
PALADIN: A Pattern-based Approach to Large-scale Dynamic
Information Integration

Jürgen Göres
Heterogeneous Information Systems Group

University of Kaiserslautern
goeres@informatik.uni-kl.de

Abstract: The nascent data grid technology aims to make access to globally distributed struc-
tured and semi-structured databases possible. However, only integrated, transparent access to such
data sources, abstracting not only from distribution and implementation details, but also from the
diverse forms of heterogeneity, allows maximum leverage for the envisioned dynamic forms of
inter-organisational cooperation. Traditional integration technologies rely on a human-driven de-
velopment process and are therefore not applicable to the ad-hoc style of integration required in
these scenarios. PALADIN aims to automate integration planning by using patterns that capture
expert knowledge in a machine-processable way. A pattern describes a generic problem constella-
tion encountered in information integration and provides a guideline to its solution, described as
transformations on a graph-oriented representation of the data source schemas and their data.

1 Introduction
The IT infrastructure found in most organizations today often grew organically over decades. It is
therefore characterised by several forms of heterogeneity, which can rougly be classified into three
categories: Technical heterogeneity subsumes different hardware, operating systems, programming
languages and APIs. Logical heterogeneity includes different data models (data model heterogeneity),
the diverging use of identical datamodels (schematic heterogeneity) and different structuring (struc-
tural heterogeneity). Semantic heterogeneity originates from the often subtle discrepancies in the use
and understanding of terms and concepts in schemas of different origin.

Existing information integration (II) technology is used successfully to consolidate such systems
by providing a unified view that abstracts from these forms of heterogeneity. However, setting up an
integration system is to date to a large part still a manual task that can be split into distinct phases:
Initially, requirements for the desired integrated system, like the target data model and schema, are
determined (analysis phase). Based on these results, suitable data sources that can contribute have to
be found (discovery phase). In the planning phase the forms of heterogeneity are identified and re-
solved by defining a mapping between the source and the target schemas. This mapping or integration
plan is then implemented by deploying it to a suitable runtime environment like one of the existing II
products (deployment phase). The resulting system is then available for end users (runtime phase).
This classical approach to II relies on human expertise in two areas: Integration experts have profound
knowledge about how to remedy logical heterogeneity by defining mappings between the source and
target schemas. To successfully define such mappings, an understanding of the domain of discourse is
needed. Application domain experts are required to resolve the non-trivial semantic gaps between the
different schemas, i.e., they deliver insight into the domain concepts and provide information about
correspondencies between the different schemas. This elaborate process, while time-consuming and
costly, is still adequate for scenarios where the requirements and the data sources deemed for integra-
tion are stable. However, it is difficult to apply to dynamic environments like the virtual organisations
(VO) proposed by [3], a new form of short- to medium-term inter-organisational cooperations, that
use grid technology to pool computing resources and data on a global scale.

PALADIN (PAttern-based LArge-scale Dynamic INformation integration) aims to reduce the de-
pendency on human experts. Building upon existing and evolving middleware technology like web
and grid services [5] and standard interfaces like those specified by the Data Access and Integration
Working Group (DAIS) [1] that solve most aspects of the aforementioned technical heterogeneity, we

focus on resolving logical and semantic heterogeneity. Machine-processable integration patterns are
used to capture II expertise. They enable the collection of both generic problem constellations encoun-
tered when integrating heterogeneous data sources as well as guidelines to their solution. If the prob-
lem described by a pattern is later discovered in the schemas of a set of data sources chosen for inte-
gration, the generic solution provided by the pattern is adapted to the concrete situation. By combin-
ing a set of patterns from a pattern library that cover data model, schematic and structural heterogene-
ity, a proper sequence of schema (and accompanying data) transformations can be discovered that
describes a mapping from the chosen data sources to the desired target schema.

Like the integration experts they support or substitute, patterns cannot rely on schema information
(i.e. the explicit metadata) alone, but also have to consider the semantics of the data source. Therefore,
a medium to convey the semantics in a machine-processable way is needed. In practice, schema
matching techniques are applied to identify those elements in the different schemas that correspond in
some way. Many approaches to automatic schema matching have been explored (see [6] for an over-
view). These methods are usually based on a lexical and structural analysis of the schemas. While the
results are often promising, they still lack the quality to solely rely on them for automated integration.
PALADIN uses domain schemas to augment basic schema matching with domain knowledge. Being
essentially multi-language ontologies, they describe the terms of discourse of a given domain, the
relationships between these terms and their synonyms and optionally translations into different lan-
guages. However, even with domain schemas as support, the current state-of-the-art cannot yield
schema matches with sufficient quality. Assuming that the user of a data grid is familiar with the ap-
plication domain, we explicitely include him in the schema matching process by providing an inter-
face that allows to check, correct and amend the correspondencies identified by automated matching.

