
Middleware for Heterogenous and Distributed Information Systems - WS05/06

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 13 - XML

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
2

© Prof.Dr.-Ing. Stefan Deßloch

XML Origin and Usages

Defined by the WWW Consortium (W3C)
Originally intended as a document markup language, not a database
language

Documents have tags giving extra information about sections of the document
For example:

<title> XML </title>
<slide> XML Origin and Usages </slide>

Meta-language: used to define arbitrary XML languages/vocabularies (e.g. XHTML)

Derived from SGML (Standard Generalized Markup Language)
standard for document description

enables document interchange in publishing, office, engineering, …

main idea: separate form from structure

XML is simpler to use than SGML
roughly 20% complexity achieves 80% functionality

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
3

© Prof.Dr.-Ing. Stefan Deßloch

XML Origin and Usages (cont.)

XML documents are to some extent self-documenting
Tags can be used as metadata
Example

<bank>
<account>

<account-number> A-101 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>

</account>
<depositor>

<account-number> A-101 </account-number>
<customer-name> Johnson </customer-name>

</depositor>
</bank>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
4

© Prof.Dr.-Ing. Stefan Deßloch

Forces Driving XML

Document Processing
Goal: use document in various, evolving systems
structure – content – layout
grammar: markup vocabulary for mixed content

Data Bases and Data Exchange
Goal: data independence
structured, typed data – schema-driven – integrity constraints

Semi-structured Data and Information Integration
Goal: integrate autonomous data sources
data source schema not known in detail – schemata are dynamic
schema might be revealed through analysis only after data processing

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
5

© Prof.Dr.-Ing. Stefan Deßloch

XML Language Specifications

Meta Object Facility

Unified Modeling Language

XML Metadata Interchange

Unicode
Standardized Generalized Markup Language

Document Type Definition

eXtensible Markup Language

XML Schema XML Namespace
XHML

Cascading Style Sheets

XML Link XML Pointer XPath XQuery

XSL

XSLT XSL-FO

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
6

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents

XML documents are text (unicode)
markup (always starts with '<' or '&')

start/end tags
references (e.g., <, &, …)
declarations, comments, processing instructions, …

data (character data)
characters '<' and '&' need to be indicated using references (e.g., <) or using the
character code
alternative syntax: <![CDATA[(a<b)&(c<d)]]>

XML documents are well-formed
logical structure

(optional) prolog (XML version, …)
(optional) schema
root element (possibly nested)
comments, …

correct sequence of start/end tags (nesting)
uniqueness of attribute names
…

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
7

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents: Elements

Element: section of data beginning with <tagname> and ending with
matching </tagname>
Elements must be properly nested

Formally: every start tag must have a unique matching end tag, that is in the
context of the same parent element.

Mixture of text with sub-elements is legal in XML
Example:

<account>
This account is seldom used any more.
<account-number> A-102</account-number>
<branch-name> Perryridge</branch-name>
<balance>400 </balance>

</account>
Useful for document markup, but discouraged for data representation

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
8

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents: Attributes

Attributes: can be used to describe elements
Attributes are specified by name=value pairs inside the starting tag
of an element
Example

<account acct-type = “checking” >
<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
Attribute names must be unique within the element

<account acct-type = “checking” monthly-fee=“5”>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
9

© Prof.Dr.-Ing. Stefan Deßloch

XML Documents: IDs and IDREFs

An element can have at most one attribute of type ID
The ID attribute value of each element in an XML document must be distinct

ID attribute (value) is an object identifier
An attribute of type IDREF must contain the ID value of an element in the
same document
An attribute of type IDREFS contains a set of (0 or more) ID values. Each ID
value must contain the ID value of an element in the same document
IDs and IDREFs are untyped, unfortunately

Example below: The owners attribute of an account may contain a reference to
another account, which is meaningless;
owners attribute should ideally be constrained to refer to customer elements

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
10

© Prof.Dr.-Ing. Stefan Deßloch

XML data with ID and IDREF attributes

<bank-2>
<account account-number=“A-401” owners=“C100 C102”>

<branch-name> Downtown </branch-name>
<balance>500 </balance>

</account>
. . .

