
1

Middleware for Heterogenous and Distributed Information Systems - WS04/05

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 13 - Business Processes and Web
Services

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
2

© Prof.Dr.-Ing. Stefan Deßloch

Introduction

Web Services Composition
Ability to create new web services out of existing (web service) components
Requirements similar to BPM, Workflow Management

separate function from composition logic, …

Limitations of conventional composition middleware (e.g., WFMS)
Significant effort to integrate existing applications

application-specific adapters, wrappers
no standard model for component description, interoperability

Limited success of composition model standardization
WfMC standard is not widely implemented

Opportunities for Web Services
Web Services seem to be adequate components

well-defined interfaces, described using WSDL
standardized invocation (SOAP)

Significant efforts in standardizing WS composition languages
Reuse of existing WS "infrastructure" (directory, service selection, …)

WS composition tools are less expensive to develop

2

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
3

© Prof.Dr.-Ing. Stefan Deßloch

Business Processes and Web Services

Business Process Execution Language for Web Services (BPEL4WS)
XML-based language for specifying business process behavior based on web
services
Describe business processes that both provide and consume web services

Steps (activities)
Implemented as an interaction with a web service

Information flow into/out of the process
Externalized as web service

Complemented by
WS Coordination specification

Allows to web services involved in a process to share information that “links” them
together

Shared coordination context

WS Transaction specification
Allows to monitor the success/failure of each coordinated activity

Reliably cancel the business process, involves compensating activities

Standardization is in progress (OASIS)
based on specification proposed by IBM, Microsoft, BEA (and Siebel for BPEL 1.1)

BPEL unifies XLANG (Microsoft), WSFL (IBM)

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
4

© Prof.Dr.-Ing. Stefan Deßloch

BPEL4WS

Business process defines
Potential execution order of operations (web services)
Data shared between the web services
Partners involved in business process
Joint exception handling for collection of web services

Long running transactions between web services
BPEL script

Fully executable specification of business process
Portable between BPEL-conformant environments

Supports specification of business protocols between partners

3

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
5

© Prof.Dr.-Ing. Stefan Deßloch

BPEL Example – Flow Diagram

Customer Travel Agent Airline

itineraryMessage

itineraryMessage

ticketsMessage

ItineraryPT::
sendItinerary

ticketOrderPT::
requestTickets

ItineraryPT::
sendTickets

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
6

© Prof.Dr.-Ing. Stefan Deßloch

Activities – Example

<receive
partnerLink="customer"
portType="itineraryPT"
operation="sendItinerary"
variable="itinerary"/>

<invoke
partnerLink="airline"
portType="ticketOrderPT"
operation="requestTickets”
inputVariable="itinerary”/>

<receive
partnerLink="airline"
portType="itineraryPT"
operation="sendTickets”
variable="tickets"/>

<reply
partnerLink="customer"
portType="itineraryPT"
operation="sendItinerary"
variable="tickets"/>

Customer Travel Agent Airline

4

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
7

© Prof.Dr.-Ing. Stefan Deßloch

Activities

Types of (simple) activities
Receive

Wait for a message to be received from a partner
Specifies partner from which message is to be received, as well as
The port and operation provided by the process

Used by the partner to pass the message

Reply
Synchronous response to a request corresponding to a receive activity
Combination of Receive/Reply corresponds to request-response operation in WSDL

Invoke
Issue an asynchronous request, or
Synchronously invoke a request/reply operation of a web service provided by a partner

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
8

© Prof.Dr.-Ing. Stefan Deßloch

More simple activities

Wait
Process should wait for a specified time period or until a point in time

Empty
No action

Can serve as a means to synchronize parallel processing within the process

Terminate
Business process should be terminated immediately

Throw
Signal occurrence of an error

Assign
Copies fields from containers into other containers

Compensate
Undo the effects of completed activities

5

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
9

© Prof.Dr.-Ing. Stefan Deßloch

Structured activities

Sequence
Enclosed activities are carried out in listed order

Switch
Selects one of several activities based on selection criteria

While
Carry out enclosed activities as long as the while condition is true

Pick
Specifies a whole set of messages

can be received from the same or different partners

Activity is completed when one of the specified messages is received
Permits specifying a time limit after which processing continues if message is not
received
Pick and Receive can be start activities of a process

Can indicate that a process instance should be created if none exists

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
10

© Prof.Dr.-Ing. Stefan Deßloch

Flow Activity

Defines sets of activities plus (optional) control flow
All activities can (potentially) execute in parallel
Activities can be "wired together" via links

Links used to “synchronize” them

Activities can again be flows

Links can be associated with transition conditions
Specified at the source activity

Target of link has join condition
Explicit join condition can reference the status of incoming links
Implicit join condition: at least one incoming link has a positive status

