Prof. Dr.-Ing. Stefan DeBloch

AG Heterogene Informationssysteme]
Geb. 36, Raum 329 m TechniscHE UNIVERSITAT
Tel. 0631/205 3275 m KAISERSLAUTERN

dessloch@informatik.uni-kl.de

Chapter 11 - XML

@ .S B Middleware for Heterogenous and Distributed Information Systems - WS04/05

XML Origin and Usages

= Defined by the WWW Consortium (W3C)
= Originally intended as a document markup language, not a database
language
= Documents have tags giving extra information about sections of the document
= For example:
. <title> XML </title>
= <slide=> XML Origin and Usages </slide>
= Derived from SGML (Standard Generalized Markup Language)
= standard for document description
= enables document interchange in publishing, office, engineering, ...
= main idea: separate form from structure
= XML is simpler to use than SGML
= roughly 20% complexity achieves 80% functionality

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Origin and Usages (cont.)

= XML documents are to some extent self-documenting
= Tags can be used as metadata
= Example
<bank>
<account>
<account-number> A-101 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>
</account>
<depositor>
<account-number> A-101 </account-number>
<customer-name> Johnson </customer-name>
</depositor>

</bank>
@ . S 5 Middleware for Heterogenous and
3 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Forces Driving XML

= Document Processing
= Goal: use document in various, evolving systems
= structure — content — layout
= grammer: markup vocabulary for mixed content
= Data Bases and Data Exchange
= Goal: data independence
= structured, typed data — schema-driven — integrity constraints
= Semi-structured Data and Information Integration
= Goal: integrate autonomous data sources
= data source schema not known in detail — schemata are dynamic
= schema might be revealed through analysis only after data processing

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Language Specifications

‘ XML Link ‘ ‘ XML Pointer ‘ ‘ XPath
I I
| | XML Schema ‘ ‘XML Namespace ‘ |
|XML Metadata Interchange‘ 1 I
I
I
| eXtensible Markup Language
¥ I
I

Standardized Generalized Markup Language
‘ Meta Object Facility ‘ Unicode —
Document Type Definition

@ . S 5 Middleware for Heterogenous and
5 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Describing XML Data: Basics - Elements

= Tag: label for a section of data
= Element: section of data beginning with <tagname> and ending with
matching </tagname>
= Elements must be properly nested
= Formally: every start tag must have a unique matching end tag, that is in the
context of the same parent element.
= Every document must have a single top-level element
= Mixture of text with sub-elements is legal in XML
= Example:

<account>
This account is seldom used any more.
<account-number> A-102</account-number>
<branch-name> Perryridge</branch-name>
<balance>400 </balance>

</account>

= Useful for document markup, but discouraged for data representation

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Describing XML Data: Attributes

= Attributes: can be used to describe elements

= Elements can have attributes
<account acct-type = “checking” >
<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>
</account>
= Attributes are specified by name=value pairs inside the starting tag

of an element

= Attribute names must be unique within the element
<account acct-type = “checking” monthly-fee="5">

@ . S 5 Middleware for Heterogenous and
7 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

IDs and IDREFs

= An element can have at most one attribute of type ID
= The ID attribute value of each element in an XML document must be distinct
=>» ID attribute (value) is an object identifier

= An attribute of type IDREF must contain the ID value of an element in the
same document
= An attribute of type IDREFS contains a set of (O or more) ID values. Each ID
value must contain the ID value of an element in the same document
= IDs and IDREFs are untyped, unfortunately
= Example below: The owners attribute of an account may contain a reference to

another account, which is meaningless;
owners attribute should ideally be constrained to refer to customer elements

@‘S 5 Middleware for Heterogenous and

8 Distributed Information Systems
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML data with ID and IDREF attributes

<bank-2>
<account account-number=“A-401" owners=“C100 C102">
<branch-name> Downtown </branch-name>
<balance>500 </balance>
</account>

