Databases: The Integrative Force

in Cyberspace

Andreas Reuter
EML Research gGmbH, Heidelberg
Andreas.Reuter@eml-d.villa-bosch.de

Abstract. Database technology has come a long way. Starting from systems
that were just a little more flexible than low-level file systems, they have
evolved into powerful programming and execution environments by embrac-
ing the ideas of data independence, non-procedural query languages, exten-
sible type systems, automatic query optimization (including parallel execu-
tion and load balancing), automatic control of parallelism, automatic recov-
ery and storage management, transparent distributed execution—to just name
a few. Even though database systems are (today) the only systems that allow
normal application programmers to write programs that will be executed cor-
rectly and safely in a massively parallel environment on shared data, database
technology is still viewed by many people as something specialized to large
commercial online applications, with a rather static design, something sub-
stantially different from the “other” IT components. More to the point: Even
though database technology is to the management of persistent data what
communication systems are to message-based systems, one can still find
many application developers who pride themselves in not using databases,
but something else. This is astounding, given the fact that, because of the dra-
matic decrease in storage prices, the amount of data that needs to be stored
reliably (and retrieved, eventually) is growing exponentially—it's Moore's
law, after all. And what is more: Things that were thought to be genuinely
volatile until recently, such as processes, turn into persistent objects when it
comes to workflow management, for example.

The paper argues that the technological evolution of database technology
makes database systems the ideal candidate for integrating all types of ob-
jects that need persistence one way or the other, supporting all the different
types of execution that are characteristic of the various application classes. If
database systems are to fulfill this integrative role, they will have to adapt to
new roles vis-a'-vis the other system components, such as the operating sys-
tem, the communication system, the language runtime environment, etc. but
those developments are under way as well.

1 Introduction

Databases have a tenacious habit of just not going away. This is true for the real data-
bases, disks, tapes, software, etc. that are run by big applications; those databases,
through the sheer mass of data accumulated have an inertia that reliably protects them

14.

from being “moved”, technologically, platform-wise or in any other sense. And the
same observation holds (albeit for different reasons) for the scientific discipline of da-
tabase technology. Starting in the mid-80s, database researchers have been organizing
workshops and/or panel discussions once every three to five years, fully devoted to the
question of whether there is anything interesting left in the database arena. Mike Stone-
braker in particular loved to contemplate database-related questions such as “Are we
polishing a round ball?” [12]. The motivation for this is quite clear: After having solved
all the issues that once were considered interesting and hard (or so it seemed), is the
field going to lie fallow—which should trigger everybody to move on to something
more fertile, more promising.

The answers suggested in those workshops were mixed—as you would expect. But
even those people who still found interesting problems to work on had to admit, that
most of those problems were highly specialized compared to the early problems in ac-
cess paths, synchronization, and all the rest. So based on the discussions in those work-
shops one would have expected database technology to reach a saturation level quite
soon with only marginal improvements in some niches.

Therefore, it is exciting to see that database technology has undergone a transfor-
mation during the last couple of years, which few people have predicted to happen this
way—even though it is embarrassingly obvious in hindsight. Not only have databases
been extended by a plethora of new data types and functions (this was what everybody
expected), they rather have mutated from a big but separate system platform for pas-
sively storing data into a compute engine supporting a wide range of applications and
programming styles. The once-hot debate about object-oriented databases has been set-
tled completely by relational databases absorbing objects, complete with a powerful and
efficient extensibility platform, and by database objects becoming first-class citizens in
object-oriented languages through a common runtime system [4]. This has largely
solved another “old” database problem, the so-called impedance mismatch between re-
lational databases with their SQL-style, declarative programming model and the inher-
ently procedural nature of many programming languages.

But not only have database systems adopted features from other system compo-
nents; at the same time they have offered their own specific features such as set-oriented
programming, parallel programming, content-addressability, etc. as components to a
generic programming environment of modern systems.