<customer customer-id=“C100” accounts=“A-401”>
<customer-name>Joe</customer-name>
<customer-street>Monroe</customer-street>
<customer-city>Madison</customer-city>

</customer>
<customer customer-id=“C102” accounts=“A-401 A-402”>

<customer-name> Mary</customer-name>
<customer-street> Erin</customer-street>
<customer-city> Newark </customer-city>

</customer>
</bank-2>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
11

© Prof.Dr.-Ing. Stefan Deßloch

XML Document Schema

XML documents may optionally have a schema
standardized data exchange, …

Schema restricts the structures and data types allowed in a document
document is valid, if it follows the restrictions defined by the schema

Two mechanisms for specifying XML schema
Document Type Definition (DTD)

contained in the document, or
stored separately, referenced in the document

XML Schema

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
12

© Prof.Dr.-Ing. Stefan Deßloch

Describing XML Data: DTD

Type and structure of an XML document can be specified using a DTD
What elements can occur
What attributes can/must an element have
What subelements can/must occur inside each element, and how many times.

DTD does not constrain data types
All values represented as strings in XML

DTD syntax
<!ELEMENT element (subelements-specification) >
<!ATTLIST element (attributes) >

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
13

© Prof.Dr.-Ing. Stefan Deßloch

Element Specification in DTD

Subelements can be specified as
names of elements, or
#PCDATA (parsed character data), i.e., character strings
EMPTY (no subelements) or ANY (anything can be a subelement)

Structure is defined using regular expressions
sequence (subel, subel, …), alternative (subel | subel | …)
number of occurences

“?” - 0 or 1 occurrence
“+” - 1 or more occurrences
“*” - 0 or more occurrences

Example
<! ELEMENT depositor (customer-name account-number)>
<! ELEMENT customer-name(#PCDATA)>
<! ELEMENT account-number (#PCDATA)>
<!ELEMENT bank ((account | customer | depositor)+)>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
14

© Prof.Dr.-Ing. Stefan Deßloch

Example: Bank DTD

<!DOCTYPE bank-2[
<!ELEMENT account (branch-name, balance)>
<!ATTLIST account

account-number ID #REQUIRED
owners IDREFS #REQUIRED>

<!ELEMENT customer(customer-name, customer-street,
customer-city)>

<!ATTLIST customer
customer-id ID #REQUIRED
accounts IDREFS #REQUIRED>

… declarations for branch, balance, customer-name,
customer-street and customer-city

]>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
15

© Prof.Dr.-Ing. Stefan Deßloch

Describing XML Data: XML Schema

XML Schema is closer to the general understanding of a (database) schema
XML Schema supports

Typing of values
E.g. integer, string, etc

Constraints on min/max values
Typed references
User defined types
Specified in XML syntax (unlike DTDs)
Integrated with namespaces
Many more features

List types, uniqueness and foreign key constraints, inheritance ..

BUT: significantly more complicated than DTDs

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
16

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Structures

Datatypes (Part 2)
Describes Types of scalar (leaf) values

Structures (Part 1)
Describes types of complex values (attributes, elements)

Regular tree grammars
repetition, optionality, choice recursion

Integrity constraints
Functional (keys) & inclusion dependencies (foreign keys)

Subtyping (similar to OO models)
Describes inheritance relationships between types

Supports schema reuse

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
17

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Structures (cont.)

Elements : tag name & simple or complex type
<xs:element name=“sponsor” type=“xsd:string”/>
<xs:element name=“action” type=“Action”/>

Attributes : tag name & simple type
<xs:attribute name=“date” type=“xsd:date”/>

Complex types
<xs:complexType name=“Action”>

<xs:sequence>
<xs:elemref name =“action-date”/>
<xs:elemref name =“action-desc”/>

</xs:sequence>
</xs:complexType>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
18

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Structures (cont.)