<customer customer-id=“C100” accounts=“A-401">
<customer-name=>Joe</customer-name=>
<customer-street>Monroe</customer-street>
<customer-city>Madison</customer-city>

</customer>

<customer customer-id=“C102” accounts="A-401 A-402">
<customer-name> Mary</customer-name>
<customer-street> Erin</customer-street>
<customer-city> Newark </customer-city>

</customer>
</bank-2>
@ S 5 Middleware for Heterogenous and
9 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Document Schema

= Metadata and database schemas constrain what information can be stored,
and the data types of stored values
= Metadata are very important for data exchange
= Guarantees automatic and correct data interpretation
= XML documents are not required to have associated metadata/schema
= only need to be well-formed (i.e., follow generic syntax rules)
= Two mechanisms for specifying XML schema
= Document Type Definition (DTD)
= XML Schema
= Documents may required to be valid w.r.t. an XML schema

@ S 5 Middleware for Heterogenous and
10 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Describing XML Data: DTD

= Type and structure of an XML document can be specified using a DTD

= What elements can occur

= What attributes can/must an element have

= What subelements can/must occur inside each element, and how many times.
= DTD does not constrain data types

= All values represented as strings in XML
= DTD syntax

= <!ELEMENT element (subelements-specification) >

= <!IATTLIST element (attributes) >

@ . S 5 Middleware for Heterogenous and
11 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Element Specification in DTD

= Subelements can be specified as
= names of elements, or
= #PCDATA (parsed character data), i.e., character strings
= EMPTY (no subelements) or ANY (anything can be a subelement)

= Example
<! ELEMENT depositor (customer-name account-number)>
<! ELEMENT customer-name(#PCDATA)>
<! ELEMENT account-number (#PCDATA)>

= Subelement specification may have regular expressions
<IELEMENT bank ((account | customer | depositor)+)>
= Notation:
“” - alternatives
“?” - 0or1occurrence
“+” - 1 or more occurrences
“*” - 0 or more occurrences

@ . S 5 Middleware for Heterogenous and
12 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Example: Bank DTD

<IDOCTYPE bank-2[
<IELEMENT account (branch-name, balance)>
<IATTLIST account
account-number ID H#REQUIRED
owners IDREFS #REQUIRED>
<!ELEMENT customer(customer-name, customer-street,
customer-city)>
<IATTLIST customer
customer-id 1D #REQUIRED
accounts IDREFS #REQUIRED>

... declarations for branch, balance, customer-name, .
customer-street and customer-city

1=
@ S 5 Middleware for Heterogenous and
13 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Describing XML Data: XML Schema

= XML Schema is closer to the general understanding of a (database) schema
= XML Schema supports
= Typing of values
= E.g. integer, string, etc
= Constraints on min/max values
= Typed references
= User defined types
= Specified in XML syntax (unlike DTDs)
= Integrated with namespaces
= Many more features
= List types, uniqueness and foreign key constraints, inheritance ..

= BUT: significantly more complicated than DTDs

@ S 5 Middleware for Heterogenous and
14 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Schema Structures

= Datatypes (Part 2)
Describes Types of scalar (leaf) values

= Structures (Part 1)

Describes types of complex values (attributes, elements)

= Regular tree grammars
repetition, optionality, choice recursion

= Integrity constraints

Functional (keys) & inclusion dependencies (foreign keys)

= Subtyping (similar to OO models)
Describes inheritance relationships between types

= Supports schema reuse

<Hgs»

@ Prof.Dr.-Ing. Stefan DeBBloch

15

Middleware for Heterogenous and
Distributed Information Systems -

WS04/05

XML Schema Structures (cont.)