All this still sounds very technical; one might say that the most annoying, long-
standing difficulties have been resolved, that the database people finally got it right. But
so what? Why would this justify the claim expressed in the title? The article will argue
that databases, as a result of the evolution sketched above, will—in future systems—
play a role that is very different from their traditional low-level, obscure role some-
where deep down in the system.

15.

2 New data sources, new usage patterns

Modern database technology has its roots in business data processing. In his textbook
on “Data Organization” [14], which was published in the early 70s and describes data-
bases as an emerging technology, Hartmut Wedekind characterizes databases as the
core of management information systems, designed to accommodate different structural
and operational schemes of a company—and to provide a query interface. Application
areas such as banking, inventory control, order processing, etc. were the driving forces
behind database products in the 60s and 70s—and to a certain degree they still are. But
all the time databases were considered some kind of passive, low-level infrastructure
(something close to the operating system) the only purpose of which was to enable new
types of applications, integrated management of data for both online and batch process-
ing, and a whole range of functions for archiving, recovery, etc. Databases were systems
for application developers, not for end-users. Even the query interfaces based on differ-
ent types of “user friendly” metaphors required a fairly educated user—they had to un-
derstand the schema (their particular view of it), for example. This is the reason why
Paul Larson, senior researcher at Microsoft is quoted saying “Database systems are as
interesting as the household plumbing to most people. But if they don't work right, that's
when you notice them.” This is the view we have come to accept: Databases are defi-
nitely necessary, but not particularly attractive—let alone exciting. Jim Gray [6] likes
to say that “databases are the bricks of cyberspace”. This again emphasizes the impor-
tance and the substance of the subject, but bricks are not very attractive either. One
could find many other such statements, but why worry about this in the first place?

Let us explain the reason by considering a very instructive analogy: In the early
1980s, one would have ascribed the same properties as quoted above to messaging and
distributed systems—necessary yet unappealing. But then something happened that
made Butler Lampson say that the greatest failure of the systems research community
over the past ten years was that “we did not invent the Web” [10]. And if you think about
it: The technology enabling the WWW is exactly what was developed by the “systems
research community”, but in contrast to what distributed systems were before, the Web
is attractive, and it made distributed computing technology available to everybody, not
just to technical people. So in order to understand / anticipate what database technology
might—or rather: should evolve to, it is essential to understand what caused the trans-
formation of distributed systems from something nerdy and boring into the hottest thing
in the IT arena—and beyond.

Obviously, the key point was that the Web offered the possibility of reaching be-
yond the confines of just one system, of unlimited connectivity on a global scale. True,
the underlying Internet had been around for quite a while when the Web came up, but
the TCP/IP-stack is not something many people can or want to develop applications on.
HTML was not a nice interface either, but it worked on a metaphor people are easily
familiar with, i.e., documents, rather than something arcane like a communication pro-
tocol. And it offered a totally new quality, the possibility of sharing contents without
any restrictions, and without the need to worry about the internal workings. So if a new
solution significantly increases the users’ power (be it in terms of functionality, or
reach, or speed), the quality of the interface initially does not matter too much. Many

16.

experts predicted that the Web would never succeed because of the awkwardness of
HTML; the same predictions were made for SMS. The experts were wrong on both
counts. On the other hand, nice interfaces do not translate into ready success if they do
not sufficiently empower the user. The quality of simple, unrestricted access to HTML
documents quickly created new usage patterns and new applications. Sharing of text
was augmented by function sharing, simple access grew into more sophisticated pro-
cessing patterns, organizational layers such as portals were introduced, overlay net-
works came into use, etc. Again, none of these things represented a genuinely new tech-
nology, but the way the existing technology was used and employed made all the dif-
ference.

Now the reader might ask: Where is the analogy to databases? Clearly, modern da-
tabase systems have much more powerful and high-level programming interfaces than
the TCP/IP protocol stack, there are databases embedded into end-user-oriented appli-
cation generators, database systems can handle distributed processing in a transparent
manner—so what can be learned from the comparison with the Web?