Sequence
<xs:sequence>

<xs:element name=“congress” type=xsd:string”/>
<xs:element name=“session” type=xsd:string”/>

</xs:sequence>
Choice
<xs:choice>

<xs:element name=“author” type=“PersonName”/>
<xs:element name=“editor” type=“PersonName”/>

</xs:choice>
Repetition
<xs:sequence minOccurs=“1” maxOccurs=“unbounded”>

<xs element name =“section” type=“Section”/>
</xs:sequence>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
19

© Prof.Dr.-Ing. Stefan Deßloch

Namespaces

A single XML document may contain elements and attributes defined for and
used by multiple software modules

Motivated by modularization considerations, for example

Name collisions have to be avoided
Example:

A Book XSD contains a Title element for the title of a book
A Person XSD contains a Title element for an honorary title of a person
A BookOrder XSD reference both XSDs

Namespaces specifies how to construct universally unique names

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
20

© Prof.Dr.-Ing. Stefan Deßloch

XML Schema Version of Bank DTD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.banks.org"
xmlns ="http://www.banks.org" >

<xsd:element name=“bank” type=“BankType”/>
<xsd:element name=“account”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=“account-number” type=“xsd:string”/>
<xsd:element name=“branch-name” type=“xsd:string”/>
<xsd:element name=“balance” type=“xsd:decimal”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element> ….. definitions of customer and depositor ….

<xsd:complexType name=“BankType”>
<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element ref=“account”/>
<xsd:element ref=“customer”/>
<xsd:element ref=“depositor”/>

</xsd:choice>
</xsd:complexType>
</xsd:schema>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
21

© Prof.Dr.-Ing. Stefan Deßloch

XML Document Using Bank Schema

<bank xmlns="http://www.banks.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.banks.org Bank.xsd">

<account>
<account-number> … </account-number>
<branch-name> … </branch-name>
<balance> … </balance>

</account>
…

</bank>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
22

© Prof.Dr.-Ing. Stefan Deßloch

Application Programming with XML

Application needs to work with XML data/document
Parsing XML to extract relevant information
Produce XML

Write character data
Build internal XML document representation and Serialize it

Simple API for XML (SAX)
“Push” parsing (event-based parsing)
Parser sends notifications to application about the type of document pieces it encounters
Notifications are sent in “reading order” as they appear in the document
Preferred for large documents (high memory efficiency)

Document Object Model (DOM)
“One-step” parsing
Generates in-memory representation of the document (parse tree)
DOM specifies the types of parse tree objects, their properties and operations

Independent of programming language (uses IDL)

Bindings available to specific programming languages (e.g., Java)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
23

© Prof.Dr.-Ing. Stefan Deßloch

Processing XML Data

Querying XML data
Translation of information from one XML schema to another
Standard XML querying/translation languages

XPath
Simple language consisting of path expressions

XSLT
Simple language designed for translation from XML to XML and XML to HTML

XQuery
An XML query language with a rich set of features
XQuery builds on experience with existing query languages:
XPath, Quilt, XQL, XML-QL, Lorel, YATL, SQL, OQL, …

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
24

© Prof.Dr.-Ing. Stefan Deßloch

XML Data Model

There is no uniform XML data model
different approaches with different goals

XML Information Set, DOM Structure Model, XPath 1.0 data model, XQuery data model

Common denominator: an XML document is modeled as a tree, with nodes
of different node types

Document, Element, Attribute, Text, Namespace, Comment, Processing Instruction
XQuery data model builds on a tree-based model, but extends it to support

sequences of items
nodes of different types (see above) as well as atomic values
can contain heterogeneous values, are ordered, can be empty

typed values and type annotations
result of schema validation
type may be unknown

Closure property
XQuery expressions operate on/produce instances of the XQuery Data Model

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
25

© Prof.Dr.-Ing. Stefan Deßloch

Example

<?xml version = "1.0"?>
<!-- Requires one trained person -->
<procedure title = "Removing a light bulb">
<time unit = "sec">15</time>
<step>Grip bulb.</step>
<step>

Rotate it
<warning>slowly</warning>
counterclockwise.

