.g., arrays, arbitrary objects), one may want to use a specific
encoding

Attribute encodingStyle can appear in any element in a SOAP message

SOAP defines set of encoding rules, based on XML Schema
SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/

SOAP Arrays, …

Usage is not mandatory
E.g., a vendor may support an optimized encoding format

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
32

© Prof.Dr.-Ing. Stefan Deßloch

Message Exchange Patterns

Template that establishes a pattern for the exchange of messages between SOAP
nodes

Example: request-response MEP specified in SOAP 1.2 Part 2

An MEP must
provide a URI to name the MEP
describe the life cycle of a message exchange conforming to the pattern
describe the temporal/causal relationships, if any, of multiple messages exchanged in
conformance with the pattern (e.g. responses follow requests and are sent to the originator of
the request)
describe the normal and abnormal termination of a message exchange conforming to the
pattern
any requirements to generate additional messages (such as responses to requests in a
request/response MEP)
rules for the delivery or other disposition of SOAP faults generated during the operation of the
MEP

Protocol Bindings
can claim support for specific MEPs

taking advantage of underlying protocol, or
build "on top" using binding-specific extensions

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
33

© Prof.Dr.-Ing. Stefan Deßloch

SOAP-based RPCs

SOAP is fundamentally a stateless, one-way message exchange paradigm
…but applications can create more complex interaction patterns

Request/response, request/multiple responses

SOAP-based RPC
Employs request/response MEP
Invocation is modeled as a struct of in/inout parameters

<doCheck>
<product> … </product>
<quantity> … </quantity>

</doCheck>

Response is modeled as a struct as well
<doCheckResponse> … </doCheckResponse>

All data is passed by-value
Endpoint (address of target node) to be provided in a protocol binding-specific manner

Protocol Bindings and RPC
RPC not predicated to any protocol binding
Binding to HTTP (synchronous protocol) makes RPC-style “natural”

One-way exchange will use simple acknowledgement as HTTP response

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
34

© Prof.Dr.-Ing. Stefan Deßloch

A Simple SOAP/HTTP RPC

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: application/soap+xml ;
charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DIS</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Method Name

Input Parameter

Object Endpoint

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
35

© Prof.Dr.-Ing. Stefan Deßloch

A Simple SOAP Response

HTTP/1.1 200 OK
Content-Type: application/soap+xml;
charset="utf-8„
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price>
</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Standard
Suffix

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
36

© Prof.Dr.-Ing. Stefan Deßloch

More SOAP

SOAP protocol bindings
SOAP standard defines a binding to HTTP
SOAP is transport-independent, can be bound to any protocol type

E.g., SMTP, message queuing systems, …

SOAP with Attachments
XML isn’t good at carrying non-XML things within it
Introduces an outer multipart MIME envelope
Root part is SOAP envelope
Other parts can be anything: XML, images, …

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
37

© Prof.Dr.-Ing. Stefan Deßloch

Beyond SOAP – WS-Addressing

Source and Destination information
SOAP does not define them as part of the message itself

relies on protocol-specific bindings

Example: SOAP/HTTP
endpoint reference is a URL encoded in the HTTP transport header
destination of the response is determined by the return transport address

Information might be lost
transport connection terminates (timeout)
message forwarded by an intermediary (e.g., a firewall)

Response always goes to sender
not possible to have response go somewhere else

WS-Addressing
provides a mechanism to place the target, source and other important address
information directly within the Web service message

decouples address information from any specific transport model

w3c candidate recommendation

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
38

© Prof.Dr.-Ing. Stefan Deßloch

WS-Addressing Constructs

Endpoint reference
uniquely identifies WS endpoint

Message information headers
describe end-to-end message characteristics such as

source and destination endpoints
message identity

Example
<S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<S:Header>

<wsa:MessageID>
http://example.com/6B29FC40-CA47-1067-B31D-00DD010662DA

</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>http://business456.com/client1</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://fabrikam123.com/Purchasing</wsa:To>
<wsa:Action>http://fabrikam123.com/SubmitPO</wsa:Action>

</S:Header>
<S:Body>

...
</S:Body>

</S:Envelope>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
39

© Prof.Dr.-Ing. Stefan Deßloch

Beyond SOAP – WS-ReliableMessaging

Goal: enable Web services to ensure delivery of messages over unreliable
communication networks

simplifies application development
support by runtime/tooling vendors

allows existing message-oriented middleware to interoperate through a common
protocol

WS-ReliableMessaging specification
creates a modular mechanism for reliable message delivery
defines a messaging protocol to identify, track, and manage the reliable delivery of
messages between a source and a destination
defines a SOAP binding (required for interoperability)
can be combined with other WS "components"

WS-Security, WS-Policy, …

industry specification published by BEA, IBM, Microsoft, and Tibco

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
40

© Prof.Dr.-Ing. Stefan Deßloch

Reliable Messaging Delivery Assurances

Application-level delivery guarantees for a (sequence of) message(s)
AtMostOnce: Message duplication is avoided. It is possible that some messages in
a sequence may not be delivered.
AtLeastOnce: Guaranteed delivery. Some messages may be delivered more than
once.
ExactlyOnce: Every message sent will be delivered without duplication.

logical "and" of the two prior delivery assurances

InOrder: Messages will be delivered in the order that they were sent. This delivery
assurance may be combined with any of the above delivery assurances.

Assurances are guaranteed by the endpoints implementing the WS-
ReliableMessaging protocol

responsibility lies with initial sender/ultimate receiver
supported by the protocol

Each message sequence can have its own delivery assurance
uses "policy attachments" for web services

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
41

© Prof.Dr.-Ing. Stefan Deßloch

Processing Model

Each message has a globally unique ID, message sequence id, incremental id
within sequence

specification defines SOAP header structure for this information

Receiver must correctly acknowledge successful receipt of messages
references the corresponding message id

If sender does not receive acknowledgement it retries submission of message
until maximum number of retries is reached

corresponding fault must be thrown to application

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
42

© Prof.Dr.-Ing. Stefan Deßloch

Ordering Model

Messages within a group have a sequence number
increased by "1" for every message

Receiver can deliver a message to application layer if all messages received
have consecutive sequence number

messages are to be delivered ordered by sequence number
if a message is missing, only the ones that appear in the sequence order before
the missing one can be delivered

If the sender receives an acknowledgement for the final message but acks for
earlier messages are missing, submission of missing messages must be
retried

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
43

© Prof.Dr.-Ing. Stefan Deßloch

Example
<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>
<wsa:MessageID>

http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817
</wsa:MessageID>
<wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>
<wsa:ReplyTo>

<wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
</wsa:ReplyTo>
<wsrm:Sequence>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>
<wsrm:MessageNumber>3</wsrm:MessageNumber>
<wsrm:LastMessage/>

</wsrm:Sequence>
</S:Header>
<S:Body>

<!-- Some Application Data -->
</S:Body>

</S:Envelope>

This is the 3rd message in the sequence

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
44

© Prof.Dr.-Ing. Stefan Deßloch

Example (cont.)
<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>
<wsa:MessageID>

http://fabrikam123.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817
</wsa:MessageID>
<wsa:To>http://Business456.com/serviceA/789</wsa:To>
<wsa:ReplyTo>

<wsa:Address>http://fabrikam123.com/serviceB/123</wsa:Address>
</wsa:ReplyTo>
<wsrm:SequenceAcknowledgment>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>
<wsrm:AcknowledgmentRange Upper="1" Lower="1"/>
<wsrm:AcknowledgmentRange Upper="3" Lower="3"/>

</wsrm:SequenceAcknowledgment>
</S:Header>
<S:Body/>

</S:Envelope>
Message 2 was not received
Sender has to retry

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
45

© Prof.Dr.-Ing. Stefan Deßloch

Web Services Description

Web Services Description Language (WSDL)
Provides all information necessary to programmatically access a service

documentation for distributed systems
recipe for automating the details involved in applications communication

WSDL specification
standardization pursued by w3c

http://www.w3.org/TR/wsdl

V1.1 specification is a w3c note
not an official standard, but most widely used

WSDL 2.0 is a w3c candidate recommendation

common base language

interfaces

business protocols

protocols and semantics

vertical standards

directories

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
46

© Prof.Dr.-Ing. Stefan Deßloch

WSDL Goals

Provides a description of the logical interface of a web service
operations, parameters, …
similar to IDL in conventional middleware

Defines mechanism to access the web service
which protocol is used

SOAP, …

service location

Support modular specifications
same service interface can be provided through different protocols and data
formats, at different locations

Defines interaction paradigms (message exchange patterns)
exchange of several asynchronous messages

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
47

© Prof.Dr.-Ing. Stefan Deßloch

Ingredients of WSDL

Abstract part
Types: Definitions of data types needed
Message Exchange Pattern: Abstract definition of data exchanged
Operation: Abstract actions supported by the service
Interface: Interface defined as set of operations

Concrete part
Binding: Concrete protocol and data format used to implement a port type
Endpoint: Single individual „end point“ identified by a network address supporting
a particular binding
Service: Collection of related „end points“

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
48

© Prof.Dr.-Ing. Stefan Deßloch

WSDL 2.0 Document Structure

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
49

© Prof.Dr.-Ing. Stefan Deßloch

Modularizing Service Definitions

WSDL document defines a target namespace
similar to XML Schema target namespace

Import/Include
<description>

[<import namespace="uri" location="uri"/> | <include location="uri"/>]*
</description>

Can be used to factor out any kind of definitions
Types, Interface, Bindings,... or any combination of these
Example:

Import Interface and specify Binding
Import Binding and specify Service

Import, include differ regarding namespaces
include: referenced WSDL document needs to have same target namespace
import: referenced WSDL can have different target namespace

components are referenced in importing document using qualified names

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
50

© Prof.Dr.-Ing. Stefan Deßloch

Message Exchange Patterns

Define sequence and cardinality of messages in an operation
abstract: not message types, no binding-specific information is specified
minimal contract

Standard MEPs defined by WSDL specification
in-bound MEPs

In-Only, Robust In-Only, In-Out, In-Optional-Out

out-bound MEPs
Out-Only, Robust Out-Only, Out-In, Out-Optional-In
Where to send to? Outside scope of WSDL

Information could be provided through another (subscribe) operation or defined at deployment
time

fault model
robust*, *-optional-*: fault message may be sent as a reply
In-Out, Out-In: fault message may replace a reply
*-Only: do not generate fault messages

Extensibility – possible to define new MEPs

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
51

© Prof.Dr.-Ing. Stefan Deßloch

Types

<description…>
<types>

<xsd:schema…/>*
</types>

</description>
Type clause used to define types used in message exchange

all message types (normal, fault) are single, top-level elements
Default type system is XML Schema

Special extensibility element foreseen to refer to other type system
Example
<description targetNamespace= …> …

<types>
<xsd:schema …>

<xsd:complexType name=“registration”>
… </xsd:complexType>

<xsd:element name="registrationRequest" type="registration"/>
</xsd:schema>

</types>
…

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
52

© Prof.Dr.-Ing. Stefan Deßloch

Interface

Interface is a set of abstract operations
may extend other interfaces (i.e., multiple interface inheritance)

faults, operations, etc. are inherited
overloading of operations is not supported
inheritance conflicts must not occur

default style for operations can be specified

Operation groups a set of abstract messages involved
references a MEP that defines sequence of messages
defines the structure of input, output, infault, outfault messages by referencing the
appropriate (schema) types
optionally declares a style

rules used for generating messages, e.g., RPC style

may optionally be declared "safe"
no further obligations result from an invocation

Interface Fault
definition of faults that can occur in the scope of this interface

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
53

© Prof.Dr.-Ing. Stefan Deßloch

Interface Syntax (Simplified)

<description targetNamespace="xs:anyURI" >
. . .

<interface name="xs:NCName" extends="list of xs:QName"?
styleDefault="list of xs:anyURI"? >

<fault name="xs:NCName" element="xs:QName"? > </fault>*
<operation name="xs:NCName" pattern="xs:anyURI" style="list of xs:anyURI"?

wsdlx:safe="xs:boolean"? >
<input messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? > </input>*
<output messageLabel="xs:NCName"? element="union of xs:QName, xs:Token"? > </output>*
<infault ref="xs:QName" messageLabel="xs:NCName"? > </infault>*
<outfault ref="xs:QName" messageLabel="xs:NCName"? > </outfault>*

</operation>*

</interface>*
. . .

