Prof. Dr.-Ing. Stefan DeBloch

AG Heterogene Informationssysteme]
Geb. 36, Raum 329 I m TechniscHE UNIVERSITAT

Tel. 0631/205 3275 m KAISERSLAUTERN

dessloch@informatik.uni-kl.de

Chapter 13 - Business Processes and Web
Services

@ .S B Middleware for Heterogenous and Distributed Information Systems - WS04/05

Introduction

= Web Services Composition
= Ability to create new web services out of existing (web service) components
= Requirements similar to BPM, Workflow Management
= separate function from composition logic, ...
= Limitations of conventional composition middleware (e.g., WFMS)
= Significant effort to integrate existing applications
= application-specific adapters, wrappers
= no standard model for component description, interoperability
= Limited success of composition model standardization
= WIfMC standard is not widely implemented

= Opportunities for Web Services
= Web Services seem to be adequate components
= well-defined interfaces, described using WSDL
= standardized invocation (SOAP)
= Significant efforts in standardizing WS composition languages
= Reuse of existing WS "infrastructure" (directory, service selection, ...)
= WS composition tools are less expensive to develop
@is 5 M_idd‘leware for Hete(ogenous and
2 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Business Processes and Web Services

= Business Process Execution Language for Web Services (BPEL4WS)
= XML-based language for specifying business process behavior based on web
services
= Describe business processes that both provide and consume web services
= Steps (activities)
Implemented as an interaction with a web service
= Information flow into/out of the process
Externalized as web service
= Complemented by
= WS Coordination specification
= Allows to web services involved in a process to share information that “links” them
together
Shared coordination context
= WS Transaction specification
= Allows to monitor the success/failure of each coordinated activity
Reliably cancel the business process, involves compensating activities
= Standardization is in progress (OASIS)
= based on specification proposed by IBM, Microsoft, BEA (and Siebel for BPEL 1.1)
= BPEL unifies XLANG (Microsoft), WSFL (IBM)

@ . S 5 Middleware for Heterogenous and
3 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

BPEL4WS

= Business process defines
= Potential execution order of operations (web services)
= Data shared between the web services
= Partners involved in business process
= Joint exception handling for collection of web services
= Long running transactions between web services
= BPEL script

= Fully executable specification of business process
= Portable between BPEL-conformant environments

= Supports specification of business protocols between partners

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

BPEL Example — Flow Diagram

Customer Travel Agent Airline

itineraryMessage

itineraryMessage

/

ticketsMessage

/

@ . S Middleware for Heterogenous and
= 5 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DeBBloch WS04/05

Activities — Example

Customer Travel Agent Airline

@ . S Middleware for Heterogenous and
= 6 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DeBBloch WS04/05

Activities

= Types of (simple) activities
= Receive
= Wait for a message to be received from a partner
= Specifies partner from which message is to be received, as well as
= The port and operation provided by the process
Used by the partner to pass the message
= Reply
= Synchronous response to a request corresponding to a receive activity
= Combination of Receive/Reply corresponds to request-response operation in WSDL
= Invoke
= Issue an asynchronous request, or
= Synchronously invoke a request/reply operation of a web service provided by a partner

@ . S 5 Middleware for Heterogenous and
7 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

More simple activities

= Wait

= Process should wait for a specified time period or until a point in time
= Empty

= No action

= Can serve as a means to synchronize parallel processing within the process

= Terminate
= Business process should be terminated immediately

= Throw
= Signal occurrence of an error
= Assign

= Copies fields from containers into other containers

= Compensate
= Undo the effects of completed activities

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Structured activities

= Sequence
= Enclosed activities are carried out in listed order

= Switch
= Selects one of several activities based on selection criteria
= While

= Carry out enclosed activities as long as the while condition is true
s Pick
= Specifies a whole set of messages
= can be received from the same or different partners
= Activity is completed when one of the specified messages is received

= Permits specifying a time limit after which processing continues if message is not
received

= Pick and Receive can be start activities of a process
= Can indicate that a process instance should be created if none exists

@ . S 5 Middleware for Heterogenous and
9 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Flow Activity

= Defines sets of activities plus (optional) control flow
= All activities can (potentially) execute in parallel

= Activities can be "wired together" via links
= Links used to “synchronize” them

= Activities can again be flows
= Links can be associated with transition conditions
= Specified at the source activity
= Target of link has join condition
= Explicit join condition can reference the status of incoming links
= Implicit join condition: at least one incoming link has a positive status