</step>
</procedure>

D

E AC

T

E EE

ET T T

T

A

procedure

title="Removing a light bulb"

time
unit="sec"

step

warning

counterclockwise.

step

Rotate it

slowly

Grip bulb.15

possible
instance of
XQuery data model

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
26

© Prof.Dr.-Ing. Stefan Deßloch

Processing XML Data: XPath

XPath is used to address (select) parts of documents using path expressions
XPath data model refers to a document as a tree of nodes
An Xpath expression maps a node (the context node) into a set of nodes
A path expression consists of one or more steps separated by “/”
Result of path expression: set of values
that along with their containing
elements/attributes match the specified path

E.g.: /bank-2/customer/customer-name
evaluated on the bank-2 data returns

<customer-name> Joe </ customer-name>
< customer- name> Mary </ customer-name>

E.g.:/bank-2/customer/cust-name/text()
returns the same names, but without the
enclosing tags

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
27

© Prof.Dr.-Ing. Stefan Deßloch

XPath (cont.)

The initial “/” denotes root of the document (above the top-level tag)
In general, a step has three parts:

The axis (direction of movement: child, descendant, parent, ancestor, following, preceding,
attribute, … - 13 axes in all -)
A node test (type and/or name of qualifying nodes)
Some predicates (refine the set of qualifying nodes)

Path expressions are evaluated left to right
Each step operates on the set of instances produced by the previous step

Selection predicates may follow any step in a path, in []
E.g. /bank-2/account[balance > 400]

returns account elements with a balance value greater than 400
/bank-2/account[balance] returns account elements containing a balance subelement

Attributes are accessed using “@”
E.g. /bank-2/account[balance > 400]/@account-number

returns the account numbers of those accounts with balance > 400

IDREF attributes are not dereferenced automatically (more on this later)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
28

© Prof.Dr.-Ing. Stefan Deßloch

XPath (cont.)

The following examples use XPath abbreviated
notation:

Find the first item of every list that is under the
context node

.//list/item[1]
Find the “lang” attribute of the parent of the
context node

../@lang
Find the last paragraph-child of the context node

para[last()]
Find all warning elements that are inside
instruction elements

//instruction//warning
Find all elements that have an ID attribute

//*[@ID]
Find names of customers who have an order with
today’s date

//customer [order/date = today ()] / name

XPath expressions
use a notation
similar to paths in a
file system:

/ means
“child” or “root”

// means
“descendant”

. means “self”

.. means “parent”

* means “any”

@ means “attribute”

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
29

© Prof.Dr.-Ing. Stefan Deßloch

XPath (cont.): Summary

Strengths:
Compact and powerful syntax for navigating a tree,
but not as powerfull as a regular-expression language
Recognized and accepted in XML community
Used in XML-related applications such as XPointer

Limitations:
Operates on one document (no joins)
No grouping or aggregation
No facility for generating new output structures

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
30

© Prof.Dr.-Ing. Stefan Deßloch

Transforming XML Data: XSLT

A stylesheet stores formatting options for a document, usually separately
from document

E.g. HTML style sheet may specify font colors and sizes for headings, etc.

The XML Stylesheet Language (XSL) was originally designed for
generating HTML from XML
XSLT is a general-purpose transformation language

Can translate XML to XML, and XML to HTML

XSLT transformations are expressed using rules called templates
Templates combine selection using XPath with construction of results

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
31

© Prof.Dr.-Ing. Stefan Deßloch

Understanding A Template

Most templates have the following form:
<xsl:template match="emphasis">

<i><xsl:apply-templates/></i>
</xsl:template>

The whole <xsl:template> element is a template
The match pattern determines where this template applies

Xpath pattern

Literal result element(s) come from non-XSL namespace(s)
XSLT elements come from the XSL namespace

