
Implementing sorting Page 1 of 18 July 12, 2001, 12:22 PM 
Goetz Graefe  DRAFT 

Implementation of Sorting in Database Systems 
Goetz Graefe 

Abstract 
It has often been said that sorting algorithms are very instructional in their own right and rep-

resentative of a variety of computer algorithms, and that the performance of sorting is indicative of 
the performance of a variety of other data management tasks. Therefore, there is a fair amount of 
literature about the theory of sorting as well as about specific benchmark results. On the other 
hand, most commercial implementations of sorting do (or should!) exploit a number of techniques 
that are publicly known but not widely discussed in the research literature. This survey collects 
them for easy reference by students, researchers, and product developers. This paper does not 
contain novel algorithmic techniques and does not experimentally evaluate the effectiveness of 
any one individual technique; instead, it gathers and organizes such techniques in order to organ-
ize, stimulate, and focus future research. 

1 Introduction 
Every computer science student learns (or definitely should learn!) about N log N in-memory 

sorting algorithms as well as about external merge sort, and virtually all database products em-
ploy these algorithms for query processing and index creation. However, the implementations of 
sorting in commercial database systems differ greatly from one another, and the same is true 
among database research prototypes. These differences are due to “all the little tricks” that are 
either exploited or not. Many of these techniques are public knowledge but not widely known. The 
purpose of this paper is to survey them in order to make them readily available to students, re-
searchers, and industrial software developers. Another purpose is to add structure to discussions 
of real-world sort implementations. 

Commercial database systems employ sorting in many places. The obvious ones are user-
requested sorted query output, index creation, and query operations such as grouping, duplicate 
removal, verifying uniqueness, rank and top, and merge join, including minor variations of merge 
join for outer join, semi join, intersection, union, and difference. In addition, sorting can be used 
for logical consistency checks (e.g., verifying a referential foreign key constraint that requires that 
each line item indeed have an associated order) and physical consistency checks (e.g., verifying 
rows in a table and entries in a non-clustered index precisely match up), because both consis-
tency checks are essentially joins. Similarly, sorting may speed up fetch operations following a 
non-clustered index scan, because fetching records from a clustered index or heap file is tanta-
mount to joining a stream of pointers to a disk. In an object-oriented database system, fetching 
multiple object components as well as looking up the physical locations for multiple logical object 
id’s are forms of internal joins that may benefit from sorting. Finally, sorting can be used when 
compressing recovery logs or replication actions as well as during media recovery while applying 
the transaction log. Nonetheless, in spite of these many different uses, we focus here on query 
processing and on index maintenance since these two applications cover all issues found in the 
other ones, and we let the reader apply the techniques to the other use cases. 

There are many interesting relationships between sorting and B-trees. Most obviously, build-
ing a large B-tree is much faster if the future B-tree entries are sorted first and the B-tree is built 
bottom-up, rather than using random top-down insertions. Similarly, sorting can be employed to 
optimize large inserts that touch many or all of the B-tree leaves. As a more interesting example, 
one can write run files in external merge sort in B-tree structure: it imposes a small overhead but 
includes in the run sufficient information for accurate read-ahead planning when merging runs 
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from multiple striped disks. In general, it seems that a lot of techniques that improve one can be 
adapted for the other, and researchers interested in either B-trees or in sorting might benefit from 
studying known techniques for the other. 

This survey is divided into three parts. First, in-memory sorting is considered. Presuming that 
quicksort and basic priority heaps are well known and understood by the reader, techniques to 
speed basic in-memory sorting are discussed, for example techniques related to CPU caches or 
to faster comparisons. Second, external sorting is considered. Again presuming that basic exter-
nal merge sort is well known and understood, variations on this basic theme are discussed in de-
tail, for example graceful degradation if the memory size is almost but not quite large enough for 
in-memory sorting – the sorting equivalent to hybrid hash join. Finally, sorting techniques that 
uniquely apply to sorting within a query execution plan are discussed, for example memory man-
agement in complex query plans with multiple pipelined sort operations or with nested iteration. 
Query optimization, as important as it is for database query performance, is not covered here, 
except for a few topics directly related to sorting. 

In this paper, we make assumptions that represent typical database environments. Records 
consist of multiple fields, each with their own type and length. Some fields are of fixed length, 
others of variable length. The sort key includes some fields in the record, but not necessarily the 
leading fields, and possibly all fields but typically not. Memory is sizeable, but often not large 
enough to hold the entire input. CPUs are fast, to some extent through the use of caches, and 
there are more disk drives than CPUs. For brevity or clarity, we presume an ascending sort in 
some places, but adaptation to descending sort or multi-attribute mixed sort is very straightfor-
ward. 

2 Internal sort: avoiding and speeding comparisons 
Given that in-memory sorting is well understood in general, this section only surveys the less 

known or less used implementation techniques, their complexities and costs, and their benefits. 

2.1 Comparison-based sorting vs. distribution sort 
Traditionally, database sort implementations have used comparison-based sort algorithms, 

e.g., internal merge sort or quicksort, rather than distribution sort or radix sort, which distribute 
data items to buckets based on numeric interpretation of bytes in sort keys. However, compari-
sons imply conditional branches, which imply potential stalls in the CPU’s execution pipeline. 
While modern CPUs benefit greatly from built-in branch prediction hardware, the whole point of 
key comparisons in a sort is that their outcome is not predictable. Therefore, a sort that does not 
require comparisons seems very attractive. 

Radix sort and other distribution sorts are often discussed, because they promise fewer pipe-
line stalls on modern processors. One key argument is that the nature of comparisons in a sort 
algorithm is that their outcome is not predictable; therefore, branch prediction hardware necessar-
ily performs poorly for key comparisons. An interesting variant of distribution sort counts value 
occurrences in a first pass over the data and then allocates precisely the right amount of storage 
to be used in a second pass that redistributes the data [A 96]. However, these sort algorithms 
have not supplanted comparison-based sorting in database systems. Implementers have been 
hesitant because these sort algorithms suffer from several shortcomings. First and most impor-
tantly, if keys are long, many passes over the data are needed. For variable-length keys, the 
maximal length must be considered. If key normalization (explained shortly) is used, lengths 
might be variable and fairly long, even longer than the original record. If key normalization is not 
used, managing field types, lengths, sort orders, etc. makes distribution sort fairly complex, and 
typically not worth the effort. A promising approach, however, is to use one partitioning step (or a 
small number) before using a comparison-based sort algorithm on each resulting bucket [AAC 
97]. Second, radix sort is most effective if data values are very uniformly distributed. This cannot 
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be presumed in general, but may be achievable if compression is used, because compression 
attempts to give maximal entropy to each bit and each byte, which implies uniform distribution. Of 
course, to achieve the correct sort order, the compression must be order preserving. Effective 
compression requires that the data distribution be known in advance, which typically would re-
quire an additional pass over intermediate query results, which might cost more than radix sort 
saves. 