@-S 5 Middleware for Heterogenous and

10 Distributed Information Systems
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Flow of Activities

15 <flow>
= Flow 16 <links>
H 17 <link name=" />
. D|_rected graph 18 <link names e
with 19 </links>
PR 20 <receive partnerLink="customer"
= Activities as 21 portType="itineraryPT"
nodes 22 operation="sendltinerary"
23 variable="itinerary”>
b as edges 24 <source linkName" />
connecting the 25 </receive>
activities 26 <invoke partnerLink=""airline"
L 27 portType="ticketOrderPT"
= Each act|V|ty 28 operation="requestTickets”
: H H 29 inputVariable="itinerary”>
Qeflnes the links it 20 <target linkName" /s
IS a source or a 31 <source linkName" />
32 </invoke>
target of 33 <receive partnerLink="airline"
34 portType="itineraryPT"
35 operation="sendTickets”
36 variable="tickets"
37 <target linkName" />
38 </receive>
39 </flow>
40 </process>
@ . S 5 Middleware for Heterogenous and
11 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Link Semantics

= Control Flow Navigation
= Evaluation of link status, join conditions evaluted only if status of all incoming links
has been evaluated
= Dead path elimination
= Attribute suppressJoinFailure="yes"
= Links can cross boundaries of structured activities
= Some restrictions apply
= must not cross while-activity, serializable scope, compensation handler, event handler
= no links into a fault handler
= Careful consideration of resulting semantics

= Links must not build a control cycle!

@‘S 5 Middleware for Heterogenous and

12 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Variables

= Variables are used to define data containers
= WSDL messages received from or sent to partners
= Messages that are persisted by the process
= XML data defining the process state
= Constitute the “business context” of the process
= Access to variables can be serialized to some extent

11 <variables>

12 <variable name="itinerary" messageType="itineraryMessage"/>
13 <variable name="tickets" messageType="ticketsMessage"/>

14 </variables>

@ . S 5 Middleware for Heterogenous and
13 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Partners

= Partner link definition

= Specifies the web services mutually used by the partner or process

= E.g., agent process interacts with customer, airline
= References a partner link type

= Connects a partner to a process

= Specifies collections of web services: roles

Provided and required by the connected partners
= Defines role taken by the process itself (myRole) and role that has to be accepted
by the partner (partnerRole)

1 <process name="ticketOrder"> Partner link type definition
2 <partnerLinks> 1 <partnerLinkType name="buyerLink">
3 <partnerlink name="customer” 2 <role name="ticketRequester">
4 partnerLinkType="agentLink" 3 <portType name="itineraryPT"/>
5 myRole="agentService"/> 4 </role>
6 <partnerLink name="airline" ¢) 5 <role name=" "
7 partnerLinkType="buyerLink" 6 <portType name="ticketOrderPT"/>
8 myRole="ticketRequester" 7 </role>
9 partnerRole=" b 8 </partnerLinkType>
10 </partnerLinks>
@ - S 5 Middleware for Heterogenous and
14 Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Partners (cont.)

= Definition of partners in addition to partner links
= optional definition
= may require the same partner to play multiple roles
= partner definitions must not overlap
= Example
<partners>
<partner name="SellerShipper">
<partnerLink name="Seller"/>
<partnerLink name="Shipper"/>
</partner>
</partners>
= Partner link names are used in all service interactions to identify partners
= see activities for invoking/providing services
= Assignment of endpoints for partners
= at deployment time
= dynamically at run time

@ . S 5 Middleware for Heterogenous and
15 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Properties

= Property
= Globally defined types
= Primarily used to correlate a message with a specific process instance
= E.g., order number
= Usually included in the message
= Often the same property is used in different messages

= Can be defined in BPEL as a separate entity:
9 <property name="orderNumber" type="xsd:int"/>

= Property alias
= Allows to point to a dedicated field of the message that represents the property
= Usually different for each message type
= Can be used in expression and assignments to easily use properties

10 <propertyAlias propertyName="orderNumber"

11 messageType="ticketsMessage"
12 part="orderInfo"
13 query="/orderID"/>
@ i S 5 Middleware for Heterogenous and
16 Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Correlation

= Message needs to be delivered not only to the correct port, but to the correct
instance of the business process providing the port
= Correlation Set
= one or more properties used for correlating messages

= example

= <correlationSets>
<correlationSet name="Booking"
properties="orderNumber"/>

<;(.:orrelationSets>
= correlation properties are like "late-bound constants"
= binding happens through specially marked message send/receive activities
= value must not change after the binding happens
= Often, more than one correlation set is used for an entire process
= example: orderNumber -> invoiceNumber
= correlated message exchanges may nest, overlap
= same message may carry multiple correlation sets

@ . S 5 Middleware for Heterogenous and
17 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

= Defines the behavior context of an activity
= simple or structured (group of activities)
= Can provide the following for a (regular) activity
= (Local) data variables
= Correlation Sets
= Fault handler(s)
= Event handler(s)

= Compensation handler
= Scope acts as a compensation sphere

@ . S 5 Middleware for Heterogenous and
18 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Fault Handlers