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
32

© Prof.Dr.-Ing. Stefan Deßloch

XQuery

XQuery is a general purpose query language for XML data
Currently being standardized by the World Wide Web Consortium (W3C)
XQuery is derived from

the Quilt (“Quilt” refers both to the origin of the language and to its use in “knitting ” together heterogeneous
data sources) query language, which itself borrows from
XPath: a concise language for navigating in trees
XML-QL: a powerful language for generating new structures
SQL: a database language based on a series of keyword-clauses: SELECT - FROM
– WHERE
OQL: a functional language in which many kinds of expressions can be nested
with full generality

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
33

© Prof.Dr.-Ing. Stefan Deßloch

XQuery – Main Constituents

Path expressions
Inherited from XPath 1.0
An XPath expression maps a node (the context node) into a set of nodes

Element constructors
To construct an element with a known name and content, use XML-like syntax:

<book isbn = "12345">
<title>Huckleberry Finn</title>

</book>

If the content of an element or attribute must be computed, use a nested
expression enclosed in { }

<book isbn = "{$x}">
{$b/title }

</book>

FLWOR - Expressions

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
34

© Prof.Dr.-Ing. Stefan Deßloch

RETURN_clauseFOR_clause

LET_clause WHERE_clause

XQuery: The General Syntax Expression FLWOR

FOR clause, LET clause generate list of tuples of bound variables (order preserving) by
iterating over a set of nodes (possibly specified by an XPath expression), or
binding a variable to the result of an expression

WHERE clause applies a predicate to filter the tuples produced by FOR/LET
ORDER BY clause imposes order on the surviving tuples
RETURN clause is executed for each surviving tuple, generates ordered list of outputs
Associations to SQL query expressions

for SQL from
where SQL where
order by SQL order by
return SQL select
let allows temporary variables, and has no equivalent in SQL

ORDER_BY_clause

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
35

© Prof.Dr.-Ing. Stefan Deßloch

Evaluating FLWOR Expressions

…

………

zy$x

input sequence tuple stream

………

zy$x

ok!

ok!

X

………

zy$x

…

ouput sequence

FOR $X,$Y ..
LET $Z .. WHERE ..

ORDER
BY ..

RETURN ..

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
36

© Prof.Dr.-Ing. Stefan Deßloch

FLWOR - Examples

Simple FLWR expression in XQuery
Find all accounts with balance > 400, with each result enclosed in an <account-
number> .. </account-number> tag

for $x in /bank-2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> {$acctno} </account-number>

Let and Where clause not really needed in this query, and selection can be
done in XPath.

Query can be written as:
for $x in /bank-2/account[balance>400]
return <account-number> {$x/@account-number}

</account-number>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
37

© Prof.Dr.-Ing. Stefan Deßloch

Nesting of Expressions

Here: nesting inside the return clause
Example: inversion of a hierarchy

<book>
<title>
<author>
<author>

</book>
<book>

<title>
<author>
<author>

</book>

<author>
<name>
<title>
<title>

</author>
<author>

<name>
<title>
<title>

</author>

FOR $a IN distinct-values(//author)
ORDER BY $a/name
RETURN

<author>
<name> { $a/text() } </name>
{ FOR $b IN //book[author = $a]

RETURN $b/title }
</author>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
38

© Prof.Dr.-Ing. Stefan Deßloch

XQuery: Joins

Joins are specified in a manner very similar to SQL
for $a in /bank/account,

$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct>{ $c $a }</cust-acct>

The same query can be expressed with the selections specified as XPath
selections:
for $a in /bank/account

$c in /bank/customer
$d in /bank/depositor[

account-number =$a/account-number and
customer-name = $c/customer-name]

return <cust-acct>{ $c $a }</cust-acct>

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
39

© Prof.Dr.-Ing. Stefan Deßloch

XQuery - Status

Current status: w3c candidate recommendation
fairly close to becoming a w3c recommendation

Ongoing and Future Work
Full-text support
Insert, Update, Delete
View definitions, DDL
Host language bindings, APIs