2.2 Normalized keys 
The cost of in-memory sorting is dominated by two operations: key comparisons (or other in-

spection of the keys, e.g., in radix sort) and data movement. Creating and moving representatives 
for data records, e.g., pointers, typically address the latter issue - more details on this later. The 
former issue can be very complex, due to multiple columns within each key, each with their own 
type, length, collating sequence (e.g., case-insensitive German), sort direction (ascending or de-
scending), etc. Given that each record participates in many comparisons (2 log N comparisons of 
2 records for a N log N sort), it seems worthwhile to reformat each record before and after sorting 
if the alternative format speeds up multiple operations in between. A typical alternative format is a 
simple binary string, in such a way that the transformation is both order-preserving and loss-less. 
In other words, the entire complexity of key comparisons can be reduced to comparing binary 
strings, and the final records can be recovered from the binary string. 

Some implementations apply such reformatting only to the key, because it participates in the 
most operations and the most costly operations. This is why this technique is usually called key 
normalization or key conditioning. Even computing only the first few bytes of the normalized key 
is beneficial if most comparisons will be decided by the first few bytes alone. However, copying is 
also expensive, and treating an entire record as a single field reduces overheads for space man-
agement and allocation as well as address computations. Thus, normalization can be applied to 
the entire record. The disadvantage of reformatting the entire record is that the resulting binary 
string might be substantially larger than the original record, in particular for loss-less normaliza-
tion and for some international collation sequences, thus increasing the requirements for both 
memory and disk, both space and bandwidth. There are some remedies, however. If it is known a 
priori that some fields will never participate in comparisons, e.g., because earlier fields in the sort 
key form a unique key for the record collection being sorted, the normalization for those fields 
does not need to preserve order; it just needs to enable fast copying of records and recovery of 
original values. Moreover, a binary string is much easier to compress than a complex records with 
individual fields of different types – more on order-preserving compression shortly. In the remain-
der of this survey, we presume that normalized keys and records are used, and do not detail how 
to apply the described techniques to traditional multi-field records. 

2.3 Order-preserving compression 
Data compression can be used to save space and bandwidth in all levels of the memory hier-

archy. There are many compression schemes, and many of them can be adapted to be order 
preserving, typically with a small loss in compression effectiveness and possibly with some addi-
tional complexity in the comparison method. For example, optimal Huffman code is created by 
successively merging two sets of symbols, starting with each symbol forming a singleton set and 
                                                        
2 It is also amazing how very simple indexing heuristics result in a well-indexed database. One 
heuristic simply builds indexes on primary keys, foreign keys, dates, and all columns in equality 
and “in” predicates; if clustered indexes are an option, the primary key is also the clustering key. 
A variation includes all primary and foreign keys in all non-clustered indexes in order to enable 
index-only navigation through multiple tables. An alternative heuristic builds the same indexes on 
primary keys and possibly on foreign keys, and additional indexes only if, for an actual query, the 
new index retrieves 10 times fewer records than any existing index. Not surprisingly, these two 
heuristics will build almost the same indexes for most databases and workloads. 
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ending with a single set containing all symbols. The two sets to be merged are the ones with the 
lowest combined rate of occurrence; by restricting this rule to sets that are immediate neighbors 
in the desired sort order, an order-preserving compression scheme is obtained. Order-preserving 
Huffman compression, by imposing a restriction on the creation process, is somewhat less effec-
tive than non-order-preserving Huffman compression, but it is still quite effective for most data. 

When dictionary compression is modified to be order preserving, it might require that the 
symbol following the substituted string be considered [ALM 96]. The dictionary includes all indi-
vidual symbols plus strings of symbols that are found to occur frequently. In ordinary dictionary 
compression, inserting a string into the dictionary does not affect the encoding of other strings. In 
order-preserving dictionary compression, the longest pre-existing prefix of a newly inserted string 
must be assigned two rather than one encoding. For example, when the string “th” is inserted into 
the dictionary with its own code, the longest prefix that already exists in the dictionary, in this case 
“t”, must be assigned not one but two codes in the dictionary, one for “t” strings followed by a let-
ter less than “h” and one for “t” strings followed by a symbol greater than “h”. The encoding for 
“th” might be the value 24, and the encoding for “t” is 23 if the “t” is followed by one of “a” through 
“g” or it is 25 if followed by “i” through “z”. Using these three codes, the strings “ta”, “th”, and “tz” 
can be compressed and sorted correctly based on their encodings. 

Compression has been used in database systems to preserve disk and memory space, and 
more importantly to better exploit available disk and memory bandwidth. However, it has gener-
ally not been used in database sorting, although it seems worthwhile to explore this combination, 
in particular if it is integrated with key normalization. Note that only the key (possibly including the 
input sequence number – see above) needs to be compressed using an order-preserving 
method. One of the issues is that the same compression scheme has to be used for all records, 
and the distribution of values is typically not known when the sort operations starts. 

2.4 Cache-optimized techniques 
Given today’s hardware as well as foreseeable trends, CPU caches must be considered and 

exploited in high-performance software. Beyond the obvious, e.g., aligning data structures and 
records to cache line boundaries, there are two principal sources of ideas. First, one can attempt 
to leave the full records in main memory (i.e., not access them) and use only record surrogates in 
the cache. Second, one can attempt to adapt and re-apply to CPU caches any and all techniques 
used in external sort to ameliorate the distance between memory and disk. 

Typically, in-memory sorting uses an array of pointers, simply to avoid moving variable-length 
records. Heavily used, these pointers typically end up in the cache. Similarly, the first few bytes of 
each key are fairly heavily used, and it seems advantageous to design data structures and algo-
rithms such that those, too, are likely to be in the cache. One such design includes a fixed-size 
prefix of each key with each pointer, such that the array of pointers becomes an array of struc-
tures with pointer and key prefix. Alternatively, a three-level scheme could be used, but probably 
wouldn’t be beneficial. We call fixed-size prefixes of normalized keys used in this way poor man’s 
normalized keys. They can be very effective if keys typically differ in the first few bytes. If, how-
ever, the first few bytes are typically equal and the comparisons of poor man’s normalized keys 
will all have the same result, these comparisons are virtually free, as the comparison is compiled 
into the sort code and the branch prediction logic of modern CPUs will ensure that such useless 
predictable comparisons will not stall the CPU pipeline. 

An alternative design for order-preserving fixed-size fixed-type keys starts with a fixed key 
value and represents each actual key value using the difference from that one reference key. The 
fixed-size key is obtained by combining the count of leading equal symbols and the first differing 
symbol [BL 89]. Depending on whether the actual key is smaller or larger than the reference key, 
the count and the difference are expressed in positive or negative numbers, such that the result is 
indeed order-preserving. This design works particularly well if many actual keys share a prefix 
with the reference key, and probably works best with partitioning-based sort algorithms such as 
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quicksort, in particular if a new reference key is used for each partitioning step [BL 89]. Moreover, 
if multiple reference keys are used for disjoint key ranges and the fixed-size fixed-type key en-
codes the range in its highest-order bits, such reference key encoding might also speed up com-
parisons while merging runs. 

Among the techniques that can be adapted from external sorting to cache-optimized in-
memory sorting, the most obvious one is to create runs the size of the cache and then to merge 
multiple such runs in memory before producing the final output (in-memory sort) or writing the 
result as a base level run to disk (external sort). Poor man’s normalized keys and cache-size runs 
are two principal techniques exploited in the AlphaSort [NBC 95]. An additional promising tech-
nique is to run internal activities not one record at a time but in groups of records, as this may 
reduce cache faults for instructions and for global data structures. Candidate activities include 
writing a record to a run, obtaining an input record, inserting a record into the in-memory data 
structures, etc. 