= Elements : tag hame & simple or complex type
<xs:element name="sponsor” type="xsd:string”/>
<xs:element name="action” type="“Action”/>
= Attributes : tag name & simple type
<xs:attribute name="date” type="xsd:date”/>
= Complex types
<xs:complexType name="Action”>
<xs:sequence>
<xs:elemref name ="action-date”/>
<xs:elemref name ="action-desc”/>
</xs:sequence>
</xs:complexType>

@isg 16

@ Prof.Dr.-Ing. Stefan DeBBloch

Middleware for Heterogenous and
Distributed Information Systems -
WS04/05

XML Schema Structures (cont.)

= Sequence

<Xs:sequence>
<xs:element name="“congress” type=xsd:string”/>
<xs:element name="session” type=xsd:string”/>
</xs:sequence>
Choice
<xs:choice>
<xs:element name="author” type=“PersonName”/>
<xs:element name="editor” type="PersonName”/>
</xs:choice>
Repetition
<xs:sequence minOccurs="“1" maxOccurs="unbounded”>
<xs element name ="“section” type="Section”/>
</xs:sequence>

@ S 5 Middleware for Heterogenous and
17 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Namespaces

A single XML document may contain elements and attributes defined for and
used by multiple software modules
= Motivated by modularization considerations, for example
Name collisions have to be avoided
Example:
= A Book XSD contains a Title element for the title of a book
= A Person XSD contains a Title element for an honorary title of a person
= A BookOrder XSD reference both XSDs
Namespaces specifies how to construct universally uniqgue names

@ S 5 Middleware for Heterogenous and
Distributed Information Systems -

18

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Schema Version of Bank DTD

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.banks.org"
xmlins ="http://www.banks.org" >
<xsd:element name="bank” type=“BankType”/>
<xsd:element name="account”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="account-number” type="xsd:string”/>
<xsd:element name="branch-name” type="“xsd:string”/>
<xsd:element name="balance” type="“xsd:decimal”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element> ... definitions of customer and depositor ...
<xsd:complexType name="BankType”>
<xsd:choice minOccurs="1" maxOccurs="unbounded">
<xsd:element ref="account”/>
<xsd:element ref="customer”/>
<xsd:element ref="depositor”/>
</xsd:choice>
</xsd:complexType>
</xsd:schema>

@ S 5 Middleware for Heterogenous and
19 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Document Using Bank Schema

<bank xmlns="http://www.banks.org"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.banks.org Bank.xsd">

<account>
<account-number> ... </account-number>
<branch-name> ... </branch-name>
<balance> ... </balance>

</account>
</bank>
@is 5 Middleware for Heterogenous and
20 Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Processing XML Data

= Querying XML data
= Translation of information from one XML schema to another

= Standard XML querying/translation languages
= XPath
= Simple language consisting of path expressions

= XSLT
= Simple language designed for translation from XML to XML and XML to HTML

= XQuery
= An XML query language with a rich set of features
= XQuery builds on experience with existing query languages:
XPath, Quilt, XQL, XML-QL, Lorel, YATL, SQL, OQL, ...

@ - S 5 Middleware for Heterogenous and
Distributed Information Systems -

© Prof.Dr.-Ing. Stefan DeBloch a WS04/05

Tree Model of XML Data

= Query and transformation languages are based on a tree model of XML data
= An XML document is modeled as a tree, with nodes corresponding to elements and
attributes

* Several types of nodes:
= Root, Element, Attribute, Text, Namespace, Comment, Processing

22 Distributed Information Systems -
WS04/05

an__ Instruction
@.S 5 Middleware for Heterogenous and

@ Prof.Dr.-Ing. Stefan DeBBloch

Processing XML Data: XPath

= XPath is used to address (select) parts of documents using path expressions
= XPath data model refers to a document as a tree of nodes
= An Xpath expression maps a node (the context node) into a set of nodes
= A path expression consists of one or more steps separated by “/”
= Result of path expression: set of values
that along with their containing
elements/attributes match the specified path
= E.g.: /bank-2/customer/customer-name
evaluated on the bank-2 data returns
= <customer-name> Joe </ customer-name>
= < customer- name> Mary </ customer-name>
= E.g.:/bank-2/customer/cust-name/text()
returns the same names, but without the
enclosing tags

30 &

@ . S 5 Middleware for Heterogenous and
23 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XPath (cont.)