</description>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
54

© Prof.Dr.-Ing. Stefan Deßloch

RPC Style

Designed to facilitate programming language bindings to WSDL
ensure that the messages can be mapped to function/method signatures

Can be used in combination with MEPs in-only, in-out
Message schemas have to follow the following rules

structure of input/output messages is defined as complex type with sequence
no complex content models (e.g., choice, group, …) allowed with sequence
only local elements allowed as sequence items (but may be nillable, have multiple
occurrence)
local name of input message element corresponds to the operation name
local name of output message element is a concatenation of operation name |
"Response"
no attributes allowed for content model of input/output messages
…

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
55

© Prof.Dr.-Ing. Stefan Deßloch

Example
. . .
<types>
<xs:element name="checkAvailability">

<xs:complexType>
<xs:sequence>
<xs:element name="checkInDate"

type="xs:date"/>
<xs:element name="checkOutDate"

type="xs:date"/>
<xs:element name="roomType"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="checkAvailabilityResponse">

<xs:complexType>
<xs:sequence>
<xs:element name="roomType"

type="xs:string"/>
<xs:element name="rateType"

type="xs:string"/>
<xs:element name="rate"

type="xs:double"/>
</xs:sequence>

</xs:complexType>
</xs:element> …

</types>

<interface name = "reservationInterface" >
<operation name="checkAvailability"

pattern="http://www.w3.org/2006/01/wsdl/in-out"
style="http://www.w3.org/2006/01/wsdl/rpc"
wrpc:signature= "checkInDate #in checkOutDate
#in roomType #inout rateType #out rate #return">

<input messageLabel="In"
element="tns:checkAvailability" />

<output messageLabel="Out"
element="tns:checkAvailabilityResponse" />

</operation>
. . .

</interface>
. . .

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
56

© Prof.Dr.-Ing. Stefan Deßloch

Binding

Interface, type elements define the abstract, reusable portion of the WSDL definition
The binding element tells the service requestor how to format the message in a
protocol-specific manner

interface can have one or more bindings
Protocol-specific aspects are provided using binding extensions

<binding name="…" interface="…"?>
<-- extensibility element (1) -->*
<operation ref="…">*

<-- extensibility element (2) -->*
<input messageLabel="…"?>?

<-- extensibility element (3) -->*
</input>
<output messageLabel="…"?>?

<-- extensibility element (4) -->*
</output>
<infault ref="…" messageLabel="…"?>*

<-- extensibility element (5) -->*
</infault>
<outfault ref="…" messageLabel="…"?>*

<-- extensibility element (6) -->*
</outfault>

</operation>
</binding>

Standard binding extensions for SOAP/HTTP, HTTP GET/POST, SOAP w/MIME
attachments

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
57

© Prof.Dr.-Ing. Stefan Deßloch

SOAP Binding - Details

<soap:binding>
protocol: HTTP, SMTP, FTP, …
mep: default SOAP message exchange pattern for operations

<soap:operation>
action: value of SOAPAction HTTP header (SOAP over HTTP only!)
mep: actual mep for the operation

e.g., soap-response for implementing an in-out WSDL MEP

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
58

© Prof.Dr.-Ing. Stefan Deßloch

Port and Service

Endpoint
Specifies the network address of the endpoint hosting the web service

Service
Contains a set of related endpoint elements

Group endpoints related to the same service interface but expressed by different protocols (bindings)
Group related but different interfaces together

Example
<service name="StockQuoteService"

interface="StockQuoteInterface">
<endpoint name="StockQuoteEndpoint“

binding="tns:StockQuoteSoapBinding">
<address="http://myservice.com/stockquote"/>

</port>
</service>

implemented binding

address of the endpoint

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
59

© Prof.Dr.-Ing. Stefan Deßloch

Service Discovery

What businesses offer services I need?
What do I have to do to interface with these services?
Who currently offers services I am configured to use?
We need a directory

...to catalogue services based on publish requests of service providers

...to maintain taxonomy(ies) to support searching for appropriate services in
business terms
...to specify technical binding information to actually communicate with the
selected service

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
60

© Prof.Dr.-Ing. Stefan Deßloch

Universal Description
Discovery and Integration (UDDI)

UDDI registry serves as a directory of web services
Allows searching “by what” and “by how” instead of just “by name”

UDDI defines
Set of schemas for describing businesses and their services

UDDI data model

SOAP API for accessing a UDDI registry

UDDI initiative
Involves more than 300 companies
http://www.uddi.org

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
61

© Prof.Dr.-Ing. Stefan Deßloch

Registry Data

Businesses register public information about themselves
White pages

Who am I?

Yellow pages
What do I offer?

Green pages
How to do business with me

Standards bodies, Programmers, Businesses register information
about their Service Types („tModels“)

Service Type Registrations

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
62

© Prof.Dr.-Ing. Stefan Deßloch

UDDI Core Data Structures

UDDI key
uniquely identifies each instance of core data structures within a registry
basis for realizing the containment/referencing relationships

XML Schema definition for UDDI Data Model

businessEntity: information about the party
publishing service information

businessService: descriptive information
about a family of technical services

bindingTemplate: technical information about
service entry point and implementation specs

tModel: descriptions of specifications for services
or value sets; basis for technical fingerprints

contains
0 or more

contains
1 or more

references
to designate interface specifications
for a service

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
63

© Prof.Dr.-Ing. Stefan Deßloch

BusinessEntity

Business key: UDDI key
Descriptive information about the business entity offering services

(multiple) name(s) and textual description(s), possibly in multiple languages
contact info

names, phone numbers, e-mail addresses, postal addresses, descriptions

known identifiers
list of identifiers that a business may be known by, in different identifier systems

tax number, D-U-N-S, …

business categories describing specific business aspects
categorization by industry, product, geographic region, …

discovery URLs referring to other documents or resources describing the business
entity

Business services, describing families of web services offered

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
64

© Prof.Dr.-Ing. Stefan Deßloch

BusinessService

Services key: UDDI key
Business key: identifies the provider of the service
Information describing a logical service in business (not technical) terms

(multiple) name(s) and textual description(s), possibly in multiple languages
business categories describing the provided service (see businessEntity categories)

categorization by industry, product, geographic region, …

Binding templates providing technical descriptions of the web services
constituting the business service

e.g., the set of web services implementing a logical financial service

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
65

© Prof.Dr.-Ing. Stefan Deßloch

BindingTemplate

Binding Key: UDDI key
Service Key: identifies the logical service implemented by the web service
Information businesses an instance of a web service offered at a particular
network address

(multiple) textual description(s), possibly in multiple languages
access point representing the network address (e.g., URL) for invoking the service
categories describing specific aspects of the service

tModelInstanceDetails
points to one or more tModel information elements
goal: provide a technical "fingerprint" for identifying compatible services

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
66

© Prof.Dr.-Ing. Stefan Deßloch

What Are tModels?

A tModel (technology model) represents a concept, an idea, a well accepted
technical specification (taxonomy, interface…)...