3 External sort: reducing and managing I/O 
If the sort input is too large for an in-memory sort, external sorting is needed. This section 

discusses a number of techniques to improve the performance of external sorts, including in-
memory data structures, space allocation heuristics for disks, and many other issues. 

One might presume that all that needs to be done is to improve the I/O performance during 
merging. While I/O bandwidth is important, there is much more to fast external sort. Since I/O 
bandwidth can often be improved simply by adding more striping runs (e.g., the temp space in a 
database system) over more disk drives, a well-implemented external sort also employs a variety 
of techniques to reduce CPU consumption, both CPU instructions and cache faults. 

3.1 Partitioning vs. merging 
Just as internal sorting can be based either on distribution or on merging, the same is true for 

external sorting. An external sort based on partitioning is actually quite similar to hash join (or 
actually hash aggregation or duplicate removal, given that there is only one input), except that the 
hash function must be order-preserving and that output from the final in-memory partitions must 
be sorted before it is produced. The same set of variants that apply to hash operations apply with 
pretty much the same effect, in particular hybrid hashing for graceful degradation when memory 
is almost but not quite large enough, but also dynamic de-staging to deal with unpredictable input 
sizes, bucket tuning to deal with input skew, etc. [KNT 89]. Surprisingly, one of the complex real-
world difficulties of hash operations, namely “bail-out” execution strategies in case partitioning 
does not produce buckets smaller than the allocated memory due to a frequent value, could be 
neatly integrated into sort operations based on partitioning – if a partition cannot be split further, 
this partition can be produced immediately as sort output. 

Interestingly, if two inputs need to be sorted for a merge join, they could be sorted in a single 
interleaved operation if that sort operation is based on partitioning. Techniques used in hash join 
could then readily be adapted, e.g., bit vector filtering on each partitioning or merging level. Even 
hash teams [GBC 98] for more than 2 inputs could be adapted to sorting and merge-based set 
operations. Nonetheless, partition-based sorting has not been explored much in database sorting, 
partially because it hasn’t been done before. However, in light of all the techniques that have 
been developed for hash operations, it seems to be worth a new thorough analysis. 

3.2 Run generation 
Quicksort and internal merge sort, when used to generate initial runs for an external merge 

sort, produce runs the size of the sort’s memory allocation. Alternatively, replacement selection 
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based on a priority heap produces runs about twice as large. One of the very desirable side bene-
fits of replacement selection is that the entire run generation process is continuous, alternately 
consuming input pages and producing run pages, rather than cyclic with distinct read, sort, and 
write phases. In a database query processor, this steady behavior not only permits running con-
currently the input query plan and the disks for temporary run files but also has very desirable 
effects in parallel query plans and parallel sorting, as will be discussed later. 

There are two related issues with replacement selection that don’t apply to quicksort and in-
ternal merge sort. First, quicksort and internal merge sort read and write data one entire memory 
load at a time. Thus, run generation can be implemented such that each record is copied within 
memory only once, when assembling sorted run pages. Second, memory management for quick-
sort and internal merge sort is straightforward, even for inputs with variable length records. Re-
placement selection, on the other hand, because it replaces records in the in-memory work space 
one at a time, free space management for variable length records requires as well as at least two 
copy operations per record (to and from the workspace). Fortunately, fairly simple techniques 
seem to permit memory utilization around 90% without any additional copy steps due to memory 
management [LG 98]. However, such memory management schemes imply that the number of 
records in the workspace and the number of valid entries in the priority heap may fluctuate. Thus, 
it is required that the heap implementation can accommodate efficiently temporary absence of 
entries, if possible without requiring multiple root-to-leaf passes over the priority heap. 

Runs should be written to disk only as necessary to create space for additional input records. 
In database query processing, before execution it often is not known precisely how many pages, 
runs, etc. will be needed in a sort operation. For example, if the input is only slightly larger than 
memory, only very few records and pages should be written to disk. In general, the second-to-last 
run should only partially be written to disk. The remainder of the input should remain in memory 
and not incur any I/O costs. This idea is well known as hybrid hashing or dynamic de-staging for 
hash-based algorithms [DKO 84, NKT 88], and is equally applicable to sorting. In order to man-
age memory effectively for such on-demand de-staging of initial runs on disk, the same tech-
niques can be used that are effective for memory management during replacement selection. 

There are several ways to accommodate or exploit CPU caches during run generation. One 
of them was mentioned earlier: creating multiple cache-size runs in memory and merging them 
into memory-size initial run on disk. The cache-size runs can be created using a load-sort-write 
(to memory) algorithm or (cache-size) replacement selection. If poor man’s normalized keys are 
employed, it is probably sufficient if the indirection array with pointers and poor man’s normalized 
keys fits into the cache, because record accesses should be rare. Actually, any size is satisfac-
tory if each small run as well as the priority heap for merging these runs into a single on-disk run 
fit in the cache – a single page or I/O unit might be a convenient size [ZL 97]. 

Another way to reduce cache faults on code and on global data structures runs the various 
activities not for each record but in bursts of records. Such activities include obtaining (pointers 
to) new input records, finding space in the workspace, copying records into the workspace, insert-
ing new keys into the priority heap used for replacement selection, etc. This technique can reduce 
cache faults in both instruction and data caches, and is applicable to other modules in the data-
base server, e.g., lock manager, buffer manager, log manager, output formatting, network interac-
tion, etc. However, batched processing is probably not a good idea for key replacement in priority 
heaps, because those are typically implemented in data structures that favor replacement of keys 
over separate deletion and insertion. 

3.3 Priority heaps 
After runs have been created, they must be merged, and it important to design algorithms 

and data structures that make efficient use of instructions and CPU caches. Since the total size of 
the code affects the number of faults in the instruction cache, code reuse is also a performance 
issue in addition to software engineering and development cost. A single implementation of a pri-
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ority heap may be used for many functions, e.g., run generation, merging cache-size runs in 
memory, merging disk-based runs, forecasting the most effective read-ahead I/O, planning the 
merge pattern, and virtual concatenation (the latter three issues will be discussed shortly). A sin-
gle module used so heavily must be thoroughly profiled and optimized, but it also probably im-
proves the effectiveness of the instruction cache. 

When merging runs, most implementations use a priority heap implemented as a binary tree 
embedded in an array. For a given entry, say at array index i, the children are at 2i and at 2i+1, or 
a minor variation of this scheme. Many implementations use a tree of winners [K 98], with the 
invariant that any node contains the smallest key of the entire tree rooted at that node. Thus, the 
tree requires twice as many nodes as it contains actual entries, e.g., records in the workspace 
during run generation or input runs during a merge step. In a tree of losers [K 98], each node con-
tains a different entry. In this tree, there is a special root that has only one child, whereas all other 
nodes have two children. The invariant is that any node (except the special root) contains the 
second-smallest key of the entire tree rooted at that node; the smallest key is further towards the 
root or in the special root. To make this work for the tree’s leaves, each leaf represents two 
merge runs. 

When inserting, deleting, or replacing keys in the tree, many implementations employ passes 
from the tree’s root to one of its leaves. Note that a pass from the root requires two comparisons 
per level, because an entry must exchange places with the smaller one of its two children. 
Passes from the leaves to the root, on the other hand, require only one comparison per tree level. 
In trees of losers, leaf-to-root passes are the usual technique. In trees of winners, most imple-
mentation use both root-to-leaf and leaf-to-root passes, although it is possible to rely entirely on 
leaf-to-root passes by defining a fixed mapping from entries (such as input runs during a merge 
step) to leaves. 