The remainder of this paper is structured as follows: Section 2 briefly describes the PALADIN
metamodel that is capable of handling arbitrary data and metadata. Section 3 describes the machine-
processable integration patterns in more detail. Domain schemas are discussed briefly in section 4.
Section 5 concludes with a summary and an outlook on future work.

2 Metamodel
To seamlessly handle data and metadata from data sources with different data models, the PALADIN
infrastructure has to provide a uniform internal representation for the diverse data-model- or even
implementation-specific schema description languages like DTDs, XML Schema or SQL DDL in its
many proprietary variants. An existing approach is OMG’s Common Warehouse Metamodel [2]: It
uses a stack of four meta-layers, numbered from M0 to M3, where every element on one layer is an
instance of an element on the layer above, and itself forms a class for instances on the layer below: On
the M3 layer, the Meta Object Facility (MOF) serves as meta-metamodel to describe arbitrary meta-
models on the M2 layer. Here, CWM and its extensions already provide metamodels for many stan-
dard data models like SQL and XML. One the M1 or model layer, actual schemas are described by
instantiating the elements of these metamodels. The data layer M0 finally represents the data stored in
these schemas.

While at first glance the CWM appears to provide the ideal infrastructure for PALADIN, certain
deficits restrict its use for our purposes: Besides a high degree of complexity, which makes implemen-
tation and use cumbersome, the current CWM specification is somewhat outdated. For example, the
predefined metamodel for XML is limited to the expressiveness of DTDs, thus making an extension
to include XML Schema necessary. This can easily be accomplished using the MOF, but still does not
address the fundamental flaw of CWM: the lack of a proper M0 or data layer. CWM provides an in-
stance metamodel, which places the actual data on the M1 layer, i.e., on the same conceptual layer as
their metadata. This not only violates the strict concept of distinct meta layers, but also results in an
overboarding complexity of the instance metamodel, making it unsuitable to describe more than sam-
ple data. However PALADIN requires the M0 layer to describe an essential part of integration pat-

terns. Therefore, we provide the PALADIN Metamodel (PMM), which borrows CWM’s general con-
cept of meta layers and many of its established terms, but remedies its deficits, like providing a con-
ceptionally sound data layer. Using the meta-metamodel, we define those metamodels that are the
most relevant, namely XML, object-oriented and object-relational. Further metamodels can easily be
added if the need arises. In addition to the metamodels that are used to describe actual source or target
schemas, a Match metamodel allows the description of correspondencies within and between arbitrary
schemas and across different metamodels which are identified during schema matching. Unlike the
generic correspondencies supported by existing schema matchers, which usually only allow to de-
scribe the fact that there is some kind of relationship between the elements with a given confidence,
we provide an extensible set of correspondencies of a finer granularity that carry more precise seman-
tics, like part-component-relationships, sub- or supersets and many more.

3 Integration Patterns
Integration patterns are PALADIN’s fundamental concept to describe human II expertise in a ma-
chine-understandable way. Each pattern describes a certain elementary or complex integration prob-
lem, i.e., a constellation of schema elements and the correspondencies between them, and supplies a
guideline to solve this problem by applying a suitable transformation on both the schemas involved
and on the data held in these schemas. Instead of using imperative algorithms to capture this kind of II
experience, patterns use a declarative notation which allows the easy extension of the library of avail-
able patterns without programming effort. A language is required that offers sufficient expressiveness
to describe all kinds of structural, schematic and data model transformations. Many existing languages
come to mind: SQL views can transform relational schemas and data, recent extensions of the stan-
dard like SQL/XML even allow bridging from SQL to XML. However, SQL is unable to bridge the
gap between data and metadata (i.e. solve schematic heterogeneity). Approaches like SchemaSQL [4]
try to remedy this situation, but have not gained widespread support. XQuery offers sufficient expres-
siveness to turn data to metadata and vice versa, but is limited to the XML realm alone. Therefore,
neither language is suitable to express the full range of patterns. Defining our own textual language to
cope with this problem would not only add to the existing plethora of proprietary data modelling lan-
guages that usually more or less imitate and build on SQL, but would also make the extension of
PALADIN with additional metamodels difficult, as it would likely require new language constructs.
We therefore suggest an approach that understands any schema (and its data) described in the
PALADIN metamodel as a typed, attributed multigraph and every operation on the schema and data
as a graph transformation. Graph transformations are a well explored concept (see [7]). To represent
integration patterns, we chose an approach that is based on the semi-graphical language defined for
the PROGRES graph replacement system [8]. While the graphical elements provide an easily read-
able, yet semantically precise description of the most relevant aspects of a pattern, the textual notation
adds expressiveness that would be hard to capture graphically. A graph transformation is described
using production rules. A production rule has a left-hand side (LHS) that describes the situation it can
be applied to as an abstract subgraph, and a right-hand side (RHS) that describes the result of its ap-
plication.