The answer can best be illustrated through an anecdote: At a workshop on future
research issues in databases that was held in 1992, about 40 researchers presented their
views on great new ways of improving database technology. Towards the end one of
the organizers asked a question: “You all have to manage a lot of data, contact address-
es, email, project-related data, references and the like. How many of you are using a da-
tabase system for that purpose?” Two hands went up, while the others eagerly explained
how database systems were too complicated to set up and to maintain, how the data
types were not adequate, how the integration with other tools was insufficient, and
many other such things. This was more than 10 years ago, but had the survey been con-
ducted today, the outcome would certainly not have been much different, because the
reasons have not changed. We store, manipulate and query data in many contexts, for a
large variety of purposes. Some data is strictly private; other data is shared to some de-
gree. Some data is transient, other data is (semi-) permanent. Each type of data, howev-
er, is used and supported by a specific tool: The email end everything pertaining to that
lives in the mail system; the appointment data lives in the calender system; project-re-
lated data lives in the planning tool; data that requires some calculation may live in a
spreadsheet; shared data lives in a company-wide database; and finally, one might have
one’s own database application (using, for example, Access) for keeping track of the
CDs, records, and books. But all those systems are separate as far as data management
is concerned. Clearly, for any given project, data related to that project will be found in
the mail system, in the calender, in the planning tool, and in some spreadsheets. But
there is no way of dynamically creating a “view” on the project that encompasses data
from all these sources. Or put it another way: Even if the mail system were built on top
of an SQL database (which most mail systems still aren’t), there would still be no way
of querying that database together with the company database, even if the data types
were overlapping. That explains why we are still using a specific tool for every relevant
purpose rather than managing all our data in one consolidated store—even if those tools
force us into storing the same data redundantly, into representing the same kind of in-
formation in different formats, and into manually synchronizing the different versions
of the same information—if we ever bother to do so.

17.

Table 1: Overview of categories of personal data and the types of (technical)
management support

Category Tool/Platform Properties of Data model Ref. to ot.her
data store categories
Mail Email system Closed file Folder hierarchy; | Many: structural;
system or weakly structured value-based;
database text strings concept-based
Addresses Mail system Closed or open | Quasi-relational; | Many: structural;
or directory file system various value-based
(LDAP) ,standards*
Appointments Calender Closed file Hierarchy of time | Many: structural;
system system intervals; unstruc- value-based;
tured text strings concept-based
Scheduling Planning tool Closed file Dependency Many: structural;
system or graph; weakly value-based
database structured text
strings
Budgeting Spreadsheet Closed file Array; arithmetic Various: value-
system or expressions; un- based
database structured strings
Personal 4GL tool Open Relational Various: value-
inventory database based
Personal finance | Web frontend Closed Forms-oriented | Many: value-based
(account mgmt.) to bank database
application
Personal finance | Shoebox, paper n/a n/a Many
(invoices, folder
receipts)

This situation, which characterizes the “state of the art” in managing a person’s pri-
vate data, is summarized in Table 1.

The above table is far from complete; our personal data “ether” comprises many
more categories: Messages from mobile phones and PDAs, insurance contracts and re-
lated claims, medical data, tickets, photos, and many more. Thanks to the advances in
(mobile) communication technology, ever more powerful data sources are entering the
personal domain. But the table suffices to clarify one important fact—a fact so trivial
that it is mostly overlooked, or regarded as irrelevant: When it comes to our personal
data, we have to deal with many different systems and technologies, ranging all the way
from advanced Web services down to paper in boxes. The electronic tools are strictly
categorized, using different platforms, different data models, and different engines. As
a consequence, integrating related data from different categories is not supported by any
of the participating tools and has to be done either by the owner of the data or—more
likely—is not done at all. This means both a significant loss of information, as is sug-
gested by the shaded column, and a high level of redundancy.

18.