Either kind of priority heap is a variant of a binary tree. When the nodes of a binary tree is fit-
ted into larger physical units, e.g., disk pages or cache lines, entire units are moved in the mem-
ory hierarchy but only a fraction of the unit is truly exploited in each access. For disk-based 
search trees, B-trees were invented. B-trees with nodes equal to cache lines have shown promise 
in some experiments, where each node contains 2n or 2n-1 entries. Priority heaps can similarly be 
adapted to employ nodes the size of cache lines [NBC 95], with some additional space in each 
node to point to the node’s parent or with some additional complexity to compute the location of a 
node’s child or parent. However, it isn’t clear whether run generation is more effective using such 
modified priority heaps or limiting the size of the entire priority heap to the cache size, thus creat-
ing cache-size runs in memory and merging such cache-size runs into a single memory-size run 
while writing it to disk. 

In order to make comparisons in the priority heap fast, heap entries should contain poor 
man’s normalized keys, with the goal that poor man’s normalized keys eliminate all comparison 
logic except when two valid records must be compared on their entire keys. In other words, the 
poor man’s normalized key is more than simply the first few bytes of the normalized key. For fast 
comparisons between valid and invalid entries in the heap, invalid entries should have special 
“sentinel” values as their poor man’s normalized keys. It is practical to have both early and late 
sentinel values, i.e., values that compare lower or higher than all poor man’s normalized keys for 
valid entries. In order to simplify the comparison logic, two invalid entries in the priority heap, i.e., 
two sentinel values, should never compare as equal. Thus, each possible heap entry (each re-
cord slot in the workspace during run generation or each input run during a merge step) should 
have its own early and its own late sentinel value. During run generation, when record designated 
for two runs can be in the heap at the same time, the poor man’s normalized key should also en-
code the run number of valid entries, such that records designated for different runs compare cor-
rectly based solely on their poor man’s normalized keys. Note that the run number can be deter-
mined when a record is first inserted into the priority heap, which is when its poor man’s normal-
ized key value to be used in the priority heap is determined. 
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Let us consider an example. Presume a data structure that allows 16 bits or 216 possible 
(non-negative) values for poor man’s normalized keys, including sentinels etc. Let the heap size 
be 210 entries, i.e., records in the workspace or runs to be merged. The lowest 210 possible values 
and highest 210 possible values are reserved as sentinels, one for each record or input run. Thus, 
216-211 values can be used as poor man’s normalized keys for valid records, although pragmati-
cally one might use only 215 values or 15 bits from each actual key value in the poor man’s nor-
malized keys within the priority heap. If the priority heap is used to generate initial runs of an ex-
ternal sort, one might want to use only 12 bits, leaving the remaining 3 bits to represent run num-
bers. Thus, when the normalized key for an input record contains the value 47 in the leading 12 
bits and the record is assigned to run 5, its poor man’s normalized key in the priority heap is 210 + 
5 * 212 + 47. The first term skips over the low sentinel values, the second term captures the run 
number suitably shifted such that the run number is more important than the record’s actual key 
value, and the third term represents the record’s actual sort key. Note that every 7 runs (23-1), a 
quick sweep through the entire heap would be required to reduce all such run numbers by 7. An 
alternative design employs only one bit to indicate a record’s designated run, capturing more bits 
from the record keys in the poor man’s normalized keys but requiring sweeps through the heap 
after every run. 

Prior to forming the special poor man’s normalized key for use in the priority heap, a prefix of 
a record’s key can be used to speed several decisions for which conservative approximations 
suffice. For example, during run generation, the poor man’s normalized key alone might deter-
mine whether an input record belongs into the current or the next initial run. Note that an input 
record must be assigned to the next initial run if its poor man’s normalized key is equal to that of 
the record most recently written to the current run – a tradeoff between fast decisions and a small 
loss in accuracy and run length. Similarly, when replacing a record in the priority heap with its 
successor, one might want to repair the heap either by a root-to-leaf pass or a leaf-to-root pass, 
depending on the incoming key, the key it replaced, and the key in the appropriate leaf of the pri-
ority heap. Finally, poor man’s normalized keys might also be used for planning virtual concatena-
tion (discussed shortly). 

Typically, the size of the priority heap is chosen as small as possible, e.g., the heap size is 
equal to the number of runs being merged. However, while merging runs, in particular runs of 
very different sizes, it might be useful to use a large priority heap and reserve multiple entry 
points in the priority heap for each run, although only one of these points is actually used, with the 
objective to minimize the number of key comparisons for the many keys in the largest runs. For 
example, the number of entry points reserved for each run might be proportional to the run’s size. 
The effect of this policy is to balance the number of key comparisons that each run participates in, 
not counting the inexpensive comparisons decided entirely based on sentinel values. In particu-
lar, the many records from a large run participate in fewer comparisons per record. 

A special technique can be exploited if one of the runs is so large that its size is a multiple of 
the sum of all other runs in the merge step. In fact, this run should not participate in the priority 
heap at all. Instead, each key resulting from merging all other runs should be located among the 
next records of the large run, e.g., using a binary search. The effect should be that many records 
from the large run do not participate in any comparisons at all. For example, presume one run of 
1,000 records has been created with N log2 N or about 10,000 comparisons, and another run of 
1,000,000 records with about 20,000,000 comparisons. A traditional merge operation of these two 
would require about 1,001,000 comparisons, for a total of 21,011,000 comparisons. However, 
theoretically a run of 1,001,000 records could be created using only about 20,020,000 compari-
sons, i.e., the merge step should have required only 20,020,000 – 20,000,000 – 10,000 = 10,000 
comparisons. Creating the merge output by searching for 1,000 correct positions among 
1,000,000 records can be achieved with about 20,000 comparisons using straightforward binary 
search and probably much less using interpolation search – close to the number suggested by 
applying the N log2 N formula to the three run sizes. 
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3.4 Merge patterns and merge optimizations 
It is a widely held belief that given today’s memory sizes, all external sort operations use only 

a single merge step. Therefore, optimizing merge patterns seems no more than an academic ex-
ercise. If a sort operation is used to create an index, the belief is justified except for the largest 
data warehouse tables. However, if the sort operation is part of a complex query plan that pipes 
data among multiple sort or hash operations all competing for memory at the same time, and in 
particular if nested queries employ sorting, e.g., for grouping or duplicate removal, multi-level 
merging is not uncommon. This is particularly true if a query processor employs eager or semi-
eager merging (discussed in detail in [G 93]), which interleave merge steps with run generation. 
The problem with eager merging is that the operations producing the sort input may compete with 
the sort for memory, thus forcing merge operations with less than all memory. 

One reason for using eager and semi-eager merging is to limit the number of runs existing at 
one time, for example because that permits managing all existing runs with a fixed amount of 
memory, e.g., one or two pages. Probably a better solution uses a file of run descriptors, with as 
many pages as necessary. For planning, only two pages full of descriptors are considered, and 
an additional page of run descriptors is brought into memory only when the number of runs has 
been reduced sufficiently that the remaining descriptors fit on a single page. 