= Fault handlers catch and deal with faults
= Process interacts with WSDL port, WSDL port may send fault message back to a process
= Internal fault (throw activity)
= Fault reaching a fault handler means that regular processing within scope can no longer
proceed
= All active work in the scope must be stopped!
= Catch element
= Specifies fault to be handled
= Includes activity (simple or structured) to be performed if fault occurs
35 <faultHandlers>

36 <catch faultName="noSeatsAvailable">

37 <invoke partner="customer*

38 portType="travelPT"

39 operation="sendRejection*
40 inputContainer="rejection"/>
41 </catch>

42 </faultHandlers>
= May make use of compensation handlers to undo completed nested activities
= After fault handler completes successfully, processing may continue outside the scope
= Processing of the scope is still considered to have ended abnormally

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch 19 WS04/05

Compensation Handler

= Used to reverse the work of a sucessfully completed scope

= compensation handler is "installed" after successful completion of the scope
= Can be defined for each scope

= Scopes can be arbitrarily nested

= Syntactic shortcut for invoke activity
= Inline definition of compensation handler
= Equivalent to scope with comp. handler and invoke activity

= Compensation activity can be any activity

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch 20 WS04/05

10

Compensation Handlers — Example

<scope name='‘purchase">
<compensationHandler>
<invoke partner="Seller"
portType="SP:Purchasing”
operation="CancelPurchase"
inputContainer="getResponse”
outputContainer="getConfirmation">
</invoke>
</compensationHandler>
<invoke partner="Seller"
portType="SP:Purchasing”
operation="SyncPurchase"
inputContainer="sendP0”
outputContainer="getResponse'>

</invoke>
</scope>
@ . S 5 Middleware for Heterogenous and
21 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Compensation Handler Invocation

= Compensate activity
= Invokes compensation handler for named scope
= Example: <compensate scope="purchase"/>
= Can be invoked only from the fault handler or compensation handler of the
immediately enclosing scope
= Data semantics
= When invoked, compensation handler sees frozen snapshot of data variables
= All variables in the state they were at completion time of the scope being compensated
= Compensation handlers live in a snapshot world
= Cannot update “live” data variables
= Can only affect external entities
= Input/output parameters for compensation handler are future direction

@ . S 5 Middleware for Heterogenous and
22 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

11

Default Compensation and Fault Handlers

= Default compensation handler

Invokes compensation handlers of immediately enclosed scopes in the reverse

order of the completion of the scopes

Is used if a (enclosing) scope does not explicitly define a compensation handler
= Can also be invoked explicitly

Useful if comp. action = “compensate enclosed scope in reverse order” + “additional
activities”

= Default fault handler

Invokes compensation handlers of immediately enclosed scopes in the reverse

order of the completion of the scopes

= Rethrows the exception

@ - S 5 Middleware for Heterogenous and
23 Distributed Information Systems -
WS04/05

@ Prof.Dr.-Ing. Stefan DeBBloch

More on Faults

= Termination of running activities
= Regular processing is stopped
If the activity is a scope, the fault handler for forcedTermination fault is invoked

= Activity being terminated can react to termination
call compensation handlers of nested, completed activities, ...

= Implicit fault handler is invoked otherwise
= Faults occuring in compensation handlers or fault handlers
Can be caught by regular fault handlers in enclosing scopes or scopes with the
fault handler

WS04/05

@ - S 5 Middleware for Heterogenous and
24 Distributed Information Systems -

@ Prof.Dr.-Ing. Stefan DeBBloch

12

Process life-cycle

= Start activities
= receive, pick — createlnstance attribute
= Creates a new process instance, if it doesn't exist already
= Example:

<receive partner="customer",
portType="itineraryPT",
operation="sendltinerary",
variable="itinerary”
createlnstance="yes"/>

= each process must have at least one start activity as an initial activity
= Process termination

= process-level activity completes successfully

= fault "arrives" at the process level (handled or not)

= terminate activity is invoked

@ . S 5 Middleware for Heterogenous and
25 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

BPEL Long-Running (Business) Transactions (LRTS)

= Define fault handling and compensation in an application-specific manner
= Explicitly specified as part of the business protocol
= E.g., order of compensation steps may be different from reverse order of completion
= LRT within single, local business process, i.e., no support for LRT that spans
= Distributed business process
= Multiple vendors or platforms
- WS-Transaction specification
= Business Activities

= Protocol Framework can be used to model the fault and compensation relationships
between a scope and its enclosing scopes

@ . S 5 Middleware for Heterogenous and
26 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

13

Business Agreement Protocol

= BusinessAgreementWithComplete — State Diagram

Reqgister

Coordinator generated

@ S 5 Middleware for Heterogenous and
27 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

14