= The initial “/” denotes root of the document (above the top-level tag)
= In general, a step has three parts:

= The axis (direction of movement: child, descendant, parent, ancestor, following, preceding,
attribute, ... - 13 axesin all -)

= A node test (type and/or name of qualifying nodes)
= Some predicates (refine the set of qualifying nodes)
= Path expressions are evaluated left to right
= Each step operates on the set of instances produced by the previous step
= Selection predicates may follow any step in a path, in []
= E.g. /bank-2/account[balance > 400]
= returns account elements with a balance value greater than 400
= /bank-2/account[balance] returns account elements containing a balance subelement
= Attributes are accessed using “@”
= E.g. /bank-2/account[balance > 400]/@account-number
= returns the account numbers of those accounts with balance > 400
= IDREF attributes are not dereferenced automatically (more on this later)

@-S 5 Middleware for Heterogenous and

24 Distributed Information Systems
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XPath (cont.)

= The following examples use XPath abbreviated
notation:

Find the first item of every list that is under the
context node
Aist/item[1]
Find the “lang” attribute of the parent of the
context node
../@lang
Find the last paragraph-child of the context node
para[last()]
Find all warning elements that are inside
instruction elements
//instruction//warning
Find all elements that have an ID attribute
//*[@ID]
Find names of customers who have an order with
today’s date
//customer [order/date = today ()] / name

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

25

XPath expressions
use a notation
similar to paths in a

file system:

/ means
“child” or “root”

Il means
“descendant”
means “self”

means “parent”

means “any”

@ means “attribute”

Middleware for Heterogenous and
Distributed Information Systems -
WS04/05

XPath (cont.): Summary

= Strengths:

= Compact and powerful syntax for navigating a tree,
but not as powerfull as a regular-expression language

= Recognized and accepted in XML community
= Used in XML-related applications such as XPointer

= Limitations:
= Operates on one document (no joins)
= No grouping or aggregation
= No facility for generating new output structures

@‘55 26

@ Prof.Dr.-Ing. Stefan DeBBloch

Middleware for Heterogenous and
Distributed Information Systems -
WS04/05

Transforming XML Data: XSLT

= A stylesheet stores formatting options for a document, usually separately
from document
= E.g. HTML style sheet may specify font colors and sizes for headings, etc.
= The XML Stylesheet Language (XSL) was originally designed for
generating HTML from XML
= XSLT is a general-purpose transformation language
= Can translate XML to XML, and XML to HTML
= XSLT transformations are expressed using rules called templates
= Templates combine selection using XPath with construction of results

@ . S 5 Middleware for Heterogenous and
27 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Understanding A Template

= Most templates have the following form:

<xsl:template match="emphasis">
<i><xsl:apply-templates/></i>
</xsl:template>

= The whole <xsl:template> element is a template
= The match pattern determines where this template applies
= Xpath pattern
= Literal result element(s) come from non-XSL namespace(s)
= XSLT elements come from the XSL namespace

@‘S 5 Middleware for Heterogenous and

28 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XQuery

= XQuery is a general purpose query language for XML data
= Currently being standardized by the World Wide Web Consortium (W3C)

= XQuery is derived from

= the Quilt (“Quilt’ refers both to the origin of the language and to its use in “knitting " together heterogeneous
data sources) query language, which itself borrows from

= XPath: a concise language for navigating in trees

= XML-QL: a powerful language for generating new structures

= SQL: a database language based on a series of keyword-clauses: SELECT - FROM
— WHERE

= OQL: a functional language in which many kinds of expressions can be nested
with full generality

@ S 5 Middleware for Heterogenous and
29 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XQuery Data Model