The goal of merge optimizations is to perform as few merge steps as possible and to move 
as few records as possible while doing so. In other words, one very effective heuristic is to always 
merge the smallest existing runs. All merge steps should use maximal fan-in, except in the first 
merge step. However, if not all existing runs are considered during merge planning (e.g., because 
some merge steps precede the end of the input or because the directory of runs exceeds the 
memory dedicated to merge planning), alternative heuristics may be better, for example to always 
merge the runs of the most similar size, independent of their absolute size. This latter heuristic 
attempts to ensure that any merge output run of size N has required no more sorting and merge 
effort than N log N. 

The merge planning effort should also attempt to avoid merge steps altogether. If the records 
in two or more runs have non-overlapping key ranges, these runs can be combined into a single 
run without any effort. Rather than concatenating files by moving pages on disk, it is sufficient to 
simply declare all those files a virtual run and to scan all files that make up a virtual when actually 
merging runs. Planning such virtual concatenation can be implemented relatively easily by retain-
ing low and high (poor man’s normalized) keys in each run descriptor and using a priority heap 
that sorts all available low and high keys, i.e., twice as many keys as there are runs. While virtual 
concatenation is not very promising for random inputs, it is extremely effective for almost sorted 
inputs, in particular inputs sorted on only a prefix of the desired sort key, as well as for reverse 
sorted inputs. 

3.5 Graceful degradation 
One of the most important merge optimizations applies not to the largest inputs but to the 

smallest external merge sorts. If an input is just barely too large to be sorted in memory, many 
sort implementations spill the entire input to disk. Better implementations spill only as much as 
absolutely necessary. For example, if the input is only 10 pages larger than the available sort 
memory of 1,000 pages, only about 10 pages should be spilled to disk. The total I/O for the entire 
sort should be about 20 pages, not 2,020 pages as it is in many existing implementations. 

Obviously, for inputs just a little larger than the available memory, this represents a substan-
tial performance gain. Just as important but often overlooked, however, is the effect on resource 
planning in query evaluation plans with multiple memory-intensive sort and hash operations. If the 
sort operation’s cost function has a stark discontinuity, a fair amount of special-case code in the 
memory management policy must be designed to reliably avoid fairly small but fairly expensive 
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sorts. If, on the other hand, the cost function is smooth because both CPU load and I/O load grow 
continuously, implementing an effective memory allocation policy is must more straightforward. 

In order to achieve graceful degradation, the last two runs generated must be special. The 
last run remains in memory and is never written to a run file, and the run prior to that is cut short 
when enough memory is freed for the first (or only) merge step. If run generation employs a read-
sort-write cycle, the read and write phases must actually be a single phase with interleaved read-
ing and writing, such that writing run files can stop as soon as reading input reaches the end of 
the input. 

3.6 I/O optimizations 
Finally, there are I/O optimizations. Some of them are quite obvious but embarrassingly not 

always considered – for example, a fair amount of time can be wasted if disk space is zeroed be-
fore it is used for run files, although it might be necessary to do so after the sort for security or 
privacy reasons. Similarly, files and file systems used by database systems typically should not 
use the file system buffer (in addition to the database buffer) and should not use virtual device 
drivers (e.g., for virus protection) or the like. Finally, updates to run files should not be logged, 
and using RAID devices for run files seems rather wasteful in space, processing, and bandwidth. 
These issues might seem utterly obvious to many but these guidelines are violated in many im-
plementations and installations nonetheless. 

It is well known that sequential I/O achieves much higher disk bandwidth than random I/O. 
Sorting cannot progress with pure sequential I/O; therefore, large I/O units are a good compro-
mise between bandwidth and merge fan-in. Depending on the specific machine configuration and 
I/O hardware, 64 KB is typically a reasonable compromise on today’s server machines, although 
somewhat larger units of I/O may also make sense. If CPU processing bandwidth is not an issue, 
the optimal I/O unit achieves the maximal product of bandwidth and the logarithm of the merge 
fan-in. Intuitively this is the right tradeoff because it enables the maximal number of useful key 
comparisons per unit of time. 

Of course, there are reasons to deviate from this simple heuristic, in particular if merge input 
runs have different sizes and if the disk layout is known. It appears from a preliminary analysis 
that the minimal number of disk seeks for runs of different sizes is achieved if the I/O unit of each 
run as well as the number of seek operations per run are proportional to the square root of the 
run size. If the disk layout is known, larger I/O operations can be planned either before a merge 
step based on key distributions saved for each run or dynamically as the merge progresses [ZL 
98]. 

Given that most database servers have many more disk drives than CPUs, typically by 
roughly one order of magnitude, either many threads or asynchronous I/O needs to be used to 
achieve full performance. Asynchronous write-behind while writing run files is fairly straightfor-
ward, thus half the I/O activity can readily exploit asynchronous I/O. However, effective read-
ahead requires forecasting the right run to read from. A single asynchronous read can be fore-
casted correctly by comparing the highest keys in all current input buffers. If, as is typical, multiple 
disk drives are to be exploited, multiple reads must be forecasted. A possible simple heuristic is 
to extend the standard single-page forecast to multiple pages, although the resulting forecasts 
may be wrong, in particular if the merge input runs differ greatly in size and multiple pages from a 
single run ought to be fetched. Alternatively, the sort can retain key information about all pages in 
all runs, either in locations separate from the runs or as part of the runs themselves. If the latter, 
note that such runs strongly resemble the leaf level and the first parent level of a B-tree. Rather 
than designing a special storage structure and writing special code for run files, one might want to 
reuse the entire B-tree code for managing runs. The additional cost of doing so should be minimal 
given that typically 99% of a B-tree’s allocated pages are leaves, and 99% of the remainder are 
immediate parents. One might also want to reuse B-tree code because of its cache-optimized 
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page structures, use of poor man’s normalized keys in B-trees [GL 01] and, of course, multi-page 
read-ahead directed by the parent level implemented for ordinary index-order scans. 

While higher RAID levels with redundancy are a bad idea for sort runs, disk striping without 
redundancy is a good idea for sorting. The simplest way to exploit many disks is to simply stripe 
all runs similarly over all disks, in units equal to or a small multiple of the basic I/O unit, i.e., 64 KB 
to 1 MB. Larger striping units dilute the automatic load balancing effect of striping. Such simple 
striping is probably very robust and offers most of the achievable performance benefit. Note that 
both writing and reading merge runs ought to exploit striping and I/O parallelism. If, however, 
each run is assigned to a specific disk or to a specific disk array among many, forecasting per 
disk or disk array is probably most effective. 

4 Sorting in context: database query processing 
The techniques described so far apply to any large sort operation, whether in a database sys-

tem or not. This section adds considerations for sorting in database query processors and its role 
in processing complex ad-hoc queries. 

4.1 Sorting to reduce the data volume 
Sorting is often used to group records by a common value. Typical examples include aggre-

gation (with prior grouping) and duplicate removal, but most of the considerations here also apply 
to “top” or “rank” operations, in particular grouped “top” and “rank” operations. An example for the 
latter is the query to find the top sales people in each region – one reasonable implementation 
sorts sales people by their region and sales volume. Performing the desired operation (“top”) not 
only after but also during the sort operation can substantially speed up all these operations. The 
required logic can be invoked while writing run files, both initial runs and intermediate runs, and 
while producing the final output [BD 83]. The effect is that no intermediate run can be larger than 
the final output of the aggregation or “top” operation; thus, (presuming randomly distributed input 
keys) it is effective if the data reduction factor due to aggregation or “top” is larger than the merge 
fan-in of the final merge step. 