6

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
11

© Prof.Dr.-Ing. Stefan Deßloch

Flow of Activities

Flow
Directed graph
with

Activities as
nodes
Links as edges
connecting the
activities

Each activity
defines the links it
is a source or a
target of

15 <flow>
16 <links>
17 <link name="order-to-airline"/>
18 <link name="airline-to-agent"/>
19 </links>
20 <receive partnerLink="customer"
21 portType="itineraryPT"
22 operation="sendItinerary"
23 variable="itinerary”>
24 <source linkName"order-to-airline"/>
25 </receive>
26 <invoke partnerLink="airline"
27 portType="ticketOrderPT"
28 operation="requestTickets”
29 inputVariable="itinerary”>
30 <target linkName"order-to-airline"/>
31 <source linkName"airline-to-agent"/>
32 </invoke>
33 <receive partnerLink="airline"
34 portType="itineraryPT"
35 operation="sendTickets”
36 variable="tickets"
37 <target linkName"airline-to-agent"/>
38 </receive>
39 </flow>
40 </process>

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
12

© Prof.Dr.-Ing. Stefan Deßloch

Link Semantics

Control Flow Navigation
Evaluation of link status, join conditions evaluted only if status of all incoming links
has been evaluated
Dead path elimination

Attribute suppressJoinFailure="yes"

Links can cross boundaries of structured activities
Some restrictions apply

must not cross while-activity, serializable scope, compensation handler, event handler
no links into a fault handler

Careful consideration of resulting semantics

Links must not build a control cycle!

7

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
13

© Prof.Dr.-Ing. Stefan Deßloch

Variables

Variables are used to define data containers
WSDL messages received from or sent to partners
Messages that are persisted by the process
XML data defining the process state

Constitute the “business context” of the process
Access to variables can be serialized to some extent

11 <variables>
12 <variable name="itinerary“ messageType="itineraryMessage"/>
13 <variable name="tickets" messageType="ticketsMessage"/>
14 </variables>

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
14

© Prof.Dr.-Ing. Stefan Deßloch

Partners

Partner link definition
Specifies the web services mutually used by the partner or process

E.g., agent process interacts with customer, airline

References a partner link type
Connects a partner to a process
Specifies collections of web services: roles

Provided and required by the connected partners

Defines role taken by the process itself (myRole) and role that has to be accepted
by the partner (partnerRole)

1 <process name="ticketOrder">
2 <partnerLinks>
3 <partnerLink name="customer"
4 partnerLinkType="agentLink"
5 myRole="agentService"/>
6 <partnerLink name="airline"
7 partnerLinkType="buyerLink"
8 myRole="ticketRequester"
9 partnerRole="ticketService"/>

10 </partnerLinks>

1 <partnerLinkType name="buyerLink">
2 <role name="ticketRequester">
3 <portType name="itineraryPT"/>
4 </role>
5 <role name="ticketService">
6 <portType name="ticketOrderPT"/>
7 </role>
8 </partnerLinkType>

Partner link type definition

8

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
15

© Prof.Dr.-Ing. Stefan Deßloch

Partners (cont.)

Definition of partners in addition to partner links
optional definition
may require the same partner to play multiple roles

partner definitions must not overlap

Example
<partners>

<partner name="SellerShipper">
<partnerLink name="Seller"/>
<partnerLink name="Shipper"/>

</partner>
</partners>

Partner link names are used in all service interactions to identify partners
see activities for invoking/providing services

Assignment of endpoints for partners
at deployment time
dynamically at run time

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
16

© Prof.Dr.-Ing. Stefan Deßloch

Properties

Property
Globally defined types
Primarily used to correlate a message with a specific process instance

E.g., order number
Usually included in the message
Often the same property is used in different messages

Can be defined in BPEL as a separate entity:
9 <property name="orderNumber" type="xsd:int"/>

Property alias
Allows to point to a dedicated field of the message that represents the property

Usually different for each message type
Can be used in expression and assignments to easily use properties

10 <propertyAlias propertyName="orderNumber"
11 messageType="ticketsMessage“
12 part="orderInfo“
13 query="/orderID"/>

9

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
17

© Prof.Dr.-Ing. Stefan Deßloch

Correlation

Message needs to be delivered not only to the correct port, but to the correct
instance of the business process providing the port
Correlation Set

one or more properties used for correlating messages
example

<correlationSets>
<correlationSet name="Booking"

properties="orderNumber"/>
…

</correlationSets>

correlation properties are like "late-bound constants"
binding happens through specially marked message send/receive activities
value must not change after the binding happens

Often, more than one correlation set is used for an entire process
example: orderNumber -> invoiceNumber
correlated message exchanges may nest, overlap
same message may carry multiple correlation sets

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
18

© Prof.Dr.-Ing. Stefan Deßloch

Scope

Defines the behavior context of an activity
simple or structured (group of activities)

Can provide the following for a (regular) activity
(Local) data variables
Correlation Sets
Fault handler(s)
Event handler(s)
Compensation handler

Scope acts as a compensation sphere

10

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
19

© Prof.Dr.-Ing. Stefan Deßloch

Fault Handlers

Fault handlers catch and deal with faults
Process interacts with WSDL port, WSDL port may send fault message back to a process
Internal fault (throw activity)

Fault reaching a fault handler means that regular processing within scope can no longer
proceed

All active work in the scope must be stopped!