Its semantics should be clearly described
UDDI comes with a set of predefined tModels

When registering a tModel it gets a globally unique identifier: tModelKey
tModelKey is like a „fingerprint“ for the concept, idea,...
For example, tModelKeys describe the semantics of

Taxonomies
NAICS (industry codes), UNSPC (product & service codes), ISO3166 (geographic
locations) …

Technical specifications
RosettaNet, ebXML, EDI, standard ERP system interface,...

Identifiers
D&B numbers, US tax codes,...

tModel data structure
tModelKey, name, overviewDoc, descriptions, categories, identifiers, …

overviewDoc may contain a URL child element that points to a WSDL file describing the
interface …

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
67

© Prof.Dr.-Ing. Stefan Deßloch

Using tModelKeys

tModelKey is used to give references a semantics
<element name = "keyedReference">

<type content = "empty">
<attribute name = "tModelKey" type = "string"/>
<attribute name = "keyName" minOccurs = "1" type = "string"/>
<attribute name = "keyValue" minOccurs = "1" type = "string"/>

</type>
</element>

This allows to specify the semantics of a name-value pair, e.g.: Is the
identifier a US Tax Number, is it D&B number, is the name of an interface of
the system of a particular ERP vendor,...?

Example: identify SAP AG by its Dun & Bradstreet D-U-N-S® Number, using the
corresponding tModelKey within the UDDI Business Registry

<keyedReference
tModelKey=”uddi:ubr.uddi.org:identifier:dnb.com:D-U-N-S”
keyName=”SAP AG”
keyValue=”31-626-8655” />

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
68

© Prof.Dr.-Ing. Stefan Deßloch

Important Registry APIs

Inquiry API
Find things

find_business
find_service
find_binding
find_tModel

Get Details about things
get_businessDetail
get_serviceDetail
get_bindingDetail
get_tModelDetail

Publishers API
Save things

save_business
save_service
save_binding
save_tModel

Delete things
delete_business
delete_service
delete_binding
delete_tModel

security…
get_authToken
discard_authToken

Provided as SOAP-based web services

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
69

© Prof.Dr.-Ing. Stefan Deßloch

Inquiry API

FIND APIs
Basic browsing/searching

Can return a set of results

Limited search capabilities
Query is specified in an XML element with subelements for

Values of properties to match (e.g., business name starts with ‘S’)
Qualifiers that modify the search behavior (e.g., exactNameMatch, sortByNameDesc, …)

Example: Find the latest two businesses that registered, and whose name starts with an
‘S’

<find_business generic=“1.0” maxRows=“2” xmlns=“urn:uddi-org:api”>
<findQualifiers>

<findQualifier>sortByDateDesc</findQualifier>
</findQualifiers>
<name>S</name>

</find_business>

Return unique reference keys identifying the result “elements”

GET APIs
Based on unique reference keys, retrieve detailed information

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
70

© Prof.Dr.-Ing. Stefan Deßloch

Registry Types

Different types of registries
corporate/private (e.g., enterprise web service registry)

operates within the boundaries of a single company (or for a restricted number of
partners)
data is not shared with other registries

affiliated (e.g., trading partner network)
registry is deployed in a controlled environment
limited access by authorized clients
data may be shared with other registries in a controlled manner

public (e.g., UDDI Business Registry)
open, public access to registry data
secured administrative access, content may be moderated
data may shared, transferred among registries

UDDI Business Registry
public, global registry of businesses and their services
master directory of publicly available e-commerce services
was initial focus of UDDI effort

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
71

© Prof.Dr.-Ing. Stefan Deßloch

Registry Architecture

UDDI registry may consist of multiple UDDI nodes
UDDI node

supports interaction with UDDI data through (subset of) UDDI APIs
belongs to exactly one UDDI registry
interacts with other nodes in the same registry (through replication) to maintain a
single, complete logical copy of the registry data

Affiliation of registries
consists of multiple registries
registries define policies for controlled copying of subsets of registry data among
each other
registries share a common namespace for UDDI keys, have compatible policies for
assigning key values

Enhanced set of APIs to support registry architecture, types of registries
security, custody transfer, subscription, replication

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
72

© Prof.Dr.-Ing. Stefan Deßloch

Registry Affiliation – Example

UBR
Node 1

UBR
Node 2

Affiliated
Private
Registry

Affiliated
Private
Registry

Private
Registry

Private
Registry

Semi-Private
Domain

Private
Domain

Shared
Domain

Shared
Domain

Public Domain

rep
lic

ati
on

su
bs

cr
ip

tio
n

publish

publish

publish

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
73

© Prof.Dr.-Ing. Stefan Deßloch

Discovering Web Services – Without UDDI

Sometimes you don't want to register a Web Service in UDDI (yet)
It may not be of public interest
It may not be ready for production
...

Web Services Inspection Language (WSIL)
Language to discover Web Services at Web sites

document-based, decentralized approach for web services discovery

Proposed by IBM and Microsoft (11/2001)
Supported by toolkits

Apache’s Axis project
…

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
74

© Prof.Dr.-Ing. Stefan Deßloch

WSIL Documents

A single inspection document (.wsil) may reference multiple service descriptions
A single service may be described by more than one description

Service description is a .wsdl file or a reference to UDDI or plain HTML
Even elements from a WSDL file can be referenced

Thus, inspection document convenient way to aggregate different information about a
Web Service
Each Web site may store an inspection .wsil file at a common entry point for service
descriptions

Allows to discover all Web Services supported by this Web site
A new META tag called serviceInspection may be added to an HTML file

Allows to discover all Web Services supported by this Web page
Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<META name="serviceInspection"

content= "http://example.com/inspection.wsil"/>
</head>

...
</html>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
75

© Prof.Dr.-Ing. Stefan Deßloch

Sample Inspection Document

<inspection xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">

<service>
<abstract>A stock quote service with two descriptions</abstract>
<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"

location="http://example.com/stockquote.wsdl"/>
<description referencedNamespace="urn:uddi-org:api">

<wsiluddi:serviceDescription location="http://www.example.com/uddi/inquiryapi">
<wsiluddi:serviceKey>

4FA28580-5C39-11D5-9FCF-BB3200333F79
</wsiluddi:serviceKey>

</wsiluddi:serviceDescription>
</description>

</service>
<service>

<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="ftp://anotherexample.com/tools/calculator.wsdl"/>