Even if the sort operation does not reduce the data volume, records that have once been 
compared as equal should never be compared again. For example, if multiple records in a run file 
compare as equal, they should move through the next merge step together. Thus, the merge 
logic should never be more expensive than it is for sorting with duplicate removal. Thus, if there is 
a chance that records in the same run file will compare as equal, such groups of records should 
be identified as the file is being written, whether or not duplicate records are actually retained or 
removed. 

4.2 Pipelining among query evaluation iterators 
A complex query might require many operations to transform stored data into the desired and 

correct query result. Commercial database systems pass data within a single evaluation thread 
using some variant of iterators [G 93]. Iterators can be data-driven or demand-driven, and their 
unit of iteration can be a single record or a group of records. Such a group defined by their data 
volume, the record count, and a common attribute value – the latter concept is known as value 
packets [K 80]. Obviously, the sort operation is a prime candidate to produce its output in value 
packets. 

More recently, an additional reason for using multiple records at a time has emerged, namely 
CPU caches. For example, if a certain selection predicate requires the expression evaluator as 
well as certain constants, it might be advantageous to load the expression evaluator and those 
constants into the CPU caches only once every few records rather than for every single record. 
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Such batching will reduce cache faults both for instructions and for global data structures. As 
mentioned earlier, this technique can also be exploited for activities within a sort operation, e.g., 
inserting variable-length records into the sort operation’s workspace. However, it probably is not a 
good idea to batch record replacement actions in the priority heap, since the leaf-to-root pass 
through a tree of losers is designed to repair the heap after deletion of a record as well as include 
a new record. If this activity is batched, multiple passes through the priority heap will replace each 
such leaf-to-root pass, since the heap must be repaired and the heap invariants re-established 
after each deletion and insertion. Moreover, these passes probably include a root-to-leaf pass, 
which is more expensive than a leaf-to-root pass since each level in the binary tree requires two 
comparisons rather than one. 

A sort operation, a stop-and-go operation that consumes its entire input before producing 
output, can be implemented equally well using data-driven or demand-driven dataflow. Demand-
driven dataflow is superior for single-threaded query execution, in particular for binary operations 
such as joins, whereas data-driven dataflow is often superior in multi-threaded execution and for 
operation with multiple outputs. For example, consider optimizing a large update of a table with 
multiple indexes. After a read-only query plan determines the affected rows as well as old values 
and new values, multiple branches in the query plan consume the same intermediate query re-
sult, sort it suitably for each index, and then apply all required changes in a single index-order 
pass over each index, thus ensuring that each index leaf page is touched at most once. In this 
case, rather than storing the unsorted intermediate result and scanning it multiple times, it might 
be more efficient to push the intermediate result rows immediately into the various plan branches 
and therefore into the various sort operations, immediately producing initial run files, albeit 
smaller ones than they could be, due to memory contention among the sort operations.  

In a well-indexed database, it is amazing how often the optimal or at least some near-optimal 
query plan relies entirely on index navigation2 rather than set-oriented operations such as merge 
join, hash join, and their variants. Typically, such a plan is not simply a sequence of index lookups 
but a clever assembly of more or less complex nested iterations, whether the original query for-
mulation employed nested subqueries or not. Interestingly, sorting can be exploited in a variety of 
ways to improve the performance of nested iterations. 

Most obviously, if the binding (correlation variables) from the outer query block or iteration 
loop is not unique, the inner query block might be executed multiple times with identical values. 
One improvement is to insert at the root of the inner query plan a caching iterator that retains the 
mapping from binding values to (inner) query results. This cache is particularly effective, and less 
likely to require disk space and disk I/O, if all outer rows with the same binding value occur in im-
mediate sequence – in other words, if the outer rows are grouped or sorted by their bindings val-
ues. An opportunistic variant of this technique does not perform a complete sort of the outer rows, 
but only performs in-memory run generation to improve the chances of locality either in this cache 
or even in the indexes searched by the inner query block. This variant could also be very useful in 
object-oriented databases for object id resolution and for object assembly. In some situations, 
e.g.,  merge-joining two inputs of very different sizes, directly processing the initial runs rather 
than producing a completely sorted join input can beat hash join even for unsorted input [G 91]. 

Note that the cache of results from prior nested invocations might not be an explicit data 
structure and operation specifically inserted into the query plan for this purpose. Instead, it might 
be the memory built up by a stop-and-go operator, e.g., a hash join or a sort. In that case, the sort 
operation must not “recycle” its memory and its final on-disk runs, even if the sort implementation 
usually deallocates its memory and disk space as quickly as possible. Retaining these resources 
enables fast and cheap “rewind” actions for sort operation.  

Just as pipelining multiple rows up a query plan can be advantageous, it can be a good idea 
to bind multiple outer rows to the inner query plan – in the extreme case, the result is complete 
side-ways information passing or semi-join reduction [BC 81, SHP 96]. If this idea is used, multi-
ple executions of the inner query plan are folded into one, with the result rows often in an order 
less than ideal for combining it with the outer query block; in that case, the outer rows can be 
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tagged with sequence numbers, the sequence number made part of the bindings, and the outer 
and inner query plan results combined using an efficient merge join on the sequence number af-
ter sorting the entire inner result on that sequence number. 

4.3 Memory management 
Sorting is typically a stop-and-go operator, meaning it consumes its entire input before pro-

ducing its first output. In addition to the input and output phases, it may perform a lot of work after 
consuming its input and before producing the final output. These three operator phases – run 
generation while consuming input, intermediate merges, and final merge producing output – and 
similar operator phases in other stop-and-go operators define plan phases. For example, in an 
ad-hoc query with two sort operators feeding data into a merge join which in turn feeds a third 
sort operator, one of the plan phases includes two final merge steps, the merge join, and one ini-
tial run generation step. 

Quite obviously, operators compete for memory and other resources only if they participate in 
a common plan phase, and only with some of their operator phases. In general, it makes sense to 
allocate memory to competing sort operations proportional their input data volume, even if (in ex-
treme cases) this policy results in some sort operations having to produce initial runs with only a 
single buffer or other sort operations having to perform a “one-way” final merge, i.e., the last “in-
termediate” merge step gathers all output into a run and the final step simply scans that run. 

This general heuristic needs to be refined for a number of cases. First, hash operations and 
query plans that combine sort and hash operations require different heuristics. Second, since se-
quential activation of query operators in a single thread may leave some sort operators dormant 
for extended periods of time, their memory must be made available to other operators that can 
use it more effectively. A typical example is a merge join with two sort operations for its input, 
where the input sorted first is actually small enough that it could be kept in memory if sorting the 
other sort does not require the same memory. Third, complex query plans using nested iteration 
need a more sophisticated model of operator and plan phases. Finally, some sort operations are 
not stop-and-go operations. We will consider only the last of these issues here. 