Catch element
Specifies fault to be handled
Includes activity (simple or structured) to be performed if fault occurs

35 <faultHandlers>
36 <catch faultName="noSeatsAvailable">
37 <invoke partner="customer“
38 portType="travelPT"
39 operation="sendRejection“
40 inputContainer="rejection"/>
41 </catch>
42 </faultHandlers>

May make use of compensation handlers to undo completed nested activities

After fault handler completes successfully, processing may continue outside the scope
Processing of the scope is still considered to have ended abnormally

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
20

© Prof.Dr.-Ing. Stefan Deßloch

Compensation Handler

Used to reverse the work of a sucessfully completed scope
compensation handler is "installed" after successful completion of the scope

Can be defined for each scope
Scopes can be arbitrarily nested
Syntactic shortcut for invoke activity

Inline definition of compensation handler
Equivalent to scope with comp. handler and invoke activity

Compensation activity can be any activity

11

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
21

© Prof.Dr.-Ing. Stefan Deßloch

Compensation Handlers – Example

<scope name="purchase">
<compensationHandler>

<invoke partner="Seller"
portType="SP:Purchasing”
operation="CancelPurchase"
inputContainer="getResponse”
outputContainer="getConfirmation">

</invoke>
</compensationHandler>
<invoke partner="Seller"

portType="SP:Purchasing”
operation="SyncPurchase"
inputContainer="sendPO”
outputContainer="getResponse">

</invoke>

</scope>

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
22

© Prof.Dr.-Ing. Stefan Deßloch

Compensation Handler Invocation

Compensate activity
Invokes compensation handler for named scope

Example: <compensate scope="purchase"/>

Can be invoked only from the fault handler or compensation handler of the
immediately enclosing scope

Data semantics
When invoked, compensation handler sees frozen snapshot of data variables

All variables in the state they were at completion time of the scope being compensated

Compensation handlers live in a snapshot world
Cannot update “live” data variables
Can only affect external entities
Input/output parameters for compensation handler are future direction

12

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
23

© Prof.Dr.-Ing. Stefan Deßloch

Default Compensation and Fault Handlers

Default compensation handler
Invokes compensation handlers of immediately enclosed scopes in the reverse
order of the completion of the scopes
Is used if a (enclosing) scope does not explicitly define a compensation handler
Can also be invoked explicitly

Useful if comp. action = “compensate enclosed scope in reverse order” + “additional
activities”

Default fault handler
Invokes compensation handlers of immediately enclosed scopes in the reverse
order of the completion of the scopes
Rethrows the exception

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
24

© Prof.Dr.-Ing. Stefan Deßloch

More on Faults

Termination of running activities
Regular processing is stopped
If the activity is a scope, the fault handler for forcedTermination fault is invoked

Activity being terminated can react to termination
call compensation handlers of nested, completed activities, …

Implicit fault handler is invoked otherwise

Faults occuring in compensation handlers or fault handlers
Can be caught by regular fault handlers in enclosing scopes or scopes with the
fault handler

13

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
25

© Prof.Dr.-Ing. Stefan Deßloch

Process life-cycle

Start activities
receive, pick – createInstance attribute

creates a new process instance, if it doesn't exist already

Example:
<receive partner="customer",

portType="itineraryPT",
operation="sendItinerary",
variable="itinerary”
createInstance="yes"/>

each process must have at least one start activity as an initial activity

Process termination
process-level activity completes successfully
fault "arrives" at the process level (handled or not)
terminate activity is invoked

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
26

© Prof.Dr.-Ing. Stefan Deßloch

BPEL Long-Running (Business) Transactions (LRTs)

Define fault handling and compensation in an application-specific manner
Explicitly specified as part of the business protocol

E.g., order of compensation steps may be different from reverse order of completion

LRT within single, local business process, i.e., no support for LRT that spans
Distributed business process
Multiple vendors or platforms

WS-Transaction specification
Business Activities
Protocol Framework can be used to model the fault and compensation relationships
between a scope and its enclosing scopes

14

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05
27

© Prof.Dr.-Ing. Stefan Deßloch

Business Agreement Protocol

BusinessAgreementWithComplete – State Diagram