Table 1 also shows that most of the tools involved do employ database technology
somewhere deep down in the system. But even if a tool uses a full-fledged SQL system,
it restricts its functionality to its own needs, which means the database’s capabilities of
selecting, aggregating and joining data cannot be used for integrating the tool’s data
with those from other sources. It is ironic that many tool developers use this observation
as some kind of reverse argument, saying that they build their tool on top of a normal
file system instead of database system, because “we don’t need all these features”. But
obviously, considering Table 1, the lack of those features, especially those helping with
data integration, is causing a major problem for almost everybody. And the other argu-
ment that is very popular with developers, “our customers never asked for that”, does
not count; hardly anybody asked for the Web before it became available.

So the private domain is a large application (i.e., there are many users) where data
of different types have to be managed, some of them in collaboration with other parties.
If we view data integration as one of the key reasons for using a database, then here is
a big task for database systems, a task they do not fulfil today—even though all the tech-
nology needed is there. But this observation holds for other areas (outside the house-
hold) as well; let us briefly review some of the more demanding new database applica-
tions and usage patterns, again without any claim of completeness.

2.1 Science

In many fields of science, such as astronomy, biology, particle physics, etc. measure-
ment devices ranging from satellites to sequencers and particle colliders produce huge
amounts of raw data, which have to be stored, curated, analyzed and aggregated in order
to become useful for scientific purposes [7]. The raw data is only partially structured,
with some parts that conform to the relational model, but with other parts as well, such
as images of many different types, time series of measurements, event logs, and text
fields that either contain natural language or some kind of application-specific vernac-
ular [13]. The key properties of those data collections (irrespective of the many differ-
ences) are:

* The raw data is written once and never changed again. As a matter of fact, some sci-
entific organizations require for all projects they support that any data that influence
the published results of the project be kept available for an extended period of time,
typically around 15 years.

+ Raw data come in as streams with high throughput (hundreds of MB/s), depending
on the sensor devices. They have to be recorded as they come in, because in most
cases there is no way of repeating the measurement.

+ For the majority of applications, the raw data is not interesting. What the users need
are aggregates, derived values, or—in case of text fields—some kind of abstract of
“what the text says”.

* In many cases, the schema has hundreds or thousands of attribute types, whereas
each instance only has tens of attribute values.

19.

* The schema of the structured part of the database is not fixed in many cases. As the
discipline progresses, new phenomena are discovered, new types of measurements
are made, units and dimension are changed, and once in a while whole new concepts
are introduced and/or older concepts are redefined. All those schema changes have
to be accommodated dynamically.

Digital libraries belong into this category, too. Traditionally, libraries were treated
as something different, both organizationally and technically, but in the meantime it no
longer makes sense to separate them from the core business of storing and managing
scientific data, because whatever ends up in a scientific library—article, book, or re-
port—is to some degree based on scientific data, which thus should be directly linked
with the publications they support [6].

2.2 Data streams

There is a growing number of applications where databases are used to create a near-
real-time image of some critical section of the environment. For example,

+ RFIDs support tracking physical parts from the supplier, through the production pro-
cess, into the final product—until they need to be replaced for some reason;

+ the activities of cell phones can be tracked both with respect to their physical location
and the calls they place and receive;

« credit card readers allow tracking the use of credit cards and their physical locations;

 sensors allow monitoring processes of all kinds: in power plants, in chemical reac-
tors, in traffic control systems, in intensive care units, etc.

The main purpose of such databases is to provide flexible query functionality, aggrega-
tion and extrapolation of the respective processes that can’t properly be achieved on the
physical objects. Based on those complex evaluations, one can support process optimi-
zation, fraud detection, early-warning functions, and much more.

For that purpose, the database must be able to absorb the data at the rates of their
arrival. But the situation is different from gathering scientific data, where the streams
typically run at a fairly constant speed. For monitoring applications, the system must be
able to accommodate significant fluctuations in the data rate, including sharp bursts.
And in addition, the data must not simply be recorded. Rather, the incoming data has to
be related to the existing data in complex ways in order to compute the type of derived
information that is needed for, say, early warning applications. This gives rise to the no-
tion of continuous queries [1], the implementation of which requires mechanisms quite
different from classical database algorithms—and different data structures as well.