If an input is almost sorted in the desired order, for example if it is sorted on the first few but 
not all desired sort attributes, it is often more efficient to run the core sort algorithm multiple times 
for segments of the input data rather than once for the entire data set. Such a major-minor sort is 
particularly advantageous if each of the single-segment sorts can be an in-memory sort whereas 
the complete sort cannot. On the other hand, if the input segments are so large that each requires 
an external sort, segment-by-segment sorting might not be optimal, because the sort competes 
with the sort operation’s producer and consumer operations for memory. A stop-and-go sort op-
eration competes during its input phase with its producer and during its output phase with its con-
sumer; but during the intermediate merge steps, it can employ all available memory. Note that the 
same situation that enables major-minor sort also makes virtual concatenation very effective, 
such that even the largest input might require no intermediate merge steps. 

There are multiple proposals for dynamic memory adjustment during sorting, e.g., [PCL 93, 
ZL 97]. Techniques differ in adjusting memory based on only a single sort or multiple concurrent 
sort operations, while generating runs or only between runs, during a single merge step or only 
between merge steps, and by means of adjusting the I/O unit or the merge fan-in. Dropping or 
adding a merge input half-way through a merge step actually seems promising if virtual concate-
nation is employed, i.e., the merge policy can deal effectively with partial remainders of runs. In 
general, however, product developers tend to shy away from dynamic techniques because they 
expand the test matrix and create challenges when reproducing customer concerns. 
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4.4  Index creation and index maintenance 
One very important purpose of sorting in database systems is fast creation of indexes, typi-

cally some variant of B-trees. In addition, sorting can be used in a variety of ways for B-tree main-
tenance. For example, when updating a column with a uniqueness constraint and a B-tree index 
to enforce it, simply updating a unique index row by row, using a delete and an insert operation 
for each row, might detect false (temporary) violations if multiple rows “exchange” their column 
value. Instead, N update actions can be split into delete and insert actions, all 2N actions sorted 
on the column value, and then applied in such a way that there will be no false violations. For a 
second example, when updating so many rows that many index leaves will be affected multiple 
times, sorting the insert or delete set and applying B-tree changes in index order can be substan-
tial performance gain, just like building a B-tree index in sort order is faster than using random 
insertions. 

For large indexes, e.g., in a data warehouse, there might not be enough temporary space for 
all the run files, even if runs files or even individual pages in run files are “recycled” as soon as 
the merge process has consumed them. Some database systems therefore use the target space 
for runs, either by default or as an option. During the final merge, pages are recycled for the index 
being created. An obvious issue with this is that the target space is often on mirrored disks or on 
RAID disks, which does not help sort performance as discussed earlier. However, if the target 
space is the only space available, there might be no alternative to using it for the runs. 

Another issue with sorting in the target space is that the final index might be very fragmented 
because pages are recycled effectively in random order. Thus, an index-order scan of such an 
index would incur many disk seeks. There are two possible solutions. First, the final merge can 
release pages to the global pool of available pages, and the index creation attempts to allocate 
large contiguous disk space from there. However, unless the allocation algorithm successfully 
searches for contiguous free space, most of the allocations will be in the same small size in which 
space is recycled from the merge. Second, space is recycled from initial runs to intermediate 
runs, among intermediate runs, and to the final index in larger units, typically a multiple of the I/O 
unit. For example, if the factor is 8, disk space equal to at most 8 times the size of memory might 
be held for such deferred group recycling, which is typically an acceptable overhead when creat-
ing large indexes. Fortunately, the two solutions can be combined, and should result in index-
order scans with acceptable amounts of seek operations. 

4.5 Parallelism & threading 
There is a fair amount of literature that covers parallel sorting, both internal and external par-

allel sorts. One key issue is load balancing when using range partitioning. In practice, however, 
hash partitioning is typically the better choice, because it works nicely with merge join and sort-
based duplicate removal, and user-requested sorted output can be obtained with a simple final 
merge operation that is typically as fast as or faster than the application program consuming the 
output. For index creation, the partition boundaries are typically determined prior to the sort and 
based on considerations beyond of the final index, not the creation process, and partitioning 
based on those boundaries followed by local sorts is typically sufficient. 

Maybe a more important issue with parallel sort-based query execution plans is the danger of 
deadlocks due to unusual data distributions and limited buffer in the data exchange mechanism. 
Some simple forms of deadlocks are described in [G 93], but more complex forms also exist, e.g., 
over multiple groups of sibling threads and multiple data exchange steps. Typical deadlock 
avoidance strategies include alternative query plans, artificial keys that unblock the merge logic 
on the consumer side of the data exchange, and unlimited (disk-backed) buffers in the data ex-
change mechanism. 

Parallel query plans work best, in general, if all data flow is balanced among all parallel 
threads and steady over time. Thus, a core sort algorithm is more suitable to parallel execution if 
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it consumes and produces its output in steady flows. Merge sort naturally produces its output in a 
steady flow, but alternative run generation techniques result in different patterns of input con-
sumption. Consider a parallel sort where a single, possibly parallel scan produces the input for all 
parallel sort threads. If these sort threads employ an algorithm with distinct read, sort, and write 
phases, each thread stops accepting input during its sort and write phases. If the data exchange 
mechanism on the input side of the sort uses a bounded buffer, one thread’s sort phase can stop 
the data exchange among all threads and thus all sort threads. One alternative to distinct read, 
sort, and write phases is replacement selection. Another alternative is to divide memory into 
thirds and create separate threads rather than distinct phases. A third alternative creates very 
small runs in memory as soon as a suitable number of new input records are available and 
merges those runs into a memory-size disk-based run file on demand as memory is needed for 
new input records – an algorithm noted earlier for its CPU cache efficiency. 

If parallel sorting is employed for grouping or duplicate removal, and if data needs to be re-
partitioned to from multiple scan threads to multiple sort threads, and if data transfer between 
threads is not free, it might be useful to form initial runs in the scan threads, as part of the data 
pipeline leading to the data exchange operation. If duplicates are detected in these runs, they can 
be removed prior to re-partitioning, thus saving transfer costs. Of course, the receiving sort 
threads have to merge runs and continue removing duplicates. This idea of “local and global ag-
gregation” is well known for hash-based query plans, but typically not used in sort-based query 
plans, because most sort implementations do not permit splitting run generation from merging. It 
might be interesting to separate run generation and merging into two separate iterators; note also 
that the “run generation” iterator is precisely what is needed to complement hash-partitioning us-
ing an order-preserving hash function to realize a disk-based distribution sort. 

4.6 Query planning techniques 
While planning a query plan that includes a sort operation, there are a number of simplifica-

tions that ought to be considered, even if they are often ignored in today’s products. For example, 
bit vector filtering applies not only to hash-based or parallel query plans but to any query plan that 
matches rows from multiple inputs and employs stop-and-go operations such as sort and hash 
join. In fact, if two inputs are sorted for a merge join, it might even be possible to apply bit vector 
filtering in both directions by coordinating the two sort operations’ merge phases and merge lev-
els. 

If an order-by list contains keys, and if constraints are enforced in the database from which 
the data are sorted, functional dependencies within the order-by list can be exploited [SSM 96]. 
Specifically, a column can be removed from the order-by list if it is functionally dependent on the 
columns that appear earlier in the order-by list. Incidentally, this technique also applies to hash-
based algorithms and to partitioning in parallel query plans. A constant column is presumed to be 
functionally dependent on the empty set, and can therefore always be removed. If the sort input is 
the result of a join operation, equivalence classes of column ought to be considered. Note that, in 
addition to primary key constraints on stored tables, functional dependencies also exist for inter-
mediate results. For example, a grouping or distinct operation creates a new key for its output, 
namely the group-by list. 