</service>
<link referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"

location="http://example.com/moreservices.wsil"/>
</inspection>

reference to
WSDL file

reference to
UDDI entry

reference to
WSIL file

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
76

© Prof.Dr.-Ing. Stefan Deßloch

Referencing WSDL Elements

<?xml version="1.0"?>
<inspection xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/">
<service>
<name xml:lang="en-US">StockQuoteService</name>
<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/">
<wsilwsdl:reference

endpointPresent="true"
location="http://localhost:8080/webservices/wsdl/stockquote/sqs.wsdl">
<wsilwsdl:referencedService

xmlns:tns="http://www.getquote.com/StockQuoteService">
tns:StockQuoteService

</wsilwsdl:referencedService>
<wsilwsdl:implementedBinding

xmlns:interface="http://www.getquote.com/StockQuoteService-interface">
interface:StockQuoteServiceBinding

</wsilwsdl:implementedBinding>
</wsilwsdl:reference>
</description>
</service> .
</inspection>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
77

© Prof.Dr.-Ing. Stefan Deßloch

Summary

Service-oriented architectures
definition, access, discovery of (web) services

SOAP
defines SOAP message structure and messaging framework

stateless, one-way
more complex patterns "on top" (e.g., request/response)

provides convention for doing RPCs using SOAP
support for extensibility, error-handling, flexible data representation
independent of transport protocols

binding framework for defining protocol-specific bindings
SOAP/HTTP

extensions beyond SOAP for addressing, reliable messaging

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
78

© Prof.Dr.-Ing. Stefan Deßloch

Summary (cont.)

WSDL
supports description of all information needed to access a web service

interface, operation, message types
binding to specific protocol (e.g., SOAP)

protocol extensions

endpoint, service

UDDI
registry

publish information about business, services provided, and the way to use them
white, yellow, green pages

tModels provide infrastructure for business and service "name space"
identification, classification of business, services, protocols, …

can "point to" detailed service descriptions such as WSDL files

APIs for manipulating and inquiring about registry content
provided as web services

alternative for finding web services: WSIL

Middleware for Heterogenous and Distributed Information Systems - WS05/06

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Web Services Support in Middleware
Platforms (J2EE)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
80

© Prof.Dr.-Ing. Stefan Deßloch

Tooling Principles

Transport

Requestor

Proxy

Service

Stub

WSDL

UDDI

publish find

generate

generate

generate

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
81

© Prof.Dr.-Ing. Stefan Deßloch

Java API for XML-based RPCs (JAX-RPC)

API for building web services and clients based on remote procedure calls and
XML

Goal: hide all the complexities of SOAP message processing
APIs for supporting XML based RPC for the Java platform

Define web service
Use web service

Defines
WSDL/XML to Java mapping
Java to XML/WSDL mapping
Core APIs
SOAP support (including attachments)
Client and Server Programming models involving generated stub classes

Client side invocation (standard programming model)
Application invokes web service through generated stub class
JAX-RPC runtime maps the invocation to SOAP, builds the SOAP message,
processes the HTTP request

Server side processing
JAX-RPC runtime processes HTTP, SOAP message, maps to RPC and dispatches to
target (class implementing the web service)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
82

© Prof.Dr.-Ing. Stefan Deßloch

Mapping WSDL <-> Java – Example

WSDL 1.1 interface definition
<!-- WSDL Extract -->
<message name=”getLastTradePrice”>

<part name=”tickerSymbol”
type=”xsd:string”/>

</message>
<message

name=”getLastTradePriceResponse”>
<part name=”result”

type=”xsd:float”/>
</message>
<portType

name=”StockQuoteProvider”>
<operation
name=”getLastTradePrice”

parameterOrder=”tickerSymbol”>
<input message=

”tns:getLastTradePrice”/>
<output message=

”tns:getLastTradePriceResponse”/>
</operation>

</portType>

Java service endpoint interface

//Java
public interface StockQuoteProvider

extends java.rmi.Remote {
float getLastTradePrice(

String tickerSymbol)
throws java.rmi.RemoteException;

}

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
83

© Prof.Dr.-Ing. Stefan Deßloch

Web Services for J2EE Specification
(WS4J2EE)

Sun specification (JSR109), included in J2EE 1.4
Defines “a service architecture that leverages the J2EE component
architecture to provide a client and server programming model which is

portable and interoperable across application servers,
provides a scalable secure environment, and yet
is familiar to J2EE developers”

Objectives (among others)
Simple model for defining and implementing a new Web service and deploying this
into a J2EE application server
Build on evolving industry standards (WSDL, SOAP, …)
Leverage existing J2EE technology
Inter-operability of vendor implementations
Minimize new concepts, interfaces, file formats, etc.

WS4J2EE requires JAX-RPC support

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
84

© Prof.Dr.-Ing. Stefan Deßloch

J2EE Architecture

Source: Web services for
J2EE Specification 1.0

Web service support

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
85

© Prof.Dr.-Ing. Stefan Deßloch

Creating a Web Service

Steps
Define service endpoint

Option 1: Start with WSDL, generate Java endpoint interface
Option 2: Start with Java endpoint interface, generate WSDL

Implement the service endpoint interface
J2EE Component Model

stateless session bean
servlet

Deploy the service on a server-side container-based runtime
specific to the runtime, deployment tool
deployment tool

configures one or more protocol bindings for the (abstract) service endpoint
e.g., SOAP/HTTP

creates one or more (concrete) endpoints with endpoint address
export the WSDL describing the service, so that clients can use it

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
86

© Prof.Dr.-Ing. Stefan Deßloch

Server Programming Model

Two methods for implementing a web service
Java class running in a web container

Actually defined in the JAX-RPC specification

Stateless session EJB running in an EJB container

Stateless session bean used to implement a web service
EJB container takes care of multi-threaded access to web service
Requirements more or less as defined for stateless EJB by EJB specification
Existing stateless EJB can be exposed as a web service

Service endpoint interface methods can be a subset of the EJB remote interface methods
Transaction attribute MANDATORY is not permitted

Existing transaction context will be suspended by container during execution of a web service

Web container component
Implementation can be

single-threaded
Class implements servlet.singleThreadModel
Container responsible for synchronizing access

multi-threaded

Implementation class must be stateless

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
87

© Prof.Dr.-Ing. Stefan Deßloch

Container Responsibilities

Listening on a well known port or on the URI of the Web service
implementation (as defined in the service’s WSDL after deployment) for
SOAP/HTTP bindings.
Parsing the inbound message according to the Service binding.
Mapping the message to the implementation class and method according to
the Service deployment data.
Creating the appropriate Java objects from the SOAP envelope according to
the JAX-RPC specification.
Invoking the Service Implementation Bean handlers and instance method
with the appropriate Java parameters.
Capturing the response to the invocation if the style is request-response
Mapping the Java response objects into SOAP message according to the JAX-
RPC specification.
Creating the message envelope appropriate for the transport
Sending the message to the originating Web service client.