An important application of this type of processing is the publish-subscribe scenar-
io. Users can subscribe to certain patterns in the incoming data stream and/or to certain
events related to them, which are expressed as complex (continuous) queries on the da-
tabase. Depending on the application, there can be millions of subscribers using thou-
sands of different queries. Subscribers need to be notified of relevant changes in the in-

20.

coming data in real time, so in case of many subscribers there is a correspondingly huge
stream of outgoing data, i.e., notification messages.

Another characteristic property of monitoring applications is the fact that they often
track properties of certain objects in space and time. Space is not necessarily the normal
3D space in which we move about, but at any rate, both space and time need to be first-
class citizens of the data model rather than just another set of attributes. References to
value histories must be supported at the same level as references to the current value,
which is what databases normally do.

And finally, the applications require the database to handle (and to trigger) events.

2.3 Workflow management

Automatic management of complex, long-lived workflows has been a goal for at least
three decades [11]. The problem has been tackled from different angles, but so far only
partial solutions for special cases have been implemented. There is consensus, though,
that database technology has to be at the core of any general-purpose solution. Each
workflow instance is a persistent, recoverable object, and from that perspective is sim-
ilar to “traditional” database objects. On the other hand, workflows have many addition-
al features that go beyond what databases normally support.

A workflow has a very complex internal structure that is either completely de-
scribed in the workflow schema, or that can change/evolve over time. The latter is par-
ticularly true for workflows with a very long duration, because it is impossible to fully
structure them in the beginning. Workflows are active objects, as opposed to the passive
view that databases normally hold of their objects; workflows react to events, to inter-
rupts, they wait for pre-conditions to become true, they trigger events, etc. Workflows
have a huge amount of state (which is why databases are needed), partially ordered (as
defined by the schema) by activation conditions, by the temporal dimension, and many
other criteria. Workflow variables need to maintain their instantiation history, because
references to an earlier execution state are required both for normal execution as well
as for recovery purposes.

Another aspect of workflows that can be supported by database technology is syn-
chronization of concurrent activities. Because workflows are long-lived, there will be a
large number of them executing in parallel, accessing shared data, competing for re-
sources, creating events that may be conflicting in various ways. Some of those con-
flicts may not be resolvable immediately, so the conflicting state together with the re-
sources involved has to be stored in a recoverable manner such that automatic or appli-
cation-dependent conflict resolution can be initiated at the proper time.

We could discuss more areas with novel requirements in terms of data management,
but the ones mentioned above suffice in order to make the key point: We see an increas-
ing need for consolidating the management of all kinds of data for all kinds of process-
ing patterns on a single, homogeneous platform—whatever the name of the platform
may be. People want to manage all their personal data in a consistent way, creating
much more than just a “digital shoebox”—the realm of personal data may well extend

21.

into the professional domain, depending on the way people organize their lives [2]. In
the scientific domain, we see a convergence of storing scientific data (experimental
measurements), the outcome of all types of analyses, and the final publications, includ-
ing patents and the like. And in the business domain, there is a clear movement towards
integrating the management of business data and the management of applications work-
ing on those data.

Traditionally, all these fields were treated separately, with different underlying con-
cepts and theories, different techniques, and different technical and scientific commu-
nities. Databases were viewed as representatives of the world of structured data (and
still are, to a certain degree), whereas collections of text were the subject of
“information retrieval systems”. The notion of “semi-structured” systems [5] tried to
bridge this gap, but still convergence has not been achieved. In the same vein, temporal
databases, active databases, real-time databases, etc. have been viewed as different
communities, focused more on solving their particular problems rather than trying to
come up with a framework for integration. This definitely made good sense because
solving the integration problem definitely is a tall order.

Right now it is ironic to see that many people believe in a very simple recipe for
integration: XML. As Gray observes in [8], the set of people believing in this approach
and those not buying it is stratified by age—yet he continues to say “... but it is hard at
this point to say how this movie will end.”