Figure 1 shows a simplified sample pattern that describes the necessary steps when source and tar-
get schema feature a different degree of normalisation. It also introduces the most important elements
of the graphical part of the notation. Every pattern consists of two production rules or facets, which
are situated on the M1 and on the M0 layer, respectively. The M1 facet describes the effects on the
schema: The left-hand side describes a situation, where two tables are connected via a foreign key
between a subset of their columns.

To connect left- and right-hand side, every element that should be preserved by the pattern is
bound to a variable. An element that is not repeated on the RHS indicates a deletion, an element that
is new on the RHS indicates the creation of an element. In the example, the two tables bound to t1 and

t2 are replaced by a new single table t3 which receives all columns that were part of either t1 or t2,
except those that were part of the foreign key, which are equivalent and are therefore added to t3 only
once. All inbound context edges to a node in a pattern are preserved if the node itself is preserved, or
can be rerouted to another node using the diamond symbol. The M0 facet describes the conversion of
the data stored in the schema elements of the M1 facet. It essentially describes an equi-join between
the two tables and uses a simple expression of the textual notation for the join condition.

owner

t1uc:Column

t1:Table

owner

t2fkc:Column

t2:Table

:ForeignKey

target source

t1oc:Column t2oc:Column

s:SQLSchema part_ofpart_of

::=

owner

Condition for each c,d in C:,D: c==d
}

::=

}
Pattern denormalise().m0 {

Pattern denormalise().m1 {

owner

t1uc:Column

t3:Tablet1oc:Column t2oc:Column

s:SQLSchema
part_of

ownerowner

label=t1.label+t2.label

t1, t2

2:t1

:t11:t1oc

:t13:t1uc

5:t2

:t14:t2oc

:t16:t2fkc

:t3

:t11:t1oc

:t13:t1uc

:t14:t2ocA B A B

t2fkc

owner

:UniqueConstraint
element_of

for

for

C B C

Fig. 1. An integration pattern expressed as a graph transformation

Given a sufficiently large library of patterns, the task of integration planning can now be under-
stood as proving a hypothesis (the target schema) from a set of axoims (the source schemas) using a
set of rules (i.e. the patterns). Any successful deduction, i.e., a sequence of rule or pattern applications
that can be found, describes a logical query graph that transforms the source data into the desired tar-
get schema, with each pattern’s M0 facet representing an operator in this graph. To use this integra-
tion plan, it has to be translated into a physical plan using the operators provided by the selected run-
time environment (RE). While a RE could use the M0 facet directly to execute the query by working
on the M0 graph representation of the data, many patterns will not need the additional expressiveness
and only use operations that are already part of an algebra for the respective data model. In this cases,
it is often more efficient to use a native implementation of an operator if it is provided by the runtime
environment, using the graph-oriented operator description only as a fallback, e.g., to configure a
generic graph-transformation operator. The same holds true for the specification of the patterns: while
the use of graph transformations allows the expression of arbitrary operations on schemas and their
data in a declarative way, existing query languages are often sufficient and we therefore support the
translation of patterns in a data model specific language into our internal format.