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
88

© Prof.Dr.-Ing. Stefan Deßloch

Client Programming Model

Client can be
J2EE application client
Web component
EJB component
Another web service

Client view of web service
Set of methods that perform business logic

Service endpoint interface
Stateless, i.e., there is not state information that persists across method
invocations

Uses the WS4J2EE runtime to access and invoke the methods of a web
service

JNDI lookup to access a Service object
Factory to obtain a stub/proxy that implements the service endpoint interface

Invoke web service method on the stub object implementing the service endpoint
interface

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
89

© Prof.Dr.-Ing. Stefan Deßloch

Client Programming Model (cont.)

Client developer works only with the Service and Service endpoint interfaces,
which may have been

supplied by the web service provider, or
generated using tools based on WSDL provided by WS provider

Example
Context ctx = new InitialContext();
com.example.StockQuoteService sqs =

ctx.lookup(“java:comp/env/StockQuoteService”);
com.example.StockQuoteProvider sqp =

sqs.getStockQuoteProviderPort();
float quotePrice = sqp.getLastTradePrice(“ACME”);

Developer can also use dynamic invocation interface (DII) of Service
Generic methods for invoking the web service methods
Useful if WS details are not known at development time
Supports one-way RPC in addition to request-response

service endpoint interface

logical service reference

service interface

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
90

© Prof.Dr.-Ing. Stefan Deßloch

Client Component Deployment

Client developer does NOT generate stub/proxy class during development
Will be generated during deployment of the client component
Can be specific to the vendor runtime used on the client

Web services client deployment descriptor contains additional information
about web service supplied by developer

Service reference name used for JNDI lookup
Service interface name

Deployer has to link the service reference to the actual service to be called
provide configuration info such as target endpoint address, protocol-specific
properties, …

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
91

© Prof.Dr.-Ing. Stefan Deßloch

Additional Concepts

Service Context
may carry information corresponding to SOAP headers

transactions, security, …

implicit context
managed and automatically propagated by the generated stubs and the JAX-RPC runtime

explicit context
passed as additional parameters of the method invocation

Handlers
A means for intercepting and processing the raw SOAP request
Can examine and probably modify a request before it is processed by a web
service component

Can also process/modify the response

May run on server as well as client side
Usage scenarios

Message logging
SOAP header processing/generation
Processing parts of the SOAP body

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
92

© Prof.Dr.-Ing. Stefan Deßloch

Additional Concepts (cont.)

Security
Authentication: BASIC-AUTH, symmetric HTTPS
Authorization: J2EE container support
Integrity and confidentiality: HTTPS
Non-repudiation: recommended, but not defined
… a lot is left for future work

Relationships to other Java specs for XML
JAX-M (JSR 00067): XML messaging and the Java language.
Java APIs for WSDL (JSR00110): APIs for manipulating WSDL documents.

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
93

© Prof.Dr.-Ing. Stefan Deßloch

SOAP w/Attachments API for Java (SAAJ)

Enables production/consumption of messages that conform to the SOAP 1.1
specification and SOAP with Attachments note

"low-level" API
basis for JAX-RPC, JAXR

API capabilities (javax.xml.soap package)
create a SOAP message
create an XML fragment
add content to the header of a SOAP message
add content to the body of a SOAP message
create attachment parts and add content to them
access/add/modify parts of a SOAP message
create/add/modify SOAP fault information
extract content from a SOAP message

Simple request-response messaging (optional APIs)
create a point-to-point connection to a specified endpoint
send a SOAP request-response message
alternatively, other APIs can be used to send SOAP messages (JAXM, JMS)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
94

© Prof.Dr.-Ing. Stefan Deßloch

Java API for XML Registries (JAXR)

Goals
Define a general purpose Java API for accessing business registries
Define a pluggable provider architecture
Support a union of the best features of dominant registry specifications

JAXR is not a least common denominator API
Ensure support for dominant registry specifications such as ebXML and UDDI

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
95

© Prof.Dr.-Ing. Stefan Deßloch

JAXR Information Model

Largely based on the ebXML Registry Information model
extended to add concepts borrowed from UDDI

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
96

© Prof.Dr.-Ing. Stefan Deßloch

J2EE and Web Services - Summary

Latest J2EE Version: 1.4 (Nov. 2003)
major focus on web service enhancements

JAX-RPC and SAAJ APIs
basic web services interoperability support

Web Services for J2EE specification
describes the packaging and deployment requirements for J2EE applications that
provide and use web services

EJB specification
extended to support implementing web services using stateless session beans.

JAXR API
access to registries and repositories.

JAXP API
processing XML documents

Java interfaces to XSLT, SAX, DOM-parsers

Middleware for Heterogenous and Distributed Information Systems - WS05/06

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Service Coordination and Transactions

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
98

© Prof.Dr.-Ing. Stefan Deßloch

Coordination - Motivation

Interactions are typically more complex than simple invocations
Need to coordinate (sets of) activities or applications

Distributed
Running on different platforms using local coordinators

Examples
Reach consistent agreement on the outcome of distributed transactions

Atomic transactions, 2PC

Coordinate auctioning activities
involves seller, auctioneer, buyers

Interactions between a customer and a supplier for ordering a product
request order, order goods, make payment

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
99

© Prof.Dr.-Ing. Stefan Deßloch

Conversations and Coordination Protocols

Interactions form a conversation
sequences of operations (message exchanges)

maintain context information across invocations

Interactions adhere to a coordination protocol
specifies a set of correct/accepted conversations
vertical protocols: specific to business area (e.g., product ordering protocol)
horizontal protocols: define common infrastructure (e.g., transactions)

Different ways of modeling protocols
state machines
sequence diagrams
activity diagrams

Middleware support can be provided, with various degrees of automation
conversation controllers
generic protocol handlers

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
100

© Prof.Dr.-Ing. Stefan Deßloch

requestQuote
(to supplier)

checkShipAvailable
(to warehouse)

confirmOrder
(to customer)

orderGoods
(to supplier)

cancelOrder
(to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

getShipmentDetails
(to customer)

confirmShipment
(to warehouse)

confirmShipment
(to supplier)

supplier warehousecustomer

warehouse
confirms

warehouse
cancels

source: Alonso et.al.: Web Services, Springer, 2003
Copyright Springer Verlag Berlin Heidelberg 2003

Modeling Protocols - Activity Diagrams

roles

messages

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
101

© Prof.Dr.-Ing. Stefan Deßloch

Conversation Controller

Performs conversation routing
dispatch message to the appropriate "internal object"

one object for each instance of a conversation (e.g., an ordering session)
involves message correlation (conversation identifier), management of
conversation context

example: session id

Verifies protocol compliance
understand definition of the protocol (-> standardization of protocol descriptions)
check if all messages adhere to the protocol definition

Can be implemented as a component of a SOAP router

object for P1

object for Pn

service req.

service req.

service req.