JSR 225: XQuery API for JavaTM (XQJ)
problem to overcome: traditional XML processing API is based on well-formed documents

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
40

© Prof.Dr.-Ing. Stefan Deßloch

SQL and XML

Use existing (object-)relational technology?
Large Objects: granularity understood by DBMS may be too coarse!

search/retrieval of subsets, update of documents

Decompose into tables: often complex, inefficient
mapping complexity, especially for highly "denormalized" documents

Useful, but not sufficient
should be standardized as part of SQL
but needs further enhancement to support "native" XML support in SQL

Enable "hybrid" XML/relational data management
supports both relational and XML data

storage, access
query language
programming interfaces

ability to view/access relational as XML, and XML as relational
all major relational DBMS vendors are moving into this direction

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
41

© Prof.Dr.-Ing. Stefan Deßloch

SQL/XML Big Picture

<?xml version = "1.0"?>
<order>

<item> … </item>
<item> … </item>

…
</order>

<?xml version = "1.0"?>
<order>

<item> … </item>
<item> … </item>

…
</order>

<?xml version = "1.0"?>
<order>

<item> … </item>
<item> … </item>

…
</order>

<?xml version = "1.0"?>
<order>

<item> … </item>
<item> … </item>

…
</order>

storage

client
view

XML,
XQuery client

enhanced
SQL client SQL client

SQL/XML

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
42

© Prof.Dr.-Ing. Stefan Deßloch

SQL:2003 Parts and Packages

2: Foundation 11: Schemata

3: CLI 4: PSM 9: MED 10: OLB 13: JRT 14: XML

Core SQL

(2) Enhanced
Integrity Mgmnt.

(1) Enhanced
Date/Time Fac.

(8) Active
Databases

(7) Enhanced
Objects

(6) Basic
Objects (10) OLAP

(4) PSM

optional
features

mandatory
features

•Two major goals:
•"Publish" SQL query results as XML documents
•Ability to store and retrieve XML documents

•Rules for mapping SQL types, SQL identifiers and
SQL data values to and from corresponding
XML concepts

•A new built-in type XML
•A number of built-in operators that produce

values of type XML

recent additions for SQL200n:
•Integration of the XQuery Data Model
•Additional XML Constructor Functions
•Querying XML values

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
43

© Prof.Dr.-Ing. Stefan Deßloch

XML Data Type

New SQL type “XML”
for storing XML data "natively" in the database
for capturing the data type of results and input values of SQL/XML functions that
work with XML data
can have optimized internal representation (different from character string)

"Shape" of an XML value
not just a well-formed XML document
but also the content of an XML element

element, sequence of elements, text, mixed content, …

based on Infoset model in SQL:2003, full support of XQuery data model in
SQL:200n

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
44

© Prof.Dr.-Ing. Stefan Deßloch

XML Publishing Functions- Example

SELECT XMLELEMENT (NAME "Department",
XMLATTRIBUTES (e.dept AS "name"),
XMLAGG (XMLELEMENT (NAME "emp", e.lname))

) AS "dept_list",
COUNT(*) AS "dept_count"

FROM employees e
GROUP BY dept ;

==>

<Department name="Shipping">
<emp>Oppenheimer</emp>
<emp>Martin</emp>

</Department>

<Department name="Accounting">
<emp>Yates</emp>
<emp>Smith</emp>

</Department>

dept_list

2

2

dept_count

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
45

© Prof.Dr.-Ing. Stefan Deßloch

Manipulating XML Data

Constructor functions
focus on publishing SQL data as XML
no further manipulation of XML

More requirements
how do we select or extract portions of XML data (e.g., from stored XML)?
how can we decompose XML into relational data?

XMLCAST is not sufficient

both require a language to identify, extract and possibly combine parts of XML
values

SQL/XML utilizes the XQuery standard for this!