= Builds on a tree-based model, but extends it to support sequences of items

= A value is an ordered sequence of zero or more items
= cannot be nested — all operations on sequences automatically “flatten" sequences
no distinction between an item and a sequence of length 1
= can contain heterogenous values, are ordered, can be empty
= may contain duplicate nodes (see below)
= Anitem is a node or an atomic value

= Atomic values are typed values
= XML Schema simple types
= There are seven kinds of nodes (see tree-based model)
= nodes have an identity
= each node has a typed value
sequence of atomic values
type may be unknown (anySimpleType)
= element and attribute nodes have a type annotation
generated by validating the node
= document order of nodes

= Closure property
= XQuery expressions operate on/produce instances of the XQuery Data Model

@ S 5 Middleware for Heterogenous and
30 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XQuery — Main Constituents

= Path expressions
= Inherited from XPath 1.0
= An XPath expression maps a node (the context node) into a set of nodes
= Element constructors
= To construct an element with a known name and content, use XML-like syntax:
<book isbn = "12345">
<title>Huckleberry Finn</title>
</book>
= If the content of an element or attribute must be computed, use a nested
expression enclosed in { }
<book isbn = "{$x}">
{$brtitle }
</book>

= FLWOR - Expressions

@ . S 5 Middleware for Heterogenous and
31 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XQuery: The General Syntax Expression FLWOR

"LI:FOR_cIauseJl |_ J |_ J RETURN_clause —™

LET_clause WHERE_clause ORDER_BY_clause

= FOR clause, LET clause generate list of tuples of bound variables (order preserving) by
= iterating over a set of nodes (possibly specified by an XPath expression), or
= binding a variable to the result of an expression
= WHERE clause applies a predicate to filter the tuples produced by FOR/LET
= ORDER BY clause imposes order on the surviving tuples
= RETURN clause is executed for each surviving tuple, generates ordered list of outputs
= Associations to SQL query expressions
for & SQL from
where <~ SQL where
order by < SQL order by
return & SQL select
let allows temporary variables, and has no equivalent in SQL

@‘S 5 Middleware for Heterogenous and

32 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

FLWOR - Examples

= Simple FLWR expression in XQuery

= Find all accounts with balance > 400, with each result enclosed in an <account-
number> .. </account-number> tag
for $x in /bank-2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> {$acctno} </account-number>

= Let and Where clause not really needed in this query, and selection can be
done in XPath.
= Query can be written as:

for $x in /bank-2/account[balance>400]
return <account-number> {$x/@account-number}
</account-number>

@ 5 Middleware for Heterogenous and
33 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DeBBloch WS04/05

Nesting of Expressions

= Here: nesting inside the return clause
= Example: inversion of a hierarchy

<book> <author>
<title> <name>
<author> > <title>
<author> FOR $a IN distinct-values(//author) <title>
</book> ORDER BY $a/name </author>
<book> RETURN <author>
<title> <author> <name>
<author> <name> { $a/text() } </name> <title>
<author> { FOR $b IN //book[author = $a] <title>
</book> RETURN $b/title } </author>
</author>
CH§S? w e oo o

®© Prof.Dr.-Ing. Stefan DeBBloch WS04/05

XQuery: Joins

= Joins are specified in a manner very similar to SQL

for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor
where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name
return <cust-acct>{ $c $a }</cust-acct>
= The same query can be expressed with the selections specified as XPath
selections:
for $ain /bank/account
$c in /bank/customer
$d in /bank/depositor[
account-number =$a/account-number and
customer-name = $c/customer-name]

return <cust-acct>{ $c $a }</cust-acct>

@ . S 5 Middleware for Heterogenous and
35 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XQuery - Status