4 Domain Schemas
While the pattern shown in figure 1 relies solely on schema information, many patterns require infor-
mation about the semantics of a data source. This is especially relevant when a given schema constel-
lation allows the application of several schematically equivalent patterns. Semantic information dis-
covered or defined during schema matching is stored using the Match metamodel and can be used in
the definition of the preconditions for patterns. To improve the degree of automation achievable by
schema matching techniques, thereby reducing the amount of user interaction to rectify and complete
these matches, we introduce the concept of domain schemas as our “Swiss army knife to semantic
integration”. A domain schema can in principle be modeled using an arbitrary data model and repre-
sents a base of reference for a given domain. We provide a simplified variant of the CWM object
model, that allows each class to have multiple labels in different languages, which enables their use as
a dictionary and acronym list for lexical schema matching techniques. The backbone of each domain
schema is the directed acyclic graph (DAG) created by the (multiple-)inheritance relationships be-
tween its classes, providing a natural broader/narrower-term relationship which can be used both as a
thesaurus and as a means to address subdomains with path expressions. Additional relationships and

special attributes can be used to add further information, like hints to potential references (e.g. foreign
keys that were not explicitely defined in a schema) and strong or weak candidate keys. While it is
possible to provide monolithic schema matchers that make use of domain schemas, they integrate
smoothly with the concept of integation patterns: Figure 2 shows how graph transformations can be
used to transfer information from a domain schema to a concrete schema. The is_a relationship be-
tween two classes c1 and c2 in the domain schema ds is annotated using an is_a match between two
model elements me1 and me2 that carry the same label as c1 and c2, respectively. Note that since a
domain schema class can have multiple labels, the equals-operator used in the condition is interpreted
as an existential quantifier.

Pattern subclassMatching().m1 {
Condition me1.label=c1.label & me2.label=c2.label

me1:ME

ds:DomainSchema

is_a ::=

p1:Package

}

me2:ME

p2:Package

part_of part_of

me1:ME

p1:Package

me2:ME

p2:Package

source
part_of

m:Is_A
target

part_of

part_of

c2:Class

c1:Class t:Thesaurus

is_a

part_of

part_of

c2:Class

c1:Class

part_of

ds:DomainSchema

Fig. 2. Using patterns and domain schemas for schema matching

Since this kind of match is independent of the concrete data model of the matched schema ele-
ments, the pattern refers to the abstract Package and ME (ModelElement) classes of the core meta-
model of PMM, which are superclasses for every schema or schema element of a concrete metamodel.

5 Conclusion and Future Work
We have introduced two fundamental concepts, integration patterns and domain schemas, to provide
an automated approach to information integration with the two essential types of machine-processable
knowledge and experience. We currently evaluate existing technologies like the PROGRES graph
transformation engine introduced in [8] for their suitability and also analyse different implementation
alternatives for creating a new system from scratch. While focussing on the planning phase of the II
process, we can transfer both the concept of patterns and domain schemas to other phases. Domain
schemas can be used in the discovery process to narrow down the potentially very large set of candi-
date data sources to the most promising ones. Patterns can also guide deployment by describing the
mapping from logical integration plans to the physical plans, i.e., the deployment info for different
runtime environments.

References

[1] Mario Antonioletti, Malcolm Atkinson, Susan Malaika, Simon Laws, Norman W. Paton, Dave Pearson, Greg Riccardi:
The Grid Data Service Specification. September 19, 2003.

[2] Object Management Group: Common Warehouse Metamodel (CWM) Specification Version 1.1. March 2003.

[3] Ian Foster, Carl Kesselman, Steven Tuecke: The Anatomy of the Grid - Enabling Scalable Virtual Organizations. In
Proceedings of the First IEEE International Symposium on Cluster Computing and the Grid, May 15-18, 2001.

[4] Laks V. S. Lakshmanan, Fereidoon Sadri, Iyer N. Subramanian: SchemaSQL – A Language for Interoperability in
Relational Multi-Database Systems. In Proceedings of the 22nd VLDB Conference, pp. 239-250, 1996.

[5] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm, D. Snelling, P.
Vanderbilt: Open Grid Services Infrastructure. June 27, 2003.

[6] Erhard Rahm, Philip A. Bernstein: A survey of approaches to automatic schema matching. In The VLDB Journal 10, pp.
334-350, 2001.

[7] Andy Schürr: Programmed Graph Replacement Systems. 1997.

[8] A. Schürr, A. W. Winter, A. Zündorf: The PROGRES Approach: Language and Environment. In Handbook of Graph
Grammars and Computing by Graph Transformation 1, pp. 487-550, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