3 Technological trends

When sketching technological trends that will be useful in solving the problems out-
lined above, we have to consider the database field as well as adjacent areas—whatever
measure of “nearness” one may choose to apply. This could result in a fairly lengthy list
of new ideas and techniques, which would be beyond the limitations of this paper.
Therefore, we will only name some of the key technologies expected to be instrumental
in extending the scope of databases such that they can support the novel applications
and usage patterns that already have emerged—and that will keep emerging in the fu-
ture. Since we cannot discuss any of the technological trends in detail, we will only use
them to support our core argument that all the ingredients are there (or at least a suffi-
cient number is) to unleash the integrative power of database technology.

3.1 Trends in database technology

It is hard to judge which technological change is more important than another one, but
clearly one of the most consequential developments in database technology in recent
history has been the integration of the relational model (one should rather say: the SQL-
model) with object technology. The model-specific problems aside, this required an ex-
tension of the database systems’ runtime engine in order to accommodate the dynamic
nature of object-orientation—as opposed to the static characteristic of a relational sche-

22.

ma. In the end, this led to an integration of the databases’ runtime engine with the run-
time systems of classical programming languages, which greatly enhanced the capabil-
ities of both worlds: The traditional “impedance mismatch” between the database oper-
ators and the programming languages they are embedded in largely disappeared. One
can run code in (almost) any language inside the database, and / or one can include da-
tabase objects into class definitions of an object-oriented programming language. Given
the powerful declarative programming model of SQL, one can use a database as an ex-
ecution environment for procedural, object-oriented, declarative, and rule-based pro-
gramming, whatever fits the problem structure best—all within one coherent frame-
work. This in itself is an extremely useful basis for integrating different data models and
execution patterns, as is illustrated by the current work on integrating text into classical
databases—two domains that have traditionally been quite separate.

The other important development has to do with the proliferation of methods and
techniques for indexing, combining and aggregating data in any conceivable manner.
Databases in the meantime efficiently support cubes of very high dimensionality with a
vast number of aggregation operators. They also include machine-learning techniques
for detecting clusters, extracting rules, “guessing” missing data, and the like. Novel in-
dexing techniques help in supporting a variety of spatial and temporal data models—or
rather: embeddings of the underlying data models. All this is accompanied by advanced
query optimizers that exploit the potential of those access paths and dynamically adapt
to changing runtime conditions. Again, those changes are essential for the task of inte-
grating everything in cyberspace.

Integrating the ever-growing volume of data requires, among many other things, a
database system that is highly scalable and can be tuned to the specific performance
needs of a wide range of applications. Modern database systems respond to these needs
by supporting new internal storage structures such as transposed files (aka column
stores), by exploiting the potential of very large main memories, by using materialized
views and others types of replication, by applying a rich set of algorithms for computing
complex queries, etc.

3.2 Trends in adjacent fields

The new developments in database technology have either been provoked by or com-
plemented by new approaches in related fields. Whether it was the competitive or the
symbiotic scenario does not matter, it is the result that counts.

A key development in the field of programming languages and systems is the notion
of a common language runtime environment [2], which allows for a seamless integra-
tion of database functionality and programming languages. It also enables database sys-
tems to schedule and execute application programs autonomously, i.e., without the need
for a separate component like a TP monitor. This also means that database systems can
provide Web services without the necessity of a classical application execution environ-
ment.

The consequences of distributed computing, rapidly increasing storage capacities,
demands for non-stop operation (to name just a few) have caused operating systems and

23.

other low-level system components to adopt database techniques. For example, most
operating systems now support ACID transactions in some form, and they offer recov-
ery functionality for their file systems similar to what database systems provide.

Devices other than general-purpose computers increasingly employ database sys-
tems. There are two main reasons for that: The first one is to have the device expose a
powerful standard interface (SQL) instead of an idiosyncratic, device-specific interface.
The other reason is that the device has to keep large amounts of data, which are most
easily managed by a standard database system. An example of the latter category is a
home-entertainment device that can store hundreds of CDs and provide the user with
sophisticated search functions.