In addition to outright removal of columns, it may pay to reorder columns in the order-by list. 
For example, if the sort operation’s purpose is to form groups or to remove duplicates, the order-
by list can be treated as a set, i.e., the sequence of columns does not matter for the grouping op-
eration, although it might matter if the query optimizer considers “interesting orderings” [SAC 79]. 
Note that in hash-based algorithms, the hashing columns always form a set, not a list. Thus, in 
cases in which both sorting and hashing are viable algorithms, these optimizations apply. The 
goal of reordering the column list is to move columns to the front that are inexpensive to compare, 
are easily mapped to poor man’s normalized keys, and have many distinct values. For example, if 
the first column in the order-by list is a long string with a complex collation sequence and very few 
distinct values (known from database statistics or from a referential constraint to a small table), a 
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lot of time will be spent comparing equal bytes within these keys, even if normalized keys are 
used. In addition to reordering the order-by list, it is even possible to add an artificial column at 
the head of the list, e.g., an integer computed by hashing other columns in the order-by list – of 
course, this idea is very similar poor man’s normalized keys, which has been discussed before. 

5 Summary and conclusions 
In summary, sorting can be used in all kinds of database systems for all kinds of tasks, e.g., 

query processing, index creation, and consistency checks. There is a large and varied set of 
techniques that can substantially improve the performance of sort operations. Many of these 
techniques are complementary to each other. In their entirety, they can speed up sorting and sort-
based query plans by an order of magnitude in many cases. Hopefully, this survey will make 
these techniques more widely known and commonly exploited in research prototypes and in 
commercial products. 

Acknowledgements 
A number of friends and colleagues have contributed many insightful comments to earlier 

drafts, particularly David Campbell, Ian Jose, Per-Åke Larson, and Prakash Sundaresan. 

References 
[A 96] Ramesh C. Agarwal: A Super Scalar Sort Algorithm for RISC Processors. SIGMOD Conf. 

1996: 240-246. 
[AAC 97] Andrea C. Arpaci-Dusseau, Remzi Arpaci-Dusseau, David E. Culler, Joseph M. Heller-

stein, David A. Patterson: High-Performance Sorting on Networks of Workstations. SIGMOD 
Conf. 1997: 243-254. 

[ALM 96] Gennady Antoshenkov, David B. Lomet, James Murray: Order Preserving Compres-
sion. ICDE 1996: 655-663. 

[BC 81] Philip A. Bernstein, Dah-Ming W. Chiu: Using Semi-Joins to Solve Relational Queries. 
JACM 28(1): 25-40 (1981). 

[BD 83] Dina Bitton, David J. DeWitt: Duplicate Record Elimination in Large Data Files. TODS 
8(2): 255-265 (1983). 

[BL 89] Jean-Loup Baer, Yi-Bing Lin: Improving Quicksort Performance with a Codeword Data 
Structure. TSE 15(5): 622-631 (1989). 

[DKO 84] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael Stone-
braker, David A. Wood: Implementation Techniques for Main Memory Database Systems. 
SIGMOD Conf. 1984: 1-8. 

[G 91] Goetz Graefe: Heap-Filter Merge Join: A New Algorithm For Joining Medium-Size Inputs. 
TSE 17(9): 979-982 (1991). 

[G 93] Goetz Graefe: Query Evaluation Techniques for Large Databases. ACM Computing Sur-
veys 25(2): 73-170 (1993). 

[GBC 98] Goetz Graefe, Ross Bunker, Shaun Cooper: Hash Joins and Hash Teams in Microsoft 
SQL Server. VLDB 1998: 86-97. 

[GL 01] Goetz Graefe, Per-Åke Larson: B-Tree Indexes and CPU Caches. ICDE 2001. 
[K 80] Robert Kooi, The Optimization of Queries in Relational Databases, Ph.D. thesis, Case 

Western Reserve University, 1980. 
[K 98] Donald E. Knuth, The Art of Computer Programming: Sorting and Searching. Addison 

Wesley Longman (1998). 
[KNT 89] Masaru Kitsuregawa, Masaya Nakayama, Mikio Takagi: The Effect of Bucket Size Tun-

ing in the Dynamic Hybrid GRACE Hash Join Method. VLDB 1989: 257-266. 
[LG 98] Per-Åke Larson, Goetz Graefe: Memory Management During Run Generation in External 

Sorting. SIGMOD Conference 1998: 472-483. 



Implementing sorting Page 17 of 18 July 12, 2001, 12:22 PM 
Goetz Graefe  DRAFT 

[NBC 95] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, David B. Lomet: AlphaSort: A 
Cache-Sensitive Parallel External Sort. VLDB Journal 4(4): 603-627 (1995). 

[NKT 88] Masaya Nakayama, Masaru Kitsuregawa, Mikio Takagi: Hash-Partitioned Join Method 
Using Dynamic Destaging Strategy. VLDB 1988: 468-478. 

[PCL 93] HweeHwa Pang, Michael J. Carey, Miron Livny: Memory-Adaptive External Sorting. 
VLDB 1993: 618-629. 

[SAC 79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, 
Thomas G. Price: Access Path Selection in a Relational Database Management System. 
SIGMOD Conf. 1979: 23-34. 

[SHP 96] Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung, Raghu 
Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, S. Sudarshan: Cost-Based Optimiza-
tion for Magic: Algebra and Implementation. SIGMOD Conf. 1996: 435-446. 

[SSM 96] David E. Simmen, Eugene J. Shekita, Timothy Malkemus: Fundamental Techniques for 
Order Optimization. EDBT 1996: 625-628. 

[ZL 97] Weiye Zhang, Per-Åke Larson: Dynamic Memory Adjustment for External Mergesort. 
VLDB 1997: 376-385. 

[ZL 98] Weiye Zhang, Per-Åke Larson: Buffering and Read-Ahead Strategies for External 
Mergesort. VLDB 1998: 523-533. 

 



Implementing sorting Page 18 of 18 July 12, 2001, 12:22 PM 
Goetz Graefe  DRAFT 

Additional references suggested by PALarson 
Vinay S. Pai, Peter J. Varman: Prefetching with Multiple Disks for External Mergesort: Simulation 
and Analysis. ICDE 1992: 273-282. 
Betty Salzberg: Merging Sorted Runs Using Large Main Memory. Acta Informatica 27(3): 195-
215(1989).  
LuoQuan Zheng, Per-Åke Larson: Speeding up External Mergesort. TKDE 8(2): 322-332(1996). 
Vladimir Estivill-Castro, Derick Wood: A Survey of Adaptive Sorting Algorithms. ACM Computing 
Surveys 24(4): 441-476 (1992). 
Andersson, A. and Nilsson, S., A new efficient radix sort, Proc. 35th Annual IEEE Symposium on 
Foundations of Computer Science (1994), pp. 714-721. 
Arne Andersson, Stefan Nilsson: Implementing Radixsort. ACM Journal of Experimental Algo-
rithms 3: 7 (1998). 
Bentley, J. L. and McIlroy, M. D., Engineering a sort function, Software - Practice and Experience 
23, 11 (1993), pp. 1249-1265. 
McIlroy, P. M., Bostic, K., and McIlroy, M. D., Engineering radix sort, Computing Systems 6, 1 
(1993), pp. 5-27. 