.

.

.
.
.
.

conversation
controller

service provider

P1P1

P2, P3

Pn
Pn

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
102

© Prof.Dr.-Ing. Stefan Deßloch

Generic Protocol Handlers

Module that implements a specific coordination protocol
includes protocol-specific logic
processes and generates messages in accordance with the protocol rules

Mostly applicable to horizontal protocols
example: transactions

Forms of protocol execution support
handler realizes complete support, no intervention from the web service

Example: reliable messaging

handler and web service jointly realize the support
Example: atomic, distributed TAs

infrastructure coordinates sending/receiving prepare/commit/abort messages
web services decide over commit/abort, implement operations

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
103

© Prof.Dr.-Ing. Stefan Deßloch

Implementing Horizontal Protocols

service
requestor

B

B

conversation routing,
compliance verification

horizontal protocol
implementation

HH

H

B: conversation compliant with a business protocol
H: conversation compliant with an horizontal protocol

object (Web service implementation)object (Web service implementation)

horizontal protocol
implementation

service provider

source: Alonso et.al.: Web Services, Springer, 2003
Copyright Springer Verlag Berlin Heidelberg 2003

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
104

© Prof.Dr.-Ing. Stefan Deßloch

Communicating Roles and Port References

object (W1)

horizontal protocol
handler (A)

object (W2)

horizontal protocol
handler (B)

A’s port reference

B’s port reference
B’s port reference A’s port referenceA’s role B’s role

conversation
controller

conversation
controller

protocol messages

source: Alonso et.al.: Web Services, Springer, 2003
Copyright Springer Verlag Berlin Heidelberg 2003

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
105

© Prof.Dr.-Ing. Stefan Deßloch

Standardization

Coordination infrastructure support for web services needs to be based on standards
for

1) generating and transporting unique conversation identifiers in SOAP headers
needed to map messages to conversations, and eventually to the objects handling them

2) a framework and a set of (meta-) protocols for agreeing on which protocol is to be executed
on how it is coordinated

3) horizontal protocols
to separate horizontal protocol implementation from the inidividual web services

4) protocol languages
to allow for protocol verification

Web Services Coordination (WS-Coordination) Specification
standardizes 1), 2)

Web Services Atomic Transaction (WS-AtomicTransaction) Specification
uses WS-Coordination framework to define coordination type for Atomic Transactions (i.e., it
standardizes 3) for atomic TAs)

Web Services Business Activity Framework (WS-BusinessActivity) Specification
same for (long-running) business transactions

All specifications are not official standards yet
proposals by BEA, IBM, IONA, Microsoft

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
106

© Prof.Dr.-Ing. Stefan Deßloch

WS-Coordination

Basic entities are coordinators and participants that wish to be
coordinated

central coordination: all participants talk to a single coordinator
distributed coordination

each (or multiple) participant talks to its own coordinator
coordinators are chained together

Abstractions to describe the interactions between coordinator and participants
coordination protocol

set of rules governing the conversation
example: 2PC

coordination type
set of logically related protocols

example: atomic transactions (completion, 2PC, volatile 2PC)
instance of a coordination type may involve several instances of the coordination
protocols

Coordination context
used to exchange coordination information among different parties

placed within messages exchanged between parties
contains coordination type, identifier of the coordination type instance

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
107

© Prof.Dr.-Ing. Stefan Deßloch

Coordinator/Participant Interactions

Coordination service (coordinator) consists of
Activation service (generic)

Used by a participant to create coordination context (initiate instance of protocol type)
WS Interfaces: ActivationCoordinator, ActivationRequester

Registration service (generic)
Enable application to register for coordination protocols

provide endpoint information, role

WS Interfaces: RegistrationCoordinator, RegistrationRequester

(set of) coordination protocols (protocol-specific)
Specific to coordination type

Extensibility
Publication of new coordination protocols
Definition of extension elements that can be added to protocols and messages

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
108

© Prof.Dr.-Ing. Stefan Deßloch

coordinator A

Distributed Coordination - Interactions

activation
service ASa

registration
service RSa

protocol
service Ya coordinator B

activation
service ASb

registration
service RSb

protocol
service Yb

App 1 App 2

1. CreateCC Type Q
returns Ca

2. App1 sends App2 an application message containing Ca

3. CreateCC
Passing Ca
returning Cb

4. Register passing Y
and App2
returning Yb

5. Register passing Y and Yb
returning Ya

protocol Y

protocol Y

…
<CoordinationContext>

<Identifier> A </Identifier>
<CoordinationType> Q </CoordinationType>
<RegistrationService>

<wsa:Address> RSa </wsa:Address>
<wsa:ReferenceProperties>

…
</wsa:ReferenceProperties>

</RegistrationService>
</CoordinationContext>
…

"primary" coordinator "proxy" coordinator

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
109

© Prof.Dr.-Ing. Stefan Deßloch

WS Atomic Transactions

Atomic Transactions (TA) coordination type
Defines type-specific commit protocols

Completion: A participant (app creating the TA) registers so that it can tell the
coordinator when/how to complete the TA (commit/abort)
2PC: a resource manager (RM) registers for this protocol to be included in the
commit/abort decision

Hierarchical 2PC (local coordinators can be interposed as subordinate coordinators)

Two variants of 2PC
volatile 2PC: a participant wants to be notified by the coordinator just before the
2PC begins

Example: participant caches, needs to communicate changes on cached data
to DBMS before TA commits

durable 2PC: a participant manages durable resources
Example: DBMS

Participants can register for more than one protocol
Extension elements

Example: communicate isolation levels

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
110

© Prof.Dr.-Ing. Stefan Deßloch

Atomic Transaction – Example
<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope“
<S:Header>

. . .
<wscoor:CoordinationContext
xmlns:wscoor=http://schemas.xmlsoap.org/ws/2002/08/wscoor
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:myApp="http://www.w3.org/2002/08/myApp">
<wsu:Identifier>http://foobaz.com/SS/1234</wsu:Identifier>
<wsu:Expires>2002-08-31T13:20:00-05:00</wsu:Expires>

<wscoor:CoordinationType>
http://schemas.xmlsoap.org/ws/2002/08/wstx

</wscoor:CoordinationType>
<wscoor:RegistrationService>

<wsu:Address>
http://myservice.com/mycoordinationservice/registration
</wsu:Address>
<myApp:BetaMark> ... </myApp:BetaMark>
<myApp:EBDCode> ... </myApp:EBDCode>

</wscoor:RegistrationService>
<myApp:IsolationLevel>

RepeatableRead
</myApp:IsolationLevel>

</wscoor:CoordinationContext>
. . .