The implementation of workflow engines requires an even closer collaboration be-
tween database systems and operating systems. The reason is obvious: A workflow is a
long-lived recoverable execution of a single thread or of parallel/interleaved computa-
tions, so everything that is volatile information for normal OS processes now has to be
turned into persistent objects, just like the static objects that are normally stored in da-
tabases. Examples for this are recoverable queues, sequences of variable instantiations
for keeping track of execution histories, etc. Many database systems support queues as
first-class objects, so in a sense the database is the real execution environment of work-
flows, with operating systems acting only on its behalf by providing expendable objects
such as processes and address spaces.

A last important trend is the adoption of schema-based execution in many areas.
Databases have had schemas (albeit rather static ones) all along, and so had operating
systems. Markup languages made messages and documents schema-based, a develop-
ment that led to Web services, among other things. Similar ideas can be found in many
application systems, where the generic functionality is adapted to the needs of a specific
user by populating various “schema” tables with the appropriate values. This process is
often referred to as customization, and—just like that classical notion of a schema—it
is an example of the old adage that “any problem can be solved by introducing just an-
other level of indirection.” And, of course, ontologies as a means of extracting concepts
from plain text can be viewed as yet another incarnation of the same idea.

4 The shape of future database systems

This section will not give a description of what the title refers to—that would be way
too ambitious. We will rather summarize the observations from the previous chapter
and, based on this, identify a number of aspects that will determine the shape of future
database systems.

But first let us re-state the assumption that this paper is built on: Due to the avail-
ability of virtually unlimited storage at low cost!, data from a large variety of sources
will be gathered, stored, and evaluated in unforeseen ways. In many application areas,

1. This development is expected to be complemented by the availability of a high-band-
width mobile communication infrastructure.

24.

those data collections will establish ever more precise images of the respective part of
reality, and those images will be more and more up-to-date. So for many purposes, de-
cisions will not be based on input from the “real world”, but on query results from the
digital images. Examples of this have been mentioned above.

Since this scenario talks about managing large amounts of data, we will consider it
a database problem, even though there is no guarantee that the technology finally sup-
porting such applications will not be given some other name—probably because
“database” does not sound cool enough. Anyhow, database systems capable of integrat-
ing data of all types and supporting all kinds of processing patterns will have to be ex-
tremely adaptive, both in terms of representing the data and in terms of interacting with
the environment—which can be anything from sensor devices to applications programs
and users. They must not enforce structure upon the data, if there is no structure, or if
any structure that can be identified is likely to change. In those cases, schema modifi-
cations (together with schema versioning) must be supported as well as (dynamic) sche-
ma transformation [3]. In other cases, ontology-based representations might be a better
option—XML will certainly be the lowest level of self-descriptive data. Classical ap-
plications will still use their more or less static schema descriptions, and in an integrated
system, all those techniques must be available at the same time, allowing queries to span
different models. For some data it must be possible to have it encapsulated by an object,
but make it accessible for certain types of queries as “raw data” as well. Many standard
tools and applications organize their data in a hierarchical fashion (e.g. folders), so this
kind of mapping must be supported—whether or not the data structure is inherently hi-
erarchical.

Future database systems will, because of the integrative role they have to assume,
have to deal with high levels of parallelism and with requests ranging from milliseconds
to months or more. This requires new synchronization primitives and new notions of
consistency—beyond those implied by the classical ACID transaction model. Most
likely, such extensions will be developed in collaboration with researchers from the
fields of programming languages, dependable systems, and maybe even hardware ar-
chitects [9].

Another consequence of the integrative role is the necessity of keeping the system
up at any time, under all circumstances. Any tuning, reorganization, repair, recovery or
whatever has to be performed automatically, in parallel to normal execution. This de-
mand for a self-organizing, self-healing, self-you-name-it database is a subject of ongo-
ing research, and its feasibility will be determined by technical as well as economical
constraints.