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
46

© Prof.Dr.-Ing. Stefan Deßloch

XMLQUERY

Evaluates an XQuery or XPath expression
Provided as a character string literal

Allows for optional arguments to be passed in
Zero or more named arguments
At most one unnamed argument can be passed in as the XQuery context item
Arguments can be of any predefined SQL data type incl. XML
Non-XML arguments will be implicitly converted using XMLCAST

Returns a sequence of XQuery nodes

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
47

© Prof.Dr.-Ing. Stefan Deßloch

XMLQUERY – Example

SELECT XMLQUERY(‘for $e in $dept[@count > 3]/emp
where $e/hire > 2004-12-31 return $e/name’

PASSING BY REF deptDoc AS “dept”
RETURNING SEQUENCE) AS “Name_elements”

FROM XMLDept
=>

<name>Martin</name>

<name>Smith</name>
<name>Johnson</name>

<name>Miller</name>

Name_elements

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
48

© Prof.Dr.-Ing. Stefan Deßloch

XMLTABLE

Transforming XML data into table format
Evaluates an XQuery or XPath expression – the “row pattern”

each item of result sequence is turned into a row
allows for optional arguments to be passed in, just like XMLQuery

Element/attribute values are mapped to column values using path
expressions (PATH) – the “column pattern”
Names and SQL data types for extracted values/columns need to be specified
Default values for “missing” columns can be provided
ORDINALITY column can be generated

contains a sequential number of the corresponding XQuery item in the XQuery
sequence (result of the row pattern)

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
49

© Prof.Dr.-Ing. Stefan Deßloch

XMLTABLE - Example

SELECT X.*
FROM XMLDept d,

XMLTABLE (‘$dept/emp’ PASSING d.deptDoc AS “dept”
COLUMNS
“#num” FOR ORDINALITY,
“name” VARCHAR(30) PATH 'name',
“hire” DATE PATH 'hire',
“dept” VARCHAR(40) PATH ‘../@name’
) AS “X”

=>

3

2

1

#num

Shipping2000-05-01Martin

Accounting2002-02-01Yates

Accounting2005-01-01Smith

depthirename

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
50

© Prof.Dr.-Ing. Stefan Deßloch

XML Advantages for Integration

Integrates data and meta-data (tags)
Self-describing

XMLSchema, Namespaces
Defining valid document structure
Integrating heterogenous terminology and structures

XML can be validated against schema (xsd, dtd) outside the application
Many technologies exist for processing, transforming, querying XML
documents

DOM, SAX, XSLT, XPath, XQuery

XML processing can help handle schema heterogenity, schema evolution
Focus on known element tags, attributes, namespaces …
Powerful filter and transformation capabilities

XML is independent of platforms, middleware, databases, applications …

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
51

© Prof.Dr.-Ing. Stefan Deßloch

XML and Data Management

Increasing importance of XML in combination with data management
flexible exchange of relational data using XML
managing XML data and documents
trend towards "hybrid" approaches for relational DBMS

SQL/XML standard attempts to support the following
"Publish" SQL query results as XML documents
Ability to store and retrieve (parts of) XML documents with SQL databases
Rules and functionality for mapping SQL constructs to and from corresponding XML
concepts

Relies partly on XQuery standard
XML data model
queries over XML data

Broad support by major SQL DBMS vendors
Additional standards to further extend and complete the "big picture"!

XQJ: XML queries in Java
Grid Data Access Services (GGF): web/grid services to access DBs using SQL,
XQuery

Middleware for Heterogenous and
Distributed Information Systems -

WS05/06
52

© Prof.Dr.-Ing. Stefan Deßloch

XML Support for DBMS: Direction

CatalogCatalog
(metadata)(metadata)

RelationalRelational
DataData

XMLXML
DataData

xqueryxquery

XMLXML

SQLSQL

SQL resultsSQL results

xqueryxquery

XMLXML
WrapperWrapper

SQLSQL

SQL resultsSQL results
WrapperWrapper

Web ServicesWeb ServicesWrapperWrapper

Relational
Interface

XML
Interface

Database
Server

Relational
Storage

XML
Storage