</S:Header>
. . .

</S:Envelope>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
111

© Prof.Dr.-Ing. Stefan Deßloch

X/Open DTP revisited …

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
112

© Prof.Dr.-Ing. Stefan Deßloch

AT WS-Coordination Flow

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
113

© Prof.Dr.-Ing. Stefan Deßloch

AT WS-Coordination Flow (cont.)

App1:
sends a CreateCoordinationContext message (1) to its local coordinator's Activation service ASa

create an atomic transaction T1
gets back in a CreateCoordinationContextResponse message (2) a CoordinationContext C1 containing
the transaction identifier T1, the atomic transaction coordination type and CoordA's registration address
RSa

sends a Register message (3) to RSa to register for the Completion protocol
gets back a RegisterResponse message (4), exchanging protocol service addresses for the coordinator
and participant sides of the two-way protocol

sends an application message to App2 (5)
propagating the CoordinationContext C1 as a header in the message.

App2:
decides to interpose local coordinator CoordB in front of CoordA

acts as a proxy to CoordA for App2
CoordA is the superior and CoordB is the subordinate

does this by sending a CreateCoordinationContext message (6) to the Activation service of
CoordB (ASb) with C1 as input

getting back (7) a new CoordinationContext C2 that contains the same transaction identifier (T1) and
coordination type, but has CoordB's registration address RSb.

registers with CoordB for the PhaseZero (volatile 2PC) protocol (8 and 11)
CoordB registers with CoordA for the PhaseZero protocol (9 and 10)

sends a message to DB (12), propagating CoordinationContext C2

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
114

© Prof.Dr.-Ing. Stefan Deßloch

AT WS-Coordination Flow (cont.)

DB:
decides to interpose its local coordinator CoordC by sending a
CreateCoordinationContext message (13), further extending the superior-
subordinate chain

gets back (14) a new CoordinationContext C3 that contains the same transaction identifier
(T1) and coordination type, but CoordC's Registration service address RSc

registers with CoordC for the 2PC protocol because it is a resource manager (15
and 20)
causes CoordC to register with CoordB for the 2PC protocol (16 and 19)
causes CoordB to register with CoordA for the 2PC protocol (17 and 18)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
115

© Prof.Dr.-Ing. Stefan Deßloch

AT Coordination Protocol Flows

2)PhaseZero

12) Prepared

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
116

© Prof.Dr.-Ing. Stefan Deßloch

AT Coordination Protocol Flows (cont.)

App1:
tries to commit the transaction using the Completion protocol (1)

CoordA executes prepare-phase of Volatile 2PC protocol
has 1 participant registered for PhaseZero (CoordB), sends a Prepare message (2) to CoordB's
PhaseZero Participant protocol service Pb-pz
CoordB relays Prepare message to App2 (3)
App2 sends its cached updates to DB

application message (4) propagates the CoordinationContext C2
sends a Prepared message (5) to CoordB

CoordA executes prepare-phase of durable 2PC protocol
sends a Prepare message (7) to CoordB's 2PC Participant protocol service Pb-2pc
CoordB sends Prepare message (8) to CoordC's 2PC Participant protocol service Pc-2pc
CoordC tells DB to Prepare (9)

CoordA commits
sends Commit message (13) to CoordB

Committed notification to App1 (13a) can also be sent
CoordB sends Commit message (14) to CoordC
CoordC tells DB to commit T1

DB receives the Commit message (15) and commits
Committed message returns (16, 17 and 18)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
117

© Prof.Dr.-Ing. Stefan Deßloch

AT – 2PC Protocol

Two-way protocol
Exchange of messages between coordinator and participant

State Diagram
State reflects common knowledge of both parties

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
118

© Prof.Dr.-Ing. Stefan Deßloch

AT – 2PC Protocol (cont.)

OnePhaseCommit
If only one participant has registered for 2PC, the commit/abort decision can be
delegated to that participant

Send OnePhaseCommit message instead of Prepare message

Can be recursively applied by subordinate coordinator

“Presumed abort” assumption
No knowledge of a transaction implies it is aborted
Allows for optimizations during commit phase

“Read-only” optimization
After receiving a prepare message from the coordinator, participant can reply with
a read-only message and skip the second phase

Replay Message
Used by participant to solicit transaction outcome from coordinator after a failure

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
119

© Prof.Dr.-Ing. Stefan Deßloch

WS-BA – Business Activities Framework

Characteristics
Usually long-running

Responding to a request may take a long time

May consume lots of resources, perform a lot of work
Loss of state of business activity cannot be tolerated
Forward recovery

Design points
State transitions need to be reliably recorded
All request messages are acknowledged

Detect problems early

Response to a request is a separate operation
Not the output of the request
Avoid problems with timeouts of message I/O implementations

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
120

© Prof.Dr.-Ing. Stefan Deßloch

Business Activity (cont.)

Business Activity (BA) coordination type
Create business activity, propagate coordination context
Interpose a coordinator as a subordinate
Create business scopes (see BPEL)

Can be nested

Register for participation in BA
BusinessAgreementWithParticipantCompletion protocol

Nested scope participant registers with parent scope coordinator
Parent scope can manage it
Nested scope must know when it has completed all the work for a business activity

BusinessAgreementWithCoordinatorCompletion protocol
Nested scope relies on parent to tell it when it has received all requests for work in the business
activity

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
121

© Prof.Dr.-Ing. Stefan Deßloch

Business Agreement Protocol

BusinessAgreementWithCoordinatorCompletion – State Diagram

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
122

© Prof.Dr.-Ing. Stefan Deßloch

Business Agreement Protocol (cont.)

Parent sends application message to a child
Contains a business CoordinationContext

Child registers with parent as participant of the business activity (Active state)
Parent tells child when it has received all requests by sending the complete message
(Completing state)
Child finishes

Case 1: no more participation required (read-only, irreversible, …)
Child sends exit message (Ended state)

Case 2: continue participation
Completed: requires ability to compensate completed tasks
Child lives on until parent sends close or compensate message

Case 3: child fails while active (or compensating)
Send faulted message to parent
Parent replies with forget message

Parent tells child to cancel
Child needs to abandon its work in “some appropriate way”