As was mentioned above, it is not clear if the resulting solution will be perceived as
a database system (however “future” it may be), or if it will be dressed up in a different
fashion. One possible solution is to move a database system with (ideally) all the exten-
sions mentioned into the operating system and build a next-generation file system on
top of that. Such a file system would offer the conventional file types as well as XML-
stores, semi-structured repositories, stores for huge data streams, object repositories,
queues, etc. But they would all be implemented on top of an underlying database sys-
tem, which would still be able to talk SQL and provide all the mechanisms for consis-

25.

tency, synchronization, recovery, optimization, and schema translation. But again: This
is just a possibility, and by no means the only one.

5 Conclusions

The key message of this article is plain and simple: There are many different applica-
tions and usage modes out there, some rather old, some emerging, which hold the po-
tential for integration at the level of the data they are dealing with. Everybody, home
user as well as professional, would benefit immensely from a technology that enables
them to transparently access and manipulate data in such an integrated view. Database
technology, together with a host of “neighboring” technologies, has all the components
required to do that. All it needs is an innovation comparable to the creation of the Web
on top of the Internet. Referring back to Lampson’s statement quoted in the beginning,
we should ask ourselves (as members of the technical database community): Will we
create this future, global, unified repository? If so, what will it look like? If not, why
not?

References

[1] Babu, S., Widom, J.: Continuous Queries over Data Streams. in: SIGMOD Record 30:3,
Sept. 2001, pp. 109-120.

[2] Bell, G.: MyLifeBits: A Lifetime Personal Store. in: Proc. of Accelerating Change 2004
Conference, Palo Alto, Ca., Nov. 2004.

[3] Bernstein, P.A., Generic Model Management—A Database Infrastructure for Schema Ma-
nipulation. in: Lecture Notes on Computer Science, No. 2172, Springer-Verlag.

[4] Common Language Runtime. in: Microsoft .NET Framework Developer’s Guide, http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthecom-
monlanguageruntime.asp

[5] Goldman, R., McHugh, J. and Widom, J.: From Semistructured Data to XML: Migrating
the Lore Data Model and Query Language. in: Proc. of the 2nd Int. Workshop on the Web
and Databases (WebDB '99), Philadelphia, Pennsylvania, June 1999, pp. 25-30.

[6] Gray, J.: The Laws of Cyberspace. Presentation at the International University in Germa-
ny, October 1998, http://research.microsoft.com/%7Egray/talks/1998 laws.ppt

[71 Gray, J.,, Szalay, A.S. et al.: Online Scientific Data Curation, Publication, and Archiving.
in: Proc. of SPIE Astronomy, Telescopes and Instruments, Waikoloa, 2002, pp. 103-107.

[8] Gray, J.: The Revolution in Database Architecture. Technical Report, MSR-TR-2004-31,
March 2004.

[91 Jones, C., etal.: The Atomic Manifesto: a Story in Four Quarks. in: Dagstuhl Seminar Pro-
ceedings 04181, http://drops.dagstuhl.de/opus/volltexte/2004/9.

[10] Lampson, B.: Computer systems research: Past and future. Invited talk, in: Proc. of
SOSP’99.

[11] Leymann, F., Roller, D.: Production Workflow—Concepts and Techniques. Prentice Hall,
1999.

26.

Proceedings ICDE Conference on Data Engineering. Vienna, 1993

Ratsch, E., et al.: Developing a Protein-Interactions Ontology. in: Comparative and Func-
tional Genomics, Vol. 4, No. 1, 2003, pp. 85-89.

Wedekind, H.: Datenorganisation. Walter de Gruyter, Berlin New York, 1975.

	Databases: The Integrative Force in Cyberspace
	1 Introduction
	2 New data sources, new usage patterns
	2.1 Science
	2.2 Data streams
	2.3 Workflow management

	3 Technological trends
	3.1 Trends in database technology
	3.2 Trends in adjacent fields

	4 The shape of future database systems
	5 Conclusions