= Some Recent Enhancements
= Complete Specification of XQuery Functions and Operators
= Joint XQuery/XPath data model
= Type checking model
= static vs. dynamic type checking as an option
= with/without schema information
= A lot of problems fixed
= Current status: working draft under public review
= fairly close to becoming a w3c recommendation
= Ongoing and Future Work
= Full-text support
= Insert, Update, Delete
= View definitions, DDL
= Host language bindings, APIs
= JSR 225: XQuery API for JavaTM (XQJ)
= problem to overcome: tradtional XML processing APl is based on well-defined documents

@.S 5 Middleware for Heterogenous and

36 Distributed Information Systems
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

SQL/XML

= Subproject of SQL standard

= Part 14 “XML-related Specifications” of upcoming SQL 2003
= Goal: standardization of interaction/integration of SQL and XML

= how to represent SQL data (tables, results, ...) in XML (and vice versa)

= how to map SQL metadata (information schema) to XML schema (and vice versa)
= Potential areas of use

= "present" SQL data as XML

= integration of XML data into SQL data bases

= use XML for SQL data interchange

= XML views over relational
= possible foundation for XQuery

@ . S 5 Middleware for Heterogenous and
37 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

SQL/XML Features

= SQL/XML includes the following:
= XML data type
= Enables storage and retrieval of XML documents as typed values
= Host language bindings for values of XML type
= XML “publishing functions”
= Mapping SQL Tables to XML Documents
= Mapping SQL identifiers to XML Names and vice versa
= Mapping SQL data types to XML Schema data types
= Mapping SQL data values to XML

@-S 5 Middleware for Heterogenous and

38 Distributed Information Systems
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Publishing Functions- Example

SELECT XMLELEMENT (NAME "Department’,
XMLATTRIBUTES (e.dept AS "name™),
XMLAGG (XMLELEMENT (NAME *‘emp', e.lname))
) AS "dept_list",
COUNT(*) AS "dept_count™
FROM employees e
GROUP BY dept ;

==>
dept_list dept_count
<Department name="Accounting"> 2
<emp>Yates</emp>
<emp>Smith</emp>
</Department>
<Department name="'Shipping"> 2
<emp>0Oppenheimer</emp>
<emp>Martin</emp>
</Department>
@ i S 5 Middleware for Heterogenous and
39 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

Application Programming with XML

= Application needs to work with XML data/document
= Parsing XML to extract relevant information

= Produce XML
= Write character data
= Build internal XML document representation and Serialize it
= Simple API for XML (SAX)
= “Push” parsing (event-based parsing)
= Parser sends notifications to application about the type of document pieces it encounters
= Notifications are sent in “reading order” as they appear in the document
= Preferred for large documents (high memory efficiency)
= Document Object Model (DOM)
= “One-step” parsing
= Generates in-memory representation of the document (parse tree)
= DOM specifies the types of parse tree objects, their properties and operations
Independent of programming language (uses IDL)
= Bindings available to specific programming languages (e.g., Java)

@ . S 5 Middleware for Heterogenous and
40 Distributed Information Systems -
© Prof.Dr.-Ing. Stefan DeBloch WS04/05

XML Advantages for Integration

= Integrates data and meta-data (tags)
= Self-describing
= XMLSchema, Namespaces
= Defining valid document structure
= Integrating heterogenous terminology and structures
= XML can be validated against schema (xsd, dtd) outside the application
= Many technologies exist for processing, transforming, querying XML
documents
= DOM, SAX, XSLT, XPath, XQuery
= XML processing can help handle schema heterogenity, schema evolution
= Focus on known element tags, attributes, namespaces ...
= Powerful filter and transformation capabilities
= XML is independent of platforms, middleware, databases, applications ...

@ 5 Middleware for Heterogenous and
2 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DeBBloch WS04/05

XML Support for DBMS: Direction

xXqu
e SR
XML

Web Services

\\frapper

i“ i’
-— \\frapper
SQL results SQL results

Catalog Relational L
(metadata) Data Data

@ 5 Middleware for Heterogenous and
2 Distributed Information Systems -
®© Prof.Dr.-Ing. Stefan DeBBloch WS04/05

